Lockheed Martin Corporation 6801 Rockledge Drive MP: CCT-246 Bethesda, MD 20817 Telephone 301-548-2209

LOCKHEED MARTIN

January 3, 2023

VIA EMAIL AND PRIVATE CARRIER

Anuradha Mohanty Land and Materials Administration Maryland Department of the Environment 1800 Washington Boulevard, Suite: 625 Baltimore, Maryland 21230

Subject: Transmittal of the Technical Memorandum: August 2022 Surface Water Sampling Results for

Frog Mortar Creek

Martin State Airport, 701 Wilson Point Road

Middle River, Maryland

Dear Ms. Mohanty,

For your information, please find enclosed two hard copies of the above-referenced document. This technical memorandum presents the August 2022 sampling results for surface water samples collected in Frog Mortar Creek adjacent to the Dump Road Area Martin State Airport at Martin State Airport in Middle River, Maryland.

If you have any questions or require any additional information please contact me by phone at 301-964-2482, or via e-mail at anthony.c.apanavage@lmco.com.

Sincerely,

Anthony Apanavage

Project Lead

Environmental Remediation Principal Lockheed Martin Corporation

cc: (via email without enclosure)

Brian Dietz, MDE

Christine Kline, Lockheed Martin Mary Morningstar, Lockheed Michael Martin, Tetra Tech Peter Shilland, CDM Smith

cc: (via mail with CD enclosure) Pete Lekas, EA Environmental

cc: (via shipping courier; with enclosures) Mark Williams, MAA

Al Pollard, Martin State Airport

cc: (via Box)

Remediation Records Coordinator, Lockheed Martin

TECHNICAL MEMORANDUM: AUGUST 2022 SURFACE WATER SAMPLING RESULTS FOR FROG MORTAR CREEK MARTIN STATE AIRPORT 701 WILSON POINT ROAD MIDDLE RIVER, MARYLAND

Prepared for: Lockheed Martin Corporation	
Prepared by: Tetra Tech, Inc.	
January 2023	
Approved by:	
Revision: 0	
Michael Mark	
Michael Martin, P.G. Regional Manager	
Jet Julia	
Josh Mullis	
Project Scientist	

TABLE OF CONTENTS

<u>Section</u>		Page
Table of Co	ontents	i
List of FIGU	JRES	ii
List of TAB	LES	ii
Appendice	S	ii
• •	and Abbreviations	
	ntroduction	
	Site Background and Previous Investigations	
	nvestigation Approach and Methodology	
3.1 S	urface Water Sampling	3-2
3.1.1	Surface Water Sampling and Chemical Analyses	3-2
3.1.2	Documentation	3-4
3.1.3	Sample Nomenclature and Handling	3-4
3.1.4	Equipment Decontamination	3-5
3.1.5	Waste Management	3-5
3.2 D	ata Management	3-5
3.2.1	Data Tracking and Control	3-5
3.2.2	Sample Information	3-6
3.2.3	Project Data Compilation	3-6
3.2.4	Geographic Information System	3-6
3.3 D	ata Review	3-7
Section 4 F	Results	4-1
4.1 S	urface Water Data and Screening Criteria	4-1
4.2 V	olatile Organic Compound Surface Water Sampling Results	4-2
4.2.1	Trichloroethene Results	4-2
4.2.2	cis-1,2-Dichloroethene Results	4-3
4.2.3	Vinyl Chloride Results	4-3
4.2.4	Tentatively Identified Compound Results	
Section 5 S	Summary	

TABLE OF CONTENTS (CONTINUED)

Section 6 References6-						
LIST OF FIGURES						
Figure 1-1 Figure 2-1 Figure 2-2 Figure 3-1	Martin State Airport, Site Location Map Martin State Airport and Surrounding Features Site Features and Areas of Concern, Dump Road Area 2022 Surface Water Sampling Locations, Frog Mortar Creek					
LIST OF TABLES						
Table 3-1 Table 4-1	List of Samples and Chemical Analyses for Surface Water—August 2022 Comparison of Primary Volatile Organic Compound Results Detected in Surface Water in the August 2021, July 2022, and August 2022 Sampling Rounds					
	APPENDICES					
Appendix A–	–Field Measurements for Water Quality and Surface-Water-Sample Log Sheets					
	–Data-Validation and Full Laboratory Reports –Final Analytical Data August 2022					

January 2023

ACRONYMS AND ABBREVIATIONS

AWQC ambient water quality criteria

BTAG Biological Technical Advisory Group

BTEX benzene, toluene, ethylbenzene, and xylenes

cis-1,2-DCE *cis*-1,2-dichloroethene

COMAR Code of Maryland Regulations

cVOC chlorinated volatile organic compound

DRA Dump Road Area

EESH energy, environment, safety, and health

EL Edwards Lane

GC/MS gas chromatography/mass spectrometry

GIS geographic information system

IDW investigation derived waste

Lockheed Martin Corporation

LRP Land Restoration Program

MAA Maryland Aviation Administration

MDE Maryland Department of the Environment

MDANG Maryland Air National Guard

MSA Martin State Airport

μg/L microgram(s) per liter

NOAA National Oceanic and Atmospheric Administration

NRWQC national recommended water quality criteria

PDF portable document format

PPE personal protective equipment

SVOC semivolatile organic compound

TB trip blank

TCE trichloroethene

Tetra Tech, Inc.

TIC tentatively identified compound

USEPA United States Environmental Protection Agency

VC vinyl chloride

VOC volatile organic compound

January 2023

SECTION 1 INTRODUCTION

On behalf of Lockheed Martin Corporation (Lockheed Martin), Tetra Tech, Inc., (Tetra Tech) has prepared this technical memorandum presenting August 2022 sampling results for surface water samples collected in Frog Mortar Creek adjacent to the Dump Road Area (DRA) at Martin State Airport (MSA) in Middle River, Maryland (see Figure 1-1). Surface water was sampled according to the 2022 Frog Mortar Creek Surface Water Sampling Work Plan (Tetra Tech, 2022a). This technical memorandum presents the analytical results for surface water samples collected from Frog Mortar Creek on August 22, 2022.

This investigation obtained additional chemical and spatial-distribution data for volatile organic compounds (VOCs) in creek surface water that possibly emanate from a groundwater plume at the Dump Road Area of Martin State Airport or may originate from other upgradient sources. Results herein are compared to screening levels intended to protect human health and the environment. These data provide information to:

- characterize surface water quality to determine the concentrations and spatial distributions of volatile organic compounds in Frog Mortar Creek
- evaluate the interaction between shallow groundwater and Frog Mortar Creek for numerical modeling
- evaluate the effectiveness of the groundwater treatment system now operating to contain contaminated groundwater at the Dump Road Area
- provide information that can be used to assess ecological risks to aquatic and benthic organisms and human health risks for recreational users of Frog Mortar Creek
- update modeling for shallow-groundwater flow patterns and groundwater discharge to Frog Mortar Creek

This technical memorandum is organized as follows:

Section 2—Site Background and Previous Investigations: Briefly describes the site and previous Frog Mortar Creek investigations.

Section 3—Investigation Approach and Methodology: Presents the technical approach and field methodology used for surface water sampling.

Section 4—Results: Presents the investigation results.

Section 5—Summary: Summarizes the investigation approach and results.

Section 6—References: Cites references used to compile this memorandum.

SECTION 2 SITE BACKGROUND AND PREVIOUS INVESTIGATIONS

Martin State Airport (MSA), located at 701 Wilson Point Road in Middle River, Maryland, is bounded by Frog Mortar Creek to the east and Stansbury Creek to the west (Figure 2-1); both are tidal tributaries of the Chesapeake Bay. The Maryland Aviation Administration (MAA) operates MSA on behalf of the Maryland Department of Transportation. The MSA property (approximately 775 acres) consists of an administration building (the Main Terminal building), aircraft hangars, a 7,000-foot-long runway, and several taxiways. MAA manages more than 130,000 square feet of heated hangar space and 190 smaller aircraft hangars. MSA hosts the Maryland State Police aviation unit, the Baltimore County Police aviation and marine units, the Baltimore City Police aviation unit, and the Glenn L. Martin Museum. A portion of MSA is leased to the United States Air Force for use by the Maryland Air National Guard (MDANG). MSA is also home to several commercial tenants that provide fuels and lubricants, helicopter avionics repair, and flight instruction (MAA, 2018).

The area under investigation is Frog Mortar Creek, which is east of and adjacent to the Dump Road Area (DRA) site at MSA (Figures 2-1 and 2-2). The DRA consists mostly of open meadows, mowed grass, and heavily wooded areas (as modified by the construction of the groundwater extraction and treatment system noted below); however, it also includes a portion of Taxiway Tango and extends to the airport runway. Taxiway Tango is a concrete and asphalt taxiway used by MDANG for military aircraft operations. The airport runway is also used by state-owned and private aircraft.

An extraction and treatment system for DRA groundwater was constructed in 2017 and is currently operational at the DRA site. This system consists of 16 groundwater extraction wells, underground piping, and a building that houses components to capture and treat groundwater containing volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals. The wells

and underground piping pump groundwater from the surficial aquifer to the aboveground treatment building, creating a "hydraulic barrier" that captures groundwater and prevents contaminants from migrating off-site. The treatment building is 60 feet wide and 170 feet long (10,200 square feet) and is near Frog Mortar Creek in the eastern-central portion of the DRA (Figure 2-2). Treated groundwater is tested routinely and subsequently discharged to Frog Mortar Creek via a Maryland Department of the Environment (MDE)-permitted outfall.

Detailed environmental studies have been conducted at the DRA since 1991, when MAA removed drums discovered near Taxiway Tango (Figure 2-2). Subsequent environmental studies at MSA have demonstrated that soil, pond sediment, and groundwater at the DRA have been impacted by VOCs, SVOCs, and metals resulting from historical dumping and backfilling. The following constituents (including several metals) have been detected in DRA groundwater at concentrations exceeding state groundwater standards:

- *chlorinated VOCs* (cVOCs)—including trichloroethene (TCE), *cis*-1,2-dichloroethene (*cis*-1,2-DCE), and vinyl chloride (VC)
- *petroleum-related VOCs*—such as benzene, toluene, ethylbenzene, and xylenes (BTEX)
- 1,4-dioxane—although Maryland does not have a groundwater standard for this compound, concentrations at the site have exceeded standards proposed or promulgated by other states
- *metals*—arsenic, barium, beryllium, cadmium, chromium, copper, hexavalent chromium (in two wells, in 2008 only), iron, lead, manganese, mercury, nickel, selenium, thallium, vanadium, and zinc

Frog Mortar Creek is hydraulically downgradient of the DRA and receives groundwater discharging from the DRA. The constituents listed above have been detected in surface water samples collected from Frog Mortar Creek. Surface water samples have been collected from Frog Mortar Creek since 1997, and multiple rounds of samples have been collected annually since 2010. Studies at Frog Mortar Creek from 1997–2020, and details of the area's physical setting, land use, physiography, and surface/subsurface conditions (i.e., soils, hydrology, and geology), are summarized in the 2021 Surface Water Sampling Report for Frog Mortar Creek (Tetra Tech, 2022b), and therefore are not repeated herein.

January 2023

SECTION 3 INVESTIGATION APPROACH AND METHODOLOGY

Previous surface-water sampling data for Frog Mortar Creek support the need for ongoing monitoring to assess the extent to which surface water is affected by groundwater discharged from the Dump Road Area (DRA). The August 2022 data supports this ongoing effort and will also be used to assess the effectiveness of the groundwater extraction, containment, and treatment system. The chlorinated volatile organic compounds (cVOCs) trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride (VC), and several metals, have previously been detected in Frog Mortar Creek surface water samples at concentrations exceeding ecological and/or human health screening-criteria; these analytes have also been detected in groundwater at the DRA.

Detected chemical concentrations in surface water obtained from Frog Mortar Creek were evaluated by comparing them to United States Environmental Protection Agency (USEPA) or Maryland screening levels and site-specific screening levels. These screening criteria include USEPA national recommended water quality criteria (NRWQC), Maryland ambient water quality criteria (AWQC), USEPA Biological Technical Advisory Group (BTAG) surface water screening-benchmarks, and site-specific screening levels for swimming developed by Lockheed Martin Corporation (Lockheed Martin). The August 2022 sampling is the third of four surface-water sampling rounds planned for 2022, and assessed water quality during the swimming season, when increased recreational use of Frog Mortar Creek is expected.

Note that in the discussion below, all sampling locations share the "MSA-" prefix (e.g., "SW39" refers to transect MSA-SW39). This prefix is not included in the text below to increase readability.

3.1 SURFACE WATER SAMPLING

3.1.1 Surface Water Sampling and Chemical Analyses

Twenty-eight surface water samples were collected from Frog Mortar Creek adjacent to the DRA site on August 22, 2022. Sampling locations are shown in Figure 3-1. Four samples were collected along each of six transects spaced approximately 350 feet apart along the western shoreline of the creek; these transects are designated SW37, SW38, SW40, SW41, SW42, and SW43. Four additional western-shore samples (SW46A, SW47A, SW48A, and SW49A) were collected at near-shore locations between transects SW42 and SW40, SW40 and SW38, SW38 and SW41, and SW41 and SW43 (respectively), for a total of 28 surface water samples.

Historically, the northernmost transect (SW39) and the southernmost transect (SW45) were also sampled but were removed from the sampling program in 2020; these transects were located north of the northernmost (SW37) and south of the southernmost (SW43) transects sampled in 2022 (Figure 3-1). Sampling of southern transect SW44 and the Edwards Lane transect (located on the eastern shore of Frog Mortar Creek) was discontinued after 2021. These locations were removed from the sampling program, with Maryland Department of the Environment (MDE) approval, because cVOCs and other analytes of concern had not been detected in surface water since the December sampling episodes in both 2018 (for SW39 and SW45) and 2019 (for Edwards Lane and SW44), and because the remaining transects cover the extent of the groundwater contaminant plume emanating from the DRA.

Along each transect, one sample was collected near the shoreline ("A" sample), one was collected approximately 50 feet from the shoreline ("B" sample), one was collected approximately 100 feet from the shoreline ("C" sample), and one was collected approximately 200 feet from the shoreline ("D" sample). All samples were collected approximately one foot below the water surface. All sampling locations were located using a handheld global positioning system receiver.

Table 3-1 outlines the sampling and chemical analysis program for August 2022. Samples from the six western shoreline transects (SW37, SW38, SW40, SW41, SW42, and SW43), and from SW46A through SW49A, were analyzed for volatile organic compounds (VOCs) by USEPA SW846 Method 8260C (including Freon 113 [1,1,2-trichloro-1,2,2-trifluoroethane], Freon 22

[chlorodifluoromethane], and tentatively identified compounds). Sampling information was documented on sample log sheets (see Appendix A).

Historically, western shoreline samples were also analyzed for hexavalent chromium and dissolved metals. In agreement with MDE Land Restoration Program (LRP), and because hexavalent chromium was not detected during sampling rounds conducted in 2018 or 2019, hexavalent chromium and dissolved metals were removed from the sampling program in 2020.

Water quality parameters (including temperature, pH, specific conductance, salinity, turbidity, dissolved oxygen, and oxidation-reduction potential) were measured and recorded at the time of sampling, as was the water depth at all surface-water sampling locations. Water depth measurements were also obtained from the staff gauge at 3301 Edwards Lane before sampling (1.07 meters [3.5 feet] at 1105 hours) and after sampling (0.94 meters [3.1 feet] at 1256 hours). Mean tidal flux in the Middle River, Maryland, area is approximately 1.6 feet (National Oceanic and Atmospheric Administration [NOAA], 2015). A 2011 study by Lockheed Martin sought to ascertain the effects of tides and sampling depths on contaminant concentrations in Frog Mortar Creek (Tetra Tech, 2012). The tidal phase relative to the time of sample collection appears to influence the VOC concentrations detected, particularly in the samples collected 50 feet from shore. In general, VOC concentrations in "B-series" samples (collected 50 feet from shore) were greater at low tide than at high tide, irrespective of sampling depth. Therefore, during this sampling round, all samples were collected during low tide.

Samples were collected as grab samples from approximately one foot below the water surface using the direct-fill sampling technique. VOC samples were collected using a stainless steel discrete-interval sampler (also known as a "bacon bomb" sampler). The sampler was lowered to approximately one foot below the water surface, the check valve was engaged to allow the sampler to fill, the sampler was then brought to the surface, and the water was removed through a valve to fill three laboratory-cleaned, hydrochloric-acid preserved, 40-milliliter sample vials. The discrete-interval sampler was cleaned after each use by rinsing it with distilled water over the creek. No decontamination fluids were collected during this sampling.

January 2023

In accordance with the approved work plan (Tetra Tech, 2022a), no duplicate samples were collected during this sampling round. A trip blank (one per cooler containing VOC samples) was submitted for VOC analysis for quality assurance/quality control purposes. One equipment blank sample was also collected (from the discrete-interval sampler) for VOC analysis using laboratory supplied deionized water, per the quality assurance project plan (Tetra Tech, 2021).

3.1.2 Documentation

A master site logbook was maintained as an overall record of site field activities. Sample documentation includes completed chain of custody forms and surface water-specific sample log-sheets. Chain of custody forms are standardized to summarize and document pertinent sample information, such as sample identification and type, matrix, date and time of collection, preservation, and the analysis requested. Sample-custody procedures document sample acquisition and integrity. August 2022 log sheets for surface water samples are in Appendix A. Chain of custody forms, the data-validation report, and the full laboratory report are in Appendix B (on compact disc).

3.1.3 Sample Nomenclature and Handling

Surface water samples collected from western shoreline transects are identified with a unique sample-identification tag. Surface water samples are labeled with an "MSA-SW" prefix, followed by the sample transect number, the profile location ("A," "B," "C," or "D"), and the six-digit sampling date. For example, the surface water sample collected on August 22, 2022, from MSA-SW37A is labeled "MSA-SW37A-082222." The trip blank is labeled with a "TB" prefix followed by the sample's six-digit submittal date (e.g., TB-082222), and the equipment blank is labeled with an "MSA-SWEQB" prefix followed by the sample's six-digit submittal date (e.g., MSA-SWEQB-082222).

Sample handling includes field-related considerations concerning the selection of sample containers, preservatives, allowable holding times, and analyses requested. Proper custody procedures were followed throughout all phases of sample collection and handling. Chain of custody protocols were used throughout sample handling to assure the evidentiary integrity of

sample containers. These protocols demonstrate that the samples were handled and transferred in a manner that would prevent or detect possible tampering.

Sample containers were released under signature from the laboratory and accepted under signature by the sampler(s) or other individual(s) responsible for maintaining custody, until the sample containers could be transferred to the sampler(s). Transport containers returning to the laboratory were sealed with strapping tape and a tamper-resistant custody seal. The custody seal contains the signature of the individual releasing the transport container, along with the date and time.

3.1.4 Equipment Decontamination

This project required minimal equipment decontamination. Both dedicated and disposable equipment were used for surface water sampling, to reduce the need for decontamination and eliminate potential cross-contamination of samples. The discrete-interval sampler was cleaned after each use by rinsing with distilled water. Equipment was cleaned over the (creek) water after each sample had been collected. No decontamination fluids were collected during sampling.

3.1.5 Waste Management

Investigation derived waste (IDW) consisted of personal protective equipment (PPE) generated during field sampling. PPE IDW was brushed off, placed in trash bags, and disposed of in a facility trash receptacle designated by facility personnel.

3.2 DATA MANAGEMENT

Laboratory data-handling procedures met the requirements of the laboratory subcontract. All analytical and field data are maintained in project files, including copies of chain of custody forms, sample log forms, sampling location maps, and documentation of quality assurance and data corrections.

3.2.1 Data Tracking and Control

A sample tracking system was used from the beginning to the end of sampling. The field operations leader began and coordinated sample tracking before mobilizing the sampling team to the field. Preprinted sample-container labels generated before fieldwork began were reviewed to ensure that they were accurate and adhered to work plan requirements. The project manager coordinated with

the analytical laboratory to ensure that the laboratory was aware of the number and type of samples and analyses that would be submitted.

During field sampling, the field operations leader forwarded the chain of custody to a designated project assistant and to the laboratory. The project assistant confirmed that the chain of custody provided the information required by the work plan. This allowed early detection of errors made in the field so that adjustments could be made before sample analyses.

After successful completion of all requested analyses, the laboratory submitted an electronic deliverable for each sample delivery group. When all electronic deliverables had been received from the laboratory, the project assistant checked the laboratory submittal to determine whether the laboratory had performed all analyses requested. All analyses requested for this project were performed.

3.2.2 Sample Information

Data from field measurements were recorded using appropriate sample log sheets and were summarized in tabular form, as were the raw instrument-data from the laboratory. The field operations leader verified field data daily; laboratory data were verified by the group supervisor and then by the laboratory's quality control/documentation department. Sample log sheets are in Appendix A.

3.2.3 **Project Data Compilation**

The analytical laboratory generated an Adobe Acrobat® portable document format (PDF) file of the analytical data package, as well as an electronic database deliverable. The electronic database was checked against the PDF file provided by the laboratory and updated as required, based on data-qualifier flags applied during data validation. All data, such as units of measure and chemical nomenclature, were corrected as necessary to be consistent with the project database.

3.2.4 Geographic Information System

Data management systems for this investigation consisted of a relational database and geographic information system (GIS) to manage environmental information pertaining to MSA housed in the Lockheed Martin environment, safety, and health (ESH) GIS system. The relational database

stores chemical, geological, hydrogeological, and other environmental data collected during environmental investigations. The GIS, created from the relational database, contains subsets of the larger data pool. The GIS allows environmental data to be posted onto base maps to graphically represent project information. Compiled sampling, chemical, and positional data from this investigation were incorporated into the ESH GIS system.

3.3 DATA REVIEW

Data from the laboratory were entered into a sample database and evaluated against risk-based criteria. Data were validated (to evaluate data completeness, holding times, calibrations, precision, accuracy, laboratory and field-blank contamination, and detection limits) concurrent with the data evaluation. These reviews were based on USEPA national functional guidelines for organic data review (USEPA, 2020) and the specifics of the analytical methods used. Data from this sampling event consist of chemical results for surface water samples. Data-validation reports, full laboratory reports, and chain of custody forms are in Appendix B (on compact disc) as PDF files.

Collectively, these data are acceptable for their intended uses (site characterization and risk assessment). The data qualifiers (i.e., flags) listed below were applied to the chemical results presented in this report. All flags appear in Appendix B:

- U Not detected; the analyte is considered not detected at the reported value.
- UJ The analyte was analyzed for but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
- UR The sample result (nondetect) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

SECTION 4 RESULTS

4.1 SURFACE WATER DATA AND SCREENING CRITERIA

Samples collected from the locations shown on Figure 3-1 were analyzed for volatile organic compounds (VOCs), including fuel-related compounds such as benzene, toluene, ethylbenzene, and xylenes (BTEX) and tentatively identified compounds (TICs). However, no VOCs were detected in the surface water samples collected from Frog Mortar Creek in August 2022. When VOCs were historically detected, validated chemical data from the Frog Mortar Creek surface water samples were used to generate a statistical summary table and a table summarizing positive detections of chemical analytes, but since no VOCs were detected, only a comparison table (Table 4-1) showing trichloroethene (TCE), *cis*-1,2-dichloroethene (*cis*-1,2-DCE), and vinyl chloride (VC) results from the August 2021, July 2022, and August 2022 sampling rounds was generated for this reporting period.

When historically detected, surface-water sampling results in previous sampling rounds were compared to several applicable screening criteria, including:

- United States Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) freshwater screening-benchmarks (USEPA, 2006)
- USEPA national recommended water quality criteria (NRWQC) for freshwater acute and chronic aquatic-organism exposures, and NRWQC for human health aquatic-organismconsumption (USEPA, 2019)
- Maryland ambient water quality criteria (AWQC) for acute and chronic aquatic-organism exposures, and AWQC for human health aquatic-organism-consumption (Code of Maryland Regulations [COMAR], 2016)
- site-specific screening levels for swimming developed for TCE, cis-1,2-DCE, and VC

Site-specific screening levels for swimming for TCE, *cis*-1,2-DCE, and VC were developed by Lockheed Martin Corporation (Lockheed Martin) at the request of the Maryland Department of the Environment (MDE); these values are used to assess risks posed to recreational users of Frog

9088 Tetra Tech • Lockheed Martin, Martin State Airport • Technical Memorandum:

Mortar Creek. These screening levels were developed to protect the health of swimmers near the Dump Road Area (DRA) shoreline, assuming they have long-term exposure to surface water (i.e., assumed four hours of swimming per day, 70 days per year, for 30 years). These swimming criteria are used because they provide the most conservative (i.e., most protective of human health) screening levels for Frog Mortar Creek.

A table summarizing all analytical data, including nondetect results and detection limits, is attached as Appendix C. Since all data discussed herein share the "MSA" prefix, it is dropped when referring to transects or samples (e.g., "SW37" refers to transect MSA-SW37), to improve readability. Likewise, although shown on tables and figures, data qualifiers such as '*J*' are not used in the text discussions to increase readability.

4.2 VOLATILE ORGANIC COMPOUND SURFACE WATER SAMPLING RESULTS

Nondetect results were reported for both the trip and equipment blanks during this August 2022 sampling event. Since all VOC samples were acid-preserved, 2-chloroethyl vinyl ether could not be reliably recovered and results for this analyte were qualified as rejected (UR). A tentatively identified compound search was performed for chlorodifluoromethane, but it was not detected above its reporting limit, and non-detected results were qualified as estimated (UJ). Percent differences measured during VOC continuing calibrations performed on laboratory instruments exceeded quality control limits and affected several samples; nondetect results for these affected samples and analytes were qualified as estimated (UJ). These issues are described as minor in the data validation report (Appendix B), and the data generated for this August 2022 sampling episode are acceptable for their intended use.

4.2.1 Trichloroethene Results

As shown on Table 4-1, TCE was not detected at all sampled locations in August 2022, July 2022, and August 2021. These results are consistent with the decreasing trend of TCE observed in Frog Mortar Creek since March 2019. TCE was last detected at SW49A (0.71 micrograms per liter $[\mu g/L]$) in March 2021; the detected concentration was more than one order of magnitude (10 times) lower than the lowest screening level for TCE, the MDE-approved site-specific screening level for swimming (10 μ /L). This March 2021 TCE detection was the only round in

which TCE was detected in 2021. When detected in previous rounds, TCE tended to decrease with increasing distance from the shore.

4.2.2 *cis*-1,2-Dichloroethene Results

cis-1,2-DCE was also not detected at all sampled locations in August 2022, July 2022, and August 2021 (Table 4-1). cis-1,2-DCE was last detected in March 2021, at 16 of 32 (or 50%) of sampled locations, but at concentrations more than two orders of magnitude (or 100 times) below its lowest (site-specific swimming) screening level (300 μg/L), ranging from 0.16 μg/L (SW43B) to 2.2 μg/L (SW49A). When detected in previous rounds, the distributions of cis-1,2-DCE in the higher concentration transects tended to decrease with increasing distance from the shore, as observed at transect SW42 in March 2021, with concentrations of 1.4 μg/L (SW42A), 0.55 μg/L (SW42B), 0.55 μg/L (SW42C), and 0.31 μg/L (SW42D). The August 2022 results are consistent with the decreasing trend of cis-1,2-DCE observed in Frog Mortar Creek since the groundwater treatment system began operation.

4.2.3 Vinyl Chloride Results

VC was also not detected at all sampled locations in August 2022, July 2022, and August 2021. VC was last detected in December 2021, at four locations ranging from 1 μ g/L (SW42C) to 2.4 μ g/L (SW46A); all four concentrations were above the site-specific swimming screening level of 0.7 μ g/L. When detected in previous rounds, VC distributions in the higher concentration transects tended to decrease with increasing distance from the shore, as occurred in December 2021 in transect SW42, at SW42A (1.9 μ g/L), SW42B (1.2 μ g/L) and SW42C (1 μ g/L).

4.2.4 Tentatively Identified Compound Results

A tentatively identified compounds (TIC) search was performed for the analyte chlorodifluoromethane, but it was not detected above the reporting limit (1 μ g/L) in any of the samples analyzed.

SECTION 5 SUMMARY

The Lockheed Martin Corporation August 2022 Frog Mortar Creek surface-water investigation results are summarized below:

- Twenty-eight surface water samples were collected on August 22, 2022, and chemically analyzed to assess concentrations of chemical constituents in Frog Mortar Creek, and particularly to evaluate creek surface-water quality near the Dump Road Area (DRA). Each sample was collected at approximately one foot below the water surface.
- Samples were collected along six transects spaced approximately 350 feet apart (for 24 samples) along the western shoreline of Frog Mortar Creek. Along each transect, one sample was collected near the shoreline ("A" sample), one was collected approximately 50 feet from the shoreline ("B" sample), one was collected approximately 100 feet from the shoreline ("C" sample), and one was collected approximately 200 feet from the shoreline ("D" sample). In addition to the samples collected along transects, four single point shoreline samples were collected, including SW46A (between transects SW42 and SW40), SW47A (between transects SW40 and SW38), SW48A (between transects SW38 and SW41), and SW49A (between transects SW41 and SW43), for a total of 28 samples.
- Samples collected in August 2022 from Frog Mortar Creek were analyzed for volatile organic compounds (VOCs) by USEPA SW846 Method 8260.
- The data were validated in accordance with the United States Environmental Protection Agency (USEPA) Region III Modifications to the National Functional Guidelines for Data Review (USEPA, 2020), and the specifics of the analytical methods used.
- Sampling results were screened against (1) United States Environmental Protection Agency Region 3 Biological Technical Advisory Group (BTAG) ecological screening-benchmarks for freshwater; (2) United States Environmental Protection Agency national recommended water quality criteria (NRWQC) for acute and chronic aquatic-organism exposures and for human health aquatic-organism-consumption; (3) Maryland ambient water quality criteria (AWQC) for acute and chronic aquatic-organism exposures and for human health aquatic-organism-consumption; and (4) site-specific screening levels developed to evaluate risks to recreational swimmers from exposure to the three most frequently detected volatile organic compounds in surface water: trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride (VC).
- Trichloroethene, *cis*-1,2-dichloroethene, and vinyl chloride were not detected in any sample collected during the August 2022 sampling round.

- No other volatile organic compounds were detected in August 2022.
- The next surface water sampling event will occur in September 2022.

SECTION 6 REFERENCES

- Code of Maryland Regulations (COMAR), 2016. "Numerical Criteria for Toxic Substances in Surface Waters." COMAR Title 26, Subtitle 08, Chapter 02, Regulation 03. http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.03-2.htm.
- Maryland Aviation Administration (MAA), 2018. Martin State Airport Website: http://www.martinstateairport.com/index.php.
- National Oceanic and Atmospheric Administration (NOAA), 2015. Exceedance Probability

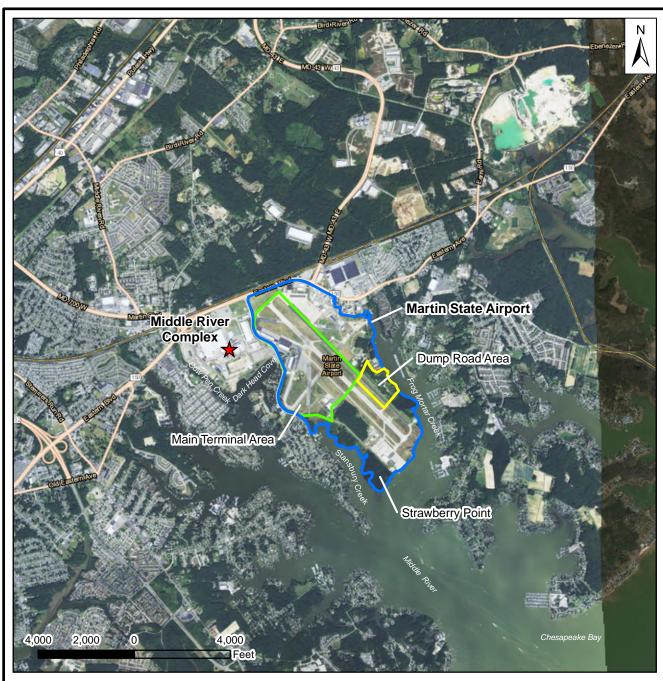
 Level and Tide Datums, 8574680, Baltimore, Maryland. Mean-high high-water (MHHW)

 and mean-low low-water (MLLW) measurements near Baltimore, Maryland, 1983—

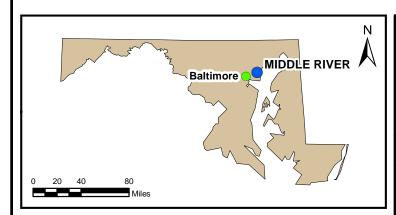
 2001: Exceedance Probability Levels and Tidal Datums Baltimore, MD NOAA Tides

 & Currents.
- Tetra Tech, Inc. (Tetra Tech), 2012. 2011 Surface Water Sampling Report, Frog Mortar Creek, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. March.
- Tetra Tech, Inc. (Tetra Tech), 2021. Quality Assurance Project Plan, 2022 Groundwater and Surface Water Monitoring, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. September.
- Tetra Tech, Inc. (Tetra Tech), 2022a. 2022 Surface Water Sampling Work Plan for Frog Mortar Creek, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. February.
- Tetra Tech, Inc. (Tetra Tech), 2022b. 2021 Surface Water Sampling Report for Frog Mortar Creek, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. April.
- United States Environmental Protection Agency (USEPA) 2006. Region III Biological Technical Advisory Group Freshwater Screening Benchmarks. August.
- United States Environmental Protection Agency (USEPA), 2019. *National Recommended Water Quality Criteria: 2019*. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology. October.

United States Environmental Protection Agency (USEPA), 2020. National Functional Guidelines for Organic Superfund Methods Data Review. OLEM 9240.0-51. EPA 540-R-20-005. November.


FIGURES

January 2023


Figure 1-1 Martin State Airport, Site Location Map Figure 2-1 Martin State Airport and Surrounding Features Figure 2-2 Site Features and Areas of Concern, Dump Road Area Figure 3-1 2022 Surface Water Sampling Locations, Frog Mortar Creek

August 2022 Surface Water Sampling Results for Frog Mortar Creek

January 2023 Figures

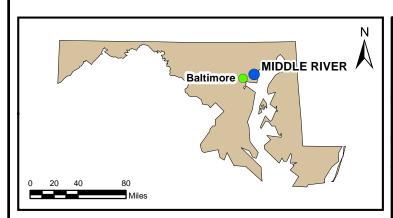
Aerial photograph provided by ESRI's ArcGIS Online World Imagery map service (© 2013 ESRI and its data suppliers).

FIGURE 1-1

MARTIN STATE AIRPORT SITE LOCATION MAP

Lockheed Martin, Martin State Airport Middle River, Maryland

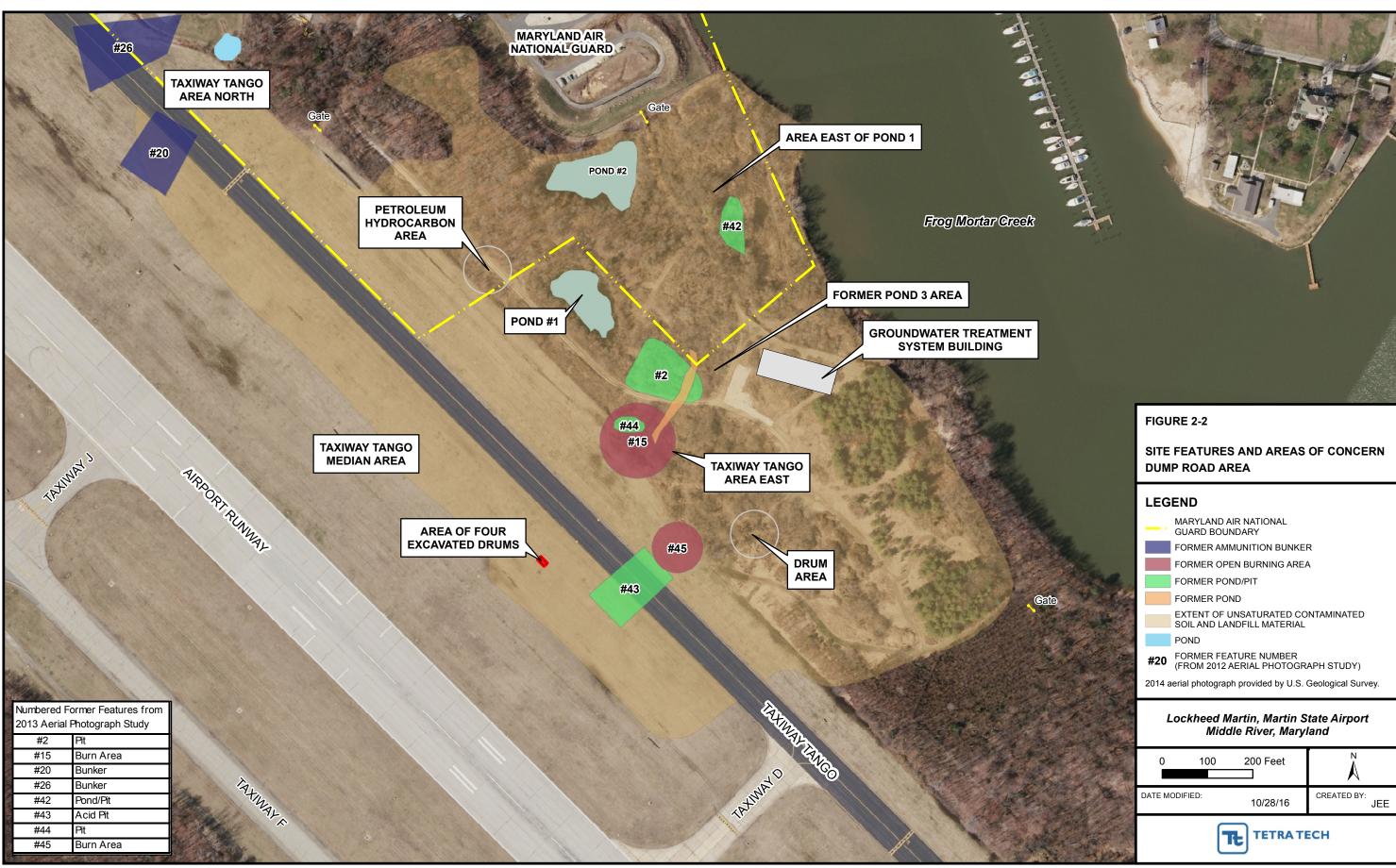
DATE MODIFIED:


12/16/15

CREATED BY: JEE

Aerial photograph provided by ESRI's ArcGIS Online World Imagery map service (© 2013 ESRI and its data suppliers).

FIGURE 2-1 MARTIN STATE AIRPORT AND SURROUNDING FEATURES


Lockheed Martin, Martin State Airport Middle River, Maryland

DATE MODIFIED:

08/27/15

CREATED BY: JEE

TABLES

Table 3-1 List of Samples and Chemical Analyses for Surface Water— August 2022

Table 4-1 Comparison of Primary Volatile Organic Compound Results Detected in Surface Water for the August 2021, July 2022, August 2022 Sampling Rounds

Table 3-1 List of Samples and Chemical Analyses for Surface Water—August 2022 Frog Mortar Creek, Martin State Airport Middle River, Maryland

Surface water sampling location/ Transect No. ⁽¹⁾	Analytical Requirements Volatile organic compounds (USEPA SW846 8260C) 3 × 40 mL vials with hydrochloric acid
MSA-SW37	✓
MSA-SW38	✓
MSA-SW40	✓
MSA-SW41	✓
MSA-SW42	✓
MSA-SW43	✓
MSA-SW46	✓
MSA-SW47	✓
MSA-SW48	✓
MSA-SW49	✓

^{1.} Four samples, at locations -A, -B, -C, and -D, were collected from each transect, except for sampling locations SW46, SW47, SW48, and SW49, where only western shore "A" samples were collected.

mL-milliliter

USEPA – United States Environmental Protection Agency

Table 4-1
Comparison of Primary Volatile Organic Compound Results Detected in Surface Water in the August 2021, July 2022, and August 2022 Sampling Rounds
Frog Mortar Creek, Martin State Airport
Middle River, Maryland

Location ID	Trichloroethene concentrations (μg/L)			cis -1,2-Dichloroethene concentrations (μg/L)			Vinyl chloride concentrations (µg/L)		
	August 17, 2021	July 6, 2022	August 22, 2022	August 17, 2021	July 6, 2022	August 22, 2022	August 17, 2021	July 6, 2022	August 22, 2022
Average-Detections									
Average-All Samples ⁽¹⁾	0.05	0.22	0.22	0.08	0.23	0.23	0.1	0.225	0.22
Maximum Concentration									
No. of Detections/Samples ⁽²⁾	0/32	0/28	0/28	0/32	0/28	0/28	0/32	0/28	0/28
LOCATION ID	5/52			3,52			J/ 5 =		
MSA-SW37A									
MSA-SW37B									
MSA-SW37C									
MSA-SW37D									
MSA-SW38A									
MSA-SW38B									
MSA-SW38C									
MSA-SW38D									
MSA-SW40A									
MSA-SW40B									
MSA-SW40C									
MSA-SW40D									
MSA-SW41A									
MSA-SW41B									
MSA-SW41C									
MSA-SW41D									
MSA-SW42A									
MSA-SW42B									
MSA-SW42C									
MSA-SW42D									
MSA-SW43A									
MSA-SW43B									
MSA-SW43C									
MSA-SW43D									
MSA-SW44A		NS	NS		NS	NS		NS	NS
MSA-SW44B		NS	NS		NS	NS		NS	NS
MSA-SW44C		NS	NS		NS	NS		NS	NS
MSA-SW44D		NS	NS		NS	NS		NS	NS
MSA-SW46A									
MSA-SW47A									
MSA-SW48A									
MSA-SW49A									

^{1 -} Averages were calculated using 1/2 sample quantitation limit (for nondetects) and 1/2 the detection limit (for B-qualified data).

Bold font indicates detected concentration exceeded its lowest screening criterion.

--- not detected; the analyte is considered not detected at the reported value

^{2 -} The number of samples collected per round decreased from 32 to 28 starting in March 2022.

APPENDICES

Appendix A—Field Measurements for Water Quality and Surface-Water-Sample Log Sheets

Appendix B—Data-Validation and Full Laboratory Reports

Appendix C—Final Analytical Data August 2022

APPENDIX A—FIELD MEASUREMENTS FOR WATER QUALITY AND SURFACE-WATER-SAMPLE LOG SHEETS

Water Quality Field Parameters-August 2022 Frog Mortar Creek Lockheed Martin, Martin State Airport, Middle River, Maryland

Sample	e ID	Date	Time	рН	Specific conductance	Temperature	Turbidity	Dissolved oxygen	Salinity	Oxidation- reduction potential	Water depth
Location	Date ID	(month/day/ year)	(24-hour)	(standard units)	(milliSiemens per centimeter)	degrees Celsius	(nephelometric turbidity units)	(milligrams per liter)	(parts per thousand)	(milllivolts)	(feet)
MSA-SW37A	-082222	08/22/2022	1240	7.71	7.26	29.71	9.62	4.99	4	162	1.8
MSA-SW37B	-082222	08/22/2022	1242	7.74	7.26	29.74	11.5	5.04	4	173	3.8
MSA-SW37C	-082222	08/22/2022	1244	7.82	7.27	29.82	9.84	5.22	4	176	5.5
MSA-SW37D	-082222	08/22/2022	1247	7.78	7.28	29.87	7.67	5.06	4	180	>6
MSA-SW38A	-082222	08/22/2022	1153	7.66	7.33	29.34	7.84	4.86	4	192	2.1
MSA-SW38B	-082222	08/22/2022	1155	7.66	7.32	29.36	8.44	4.79	4	193	4.9
MSA-SW38C	-082222	08/22/2022	1158	7.65	7.33	29.35	8.91	4.22	4	193	5.2
MSA-SW38D	-082222	08/22/2022	1200	7.65	7.34	29.32	9.12	4.84	4	190	>6
MSA-SW40A	-082222	08/22/2022	1211	7.83	7.26	29.42	6.94	5.3	4	177	2
MSA-SW40B	-082222	08/22/2022	1214	7.62	7.24	29.39	10.6	4.78	4	186	3.1
MSA-SW40C	-082222	08/22/2022	1217	7.6	7.25	29.39	9.9	4.69	4	185	4.4
MSA-SW40D	-082222	08/22/2022	1220	7.65	7.32	29.46	8.8	4.86	4	182	>6
MSA-SW41A	-082222	08/22/2022	1134	7.62	7.33	29.35	8.21	4.94	4	189	2.7
MSA-SW41B	-082222	08/22/2022	1138	7.66	7.33	29.34	8.27	4.96	4	192	4
MSA-SW41C	-082222	08/22/2022	1140	7.66	7.34	29.32	9.19	4.97	4	194	5.7
MSA-SW41D	-082222	08/22/2022	1143	7.64	7.36	29.3	9.1	4.85	4	196	>6
MSA-SW42A	-082222	08/22/2022	1226	7.62	7.24	29.57	9.41	4.85	4	178	2.4
MSA-SW42B	-082222	08/22/2022	1228	7.67	7.27	29.67	10.7	4.79	4	178	4.4
MSA-SW42C	-082222	08/22/2022	1231	7.72	7.28	29.66	8.68	4.84	4	182	5.7
MSA-SW42D	-082222	08/22/2022	1235	7.74	7.28	29.7	8.97	5.12	4	177	>6
MSA-SW43A	-082222	08/22/2022	1112	7.54	7.4	29.01	10.6	5.14	4.1	166	2.2
MSA-SW43B	-082222	08/22/2022	1117	7.61	7.38	29.32	7.46	4.8	4.1	178	3.2
MSA-SW43C	-082222	08/22/2022	1119	7.6	7.37	29.34	6.42	4.88	4.1	188	5.2
MSA-SW43D	-082222	08/22/2022	1125	7.6	7.4	29.27	8.12	4.85	4.1	189	>6
MSA-SW46A	-082222	08/22/2022	1222	7.59	7.25	29.47	9.91	4.59	4	174	2.6
MSA-SW47A	-082222	08/22/2022	1205	7.64	7.33	29.32	7.13	4.76	4	180	2.2
MSA-SW48A	-082222	08/22/2022	1148	7.65	7.32	29.33	8.33	4.81	4	194	1.9
MSA-SW49A	-082222	08/22/2022	1130	7.6	7.39	29.27	7.75	4.69	4.1	186	2.9

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: <u>112IC09567</u>

Sample ID:	MSA-SW3	37A - 08222	2	Sampled By:	Zach Musser
Sample Location:	MSA-SW3	37A		Sample Date:	22 August, 2022
QA/QC Duplicate ID	:			Sample Time:	1240
MS/MSD Collected:	YES	NO			

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA: Turbidity Method Depth Color рΗ S.C. Temp. DO Salinity ORP Other (S.U.) (mS/cm) (C°) (NTU) (mg/L) (mV) (% or ppt) 1 ft below Grab 7.26 clear 7.71 29.71 9.62 4.99 162 surface

ANALYSIS, PRESERV	ATION AND BOTTLE REQUIRMEN	TS				
Analysis	Method	Preservative	Number	Vol.	Bottle Type	Collected
VOCs, TICs	USEPA SW846 Method 8260C	HCI pH<2	3	40 mL	glass	yes

OBSERVATIONS / NOTES:

Water depth = 1.8 feet

Coordinates:	N	E	Signature(s):
			Zach Musser

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: 112IC09567

Sample ID:	MSA-SW3	37B - 08222	22	Sampled By:	Zach Musser
Sample Location:	MSA-SW3	37B		Sample Date:	22 August, 2022
QA/QC Duplicate ID	:			Sample Time:	1242
MS/MSD Collected:	YES	NO			

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA: DO ORP Other Method Depth Color S.C. Turbidity рΗ Temp. Salinity (mS/cm) (S.U.) (C°) (NTU) (mg/L) (% or ppt) (mV) 1 ft below Grab 7.74 29.74 clear 7.26 11.5 5.04 173 surface

OBSERVATIONS / NOTES: MAP:

Water depth = 3.8 feet

Coordinates:	N	E	Signature(s):
			Zach Musser

Event:

Project Site Name:

August 2022 Surface Water Sampling Frog Mortar Creek, Martin State Airport 112IC09567

Sample ID:	MSA-SW3	7C - 08222	2		Sampled I	3v·	Zach Muss	er		
Sample Location:	MSA-SW3		=		Sample Da		22 August,			
QA/QC Duplicate ID:	WOA-OVVO	70			Sample Ti		1244	2022		
	\/50	NO			Sample 11	iile.	1244			
MS/MSD Collected:	YES	NO								
MATRIX / CONCENTRA	TION:									
WATRIX / CONCENTRA	TION.									
[] Ctroom	[] Dond			rv 11 ou (Concentratio					
[] Stream	[] Pond				Concentratio					
[] Spring	[]Lake			[] High C	Concentration	on				
[X] Other (Tidal cree	K - Tresnwat	er)								
SAMPLE DATA:										
Method	Depth	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	Other
			(S.U.)	(mS/cm)	(C°)	(NTU)	(mg/L)	(% or ppt)	(mV)	
Grab	1 ft below surface	clear	7.82	7.27	29.82	9.84	5.22	4	176	
ANALYSIS, PRESERVA	TION AND E	SOTTLE REC	QUIRMENTS							
Analysis		Method		Preserv		Number	Vol.	Bottle T		Collected
VOCs, TICs	USEPA S	W846 Meth	od 8260C	HCI	pH<2	3	40 mL	gla	ass	yes
OBSERVATIONS / NOT	ES:				MAP:					
					10000000000000000000000000000000000000	about .		- 6		The later
Water depth =	5.5	feet				*SW-37A	V-37D C	the state of the s		
					MARYI	AND AIR AL'GUARD	• SW-42D • SW-42C • SW-42B	The state of	1	
						Carlo L	SW-46A • SW-	SW-40D 40C	1 The	
						POND V2	* SW-40A		, The	
						WETLANG	SW-47A	◆SW-38D *** SW-38C N-38B	4	7
					200 M	POND#1	SW	SW-48A SW-41C	D	1
								SW-41A		eg Montar Creek
					The said				W-43C /-43B	
									Harris .	
					VRO		Y STORY		W. British .	
Coordinates:	<u> </u>	N	E		Signature(s):				
								Zach S	Musser	

Event:

Project Site Name:

August 2022 Surface Water Sampling
Frog Mortar Creek, Martin State Airport
112IC09567

Sample ID:	MSA-SW3/		2		Sampled		Zach Muss			
Sample Location:	MSA-SW37	7D			Sample D		22 August	, 2022		
QA/QC Duplicate ID:					Sample Ti	ime:	1247			
MS/MSD Collected:	YES	NO								
MATRIX / CONCENTRA	TION:									
MATRIX / CONCENTRA	TION:									
[] Stream [] Spring [X] Other (Tidal cree	[] Pond [] Lake k - freshwate	er)			Concentration					
SAMPLE DATA:										
Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other
Grab	1 ft below surface	clear	7.78	7.28	29.87	7.67	5.06	4	180	
ANALYSIS, PRESERVA	TION AND B	OTTLE REC	QUIRMENTS							
Analysis		Method		Preserv		Number	Vol.	Bottle T		Collected
VOCs, TICs	USEPA S	W846 Meth	od 8260C	HCI	pH<2	3	40 mL	gla	ISS	yes
OBSERVATIONS / NOT	ES:				MAP:					
Water depth =	>6	feet			MADE NO.	SW-37A SW-37A ANG ARA	\$W-42D \$W-42C \$W-42B \$W-42A \$W-46A \$W-46A \$W-40A	SW-40D 40C 9B SW-38C W-38C W-38C W-38C W-38C SW-41D SW-41C SW-41C SW-41C	●SW-43D W-43C -43B	eg Mexter Greek
Coordinates:	N	l	E		Signature((s):		~ (:		
								Zach I	Musser	

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: <u>112IC09567</u>

Sample Location: MSA-SW38A Sample Date: 22 August, 2022 QA/QC Duplicate ID: Sample Time: 1153	Sample ID:	MSA-SW38A	082222	Sampled By:	Zach Musser
QA/QC Duplicate ID: Sample Time: 1153	Sample Location:	: MSA-SW38A		Sample Date:	22 August, 2022
	QA/QC Duplicate II	ID:		Sample Time:	1153
MS/MSD Collected: YES NO	MS/MSD Collected	d: YES	NO		

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA:

Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other
Grab	1 ft below surface	clear	7.66	7.33	29.34	7.84	4.86	4	192	

ANALYSIS, PRESERVATION AND BOTTLE REQUIRMENTS

Analysis	Method	Preservative	Number	Vol.	Bottle Type	Collected
VOCs, TICs	USEPA SW846 Method 8260C	HCI pH<2	3	40 mL	glass	yes

OBSERVATIONS / NOTES:

Water depth = 2.1 feet

Coordinates:	N	E	Signature(s):
			Zach Musser

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: <u>112IC09567</u>

Sample ID:	MSA-SW3	38B - 08222	2	Sampled By:	Zach Musser
Sample Location:	MSA-SW3	38B		Sample Date:	22 August, 2022
QA/QC Duplicate ID				Sample Time:	1155
MS/MSD Collected: YES NO					
	• • • • • • • • • • • • • • • • • • • •				

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA: Turbidity Method Depth Color рΗ S.C. Temp. DO Salinity ORP Other (S.U.) (mS/cm) (C°) (NTU) (mg/L) (mV) (% or ppt) 1 ft below Grab 7.66 clear 7.32 29.36 8.44 4.79 193 surface

ANALYSIS, PRESERV	ATION AND BOTTLE REQUIRMENT	TS				
Analysis	Analysis Method		Number	Vol.	Bottle Type	Collected
VOCs, TICs	USEPA SW846 Method 8260C	HCI pH<2	3	40 mL	glass	yes

OBSERVATIONS / NOTES: MAP:

Water depth = 4.9 feet

Coordinates:	N	E	Signature(s):	
				Zach Musser

Event:

August 2022 Surface Water Sampling Frog Mortar Creek, Martin State Airport 112IC09567

Project Site Name: Project No.:

Sample ID:		8C - 08222	2		Sampled I		Zach Muss				
Sample Location:	MSA-SW3	8C			Sample Date: 22 August, 2022 Sample Time: 1158						
QA/QC Duplicate ID:					Sample Ti	me:	1158				
MS/MSD Collected:	YES	NO									
MATRIX / CONCENTRA	TION:										
WATRIX / CONCENTRA	TION.										
[] Stream [] Spring [X] Other (Tidal cree	[] Pond [] Lake k - freshwat	er)			Concentration Concentration						
SAMPLE DATA:											
Method	Depth	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	Other	
	200		(S.U.)	(mS/cm)	(C°)	(NTU)	(mg/L)	(% or ppt)	(mV)	J	
Grab	1 ft below surface	clear	7.65	7.33	29.35	8.91	4.22	4	193		
ANALYSIS, PRESERVA		BOTTLE REC	QUIRMENTS								
Analysis		Method		Preser	vative	Number	Vol.	Bottle T	уре	Collected	
VOCs, TICs	USEPA S	W846 Meth	nod 8260C	HCI	pH<2	3	40 mL		ass	yes	
OBSERVATIONS / NOT	ES:				MAP:						
Water depth =		feet			WARRY (MATTON)	SW-37A ANO ARE SW-37A	*SW-42D *SW-42E SW-42B SW-46A *SW-46A *SW-40A *SW-40A	\$W-400 40C 40C 88 \$W-38C \$W-38C \$W-41A \$W-41A \$W-41A	◆SW-43D W-43C /-43B	eg Menter Greek	
Coordinates:		N	Е		Signature(s):		~ ^			
								Zach S	Musser		

Event:

Project Site Name: Project No.:

August 2022 Surface Water Sampling Frog Mortar Creek, Martin State Airport 112IC09567

Sample ID:	MSA-SW3	8D - 08222	2		Sampled B	Ву:	Zach Muss	ser		
Sample Location:	MSA-SW3	8D			Sample Da		22 August,	2022		
QA/QC Duplicate ID:					Sample Ti	me:	1200			
MS/MSD Collected:	YES	NO								
MATRIX / CONCENTRA	TION:									
[] Stream [] Spring [X] Other (Tidal cree	[] Pond [] Lake k - freshwat	ter)			Concentration					
SAMPLE DATA:										
Method	Depth	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	Other
Mounda	Dopui	00.01	(S.U.)	(mS/cm)	(C°)	(NTU)	(mg/L)	(% or ppt)	(mV)	O tilloi
Grab	1 ft below surface	clear	7.65	7.34	29.32	9.12	4.84	4	190	
ANALYSIS, PRESERVA		BOTTLE REC	QUIRMENTS		•	•	•	•	•	•
Analysis		Method		Preserv	/ative	Number	Vol.	Bottle T	уре	Collected
VOCs, TICs	USEPA S	SW846 Meth	nod 8260C	HCI	pH<2	3	40 mL	gla	ass	yes
OBSERVATIONS / NOT	ES:				MAP:					
Water depth =	>6	feet			MARY	ANC AND ALCOHOLD SWATCH AN	\$W-42D \$W-42B \$W-42B \$W-42A \$W-46A \$W-46A \$W-46A \$W-46A	SW-49D 49C 49C 89 SW-39E SW-49A SW-41A SW-41A SW-41A	•SW-43D SW-43C V-43B	og Monter Græk
Coordinates:		N	E		Signature(s):	1777			
								Zach S	Musser	

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: 112IC09567

Sample ID:	MSA-SW40A - 082222			Sampled By:	Zach Musser
Sample Location:	MSA-SW4	IOA		Sample Date:	22 August, 2022
QA/QC Duplicate ID	QA/QC Duplicate ID:				1211
MS/MSD Collected:	YES	NO			

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA:										
Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other
Grab	1 ft below surface	clear	7.83	7.26	29.42	6.94	5.3	4	177	

OBSERVATIONS / NOTES: MAP:

Water depth = 2 feet

Coordinates:	N	E	Signature(s):
			Zach Musser

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: 112IC09567

Sample ID:	MSA-SW40B - 082222			Sampled By:	Zach Musser
Sample Location:	MSA-SW4	10B		Sample Date:	22 August, 2022
QA/QC Duplicate ID	QA/QC Duplicate ID:				1214
MS/MSD Collected:	YES	NO			

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA:										
Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other
Grab	1 ft below surface	clear	7.62	7.24	29.39	10.6	4.78	4	186	

OBSERVATIONS / NOTES: MAP:

Water depth = 3.1 feet

Coordinates:	N	E	Signature(s):
			Zach Musser

Event:

Project Site Name:

August 2022 Surface Water Sampling
Frog Mortar Creek, Martin State Airport
112IC09567

Sample ID:	MSA-SW40	OC - 082222	2		Sampled E	By:	Zach Muss	er		
	MSA-SW40				Sample Da		22 August,			
QA/QC Duplicate ID:					Sample Ti		1217			
MS/MSD Collected:	YES	NO								
MATRIX / CONCENTRAT	TION:									
[] Stream [] Spring [X] Other (Tidal creel	[] Pond [] Lake k - freshwate	er)			Concentration					
SAMPLE DATA:										
Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other
Grab	1 ft below surface	clear	7.6	7.25	29.39	9.9	4.69	4	185	
ANALYSIS, PRESERVA	TION AND B	OTTLE REC	QUIRMENTS							
Analysis		Method		Preserv		Number	Vol.	Bottle T		Collected
VOCs, TICs	USEPA S	W846 Meth	od 8260C	HCI _I	oH<2	3	40 mL	gla	ass	yes
OBSERVATIONS / NOTE	ES:				MAP:					
Water depth =		feet			MARTINA	SWATA	**************************************	**************************************	•SW-43D W-43C	ag Mortar Greek
Coordinates:	N	N .	E		Signature(s):		~	14	
								Zach S	Musser	

Event:

Project Site Name:

August 2022 Surface Water Sampling Frog Mortar Creek, Martin State Airport 112IC09567

Sample ID:	MCV C/V/V	0D - 08222	2		Sampled I	Dv.	Zach Muss	cor		
Sample Location:	MSA-40D	0D - 00222								
	WSA-40D				Sample D		22 August	, 2022		
QA/QC Duplicate ID:					Sample Ti	me:	1220			
MS/MSD Collected:	YES	NO								
MATRIX / CONCENTRA	TION:									
[] Stream [] Spring [X] Other (Tidal cree	[] Pond [] Lake	tor)			Concentration					
[X] Other (Tidal Cree	rk - II esilwat	lei)								
SAMPLE DATA:										
Method	Depth	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	Other
			(S.U.)	(mS/cm)	(C°)	(NTU)	(mg/L)	(% or ppt)	(mV)	
Grab	1 ft below surface	ciear	7.65	7.32	29.46	8.8	4.86	4	182	
ANALYSIS, PRESERVA	TION AND E	BOTTLE RE	QUIRMENTS							
Analysis		Method		Preser	vative	Number	Vol.	Bottle T	уре	Collected
VOCs, TICs	USEPA S	SW846 Meth	nod 8260C	HCI	pH<2	3	40 mL	gla	ass	yes
OBSERVATIONS / NOT	E6.				MAP:					
ODOLKVATIONO / NOT	LO.					ALC: N		- ES-		
Water depth =	>6	feet				ANG ARD ONE OF THE PROPERTY O	*SW-42D *SW-42D *SW-42B *SW-42A *SW-46A *SW-46A *SW-46A *SW-46A		•SW-43D SW-43C V-43B	co Wester Greek
Coordinates:		N	E	E	Signature(s):		7-06	Musser	
								∠acn S	veusser	

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: <u>112IC09567</u>

Sample ID:	MSA-SW4	1A - 08222		Sampled By:	Zach Musser
Sample Location:	MSA-SW4	11A		Sample Date:	22 August, 2022
QA/QC Duplicate ID				Sample Time:	1134
MS/MSD Collected:					
		.10	-		

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA:

Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other
Grab	1 ft below surface	clear	7.62	7.33	29.35	8.21	4.94	4	189	

ANALYSIS, PRESERVATION AND BOTTLE REQUIRMENTS

Analysis	Method	Preservative	Number	Vol.	Bottle Type	Collected
VOCs, TICs	USEPA SW846 Method 8260C	HCI pH<2	3	40 mL	glass	yes
	†					

OBSERVATIONS / NOTES:

Water depth = 2.7 feet

Coordinates:	N	E	Signature(s):	
			Zach Musser	

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: 112IC09567

Sample ID:	MSA-SW41B - 082222		Sampled By:	Zach Musser	
Sample Location:	MSA-SW4	11B		Sample Date:	22 August, 2022
QA/QC Duplicate ID	:			Sample Time:	1138
MS/MSD Collected:	YES	NO			

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA:										
Method	Depth	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	Other
			(S.U.)	(mS/cm)	(C°)	(NTU)	(mg/L)	(% or ppt)	(mV)	
Grab	1 ft below surface	clear	7.66	7.33	29.34	8.27	4.96	4	192	

ANALYSIS, PRESERVATION AND BOTTLE REQUIRMENTS

Analysis Method Preservative Number Vol. Bottle Type Collected

VOCs, TICs USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

OBSERVATIONS / NOTES: MAP:

Water depth = 4 feet

Coordinates:	N	E	Signature(s):
			Zach Musser

Event:

Project Site Name:

August 2022 Surface Water Sampling Frog Mortar Creek, Martin State Airport 112IC09567

Sample ID: MSA-SW41C - 082222					Sampled By: Zach Musser					
	MSA-SW4	1C			Sample Da		22 August,	2022		
QA/QC Duplicate ID:					Sample Ti	me:	1140			
MS/MSD Collected:	YES	NO								
MATRIX / CONCENTRA	TION:									
[] Stream [] Spring [X] Other (Tidal cree	[] Pond [] Lake k - freshwat	er)			Concentratio Concentratio					
SAMPLE DATA:										
Method	Depth	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	Other
			(S.U.)	(mS/cm)	(C°)	(NTU)	(mg/L)	(% or ppt)	(mV)	
Grab	1 ft below surface	clear	7.66	7.34	29.32	9.19	4.97	4	194	
ANALYSIS, PRESERVA	TION AND B	OTTLE REC	QUIRMENTS							
Analysis		Method		Preserv		Number	Vol.	Bottle T		Collected
VOCs, TICs	USEPA SW846 Method 8260C		HCI	oH<2	3	40 mL	gla	ass	yes	
OBSERVATIONS / NOTI	ES:				MAP:					
Water depth =	5.7	feet			MARTICAL MARTINE AND	SW-STA AND UND COMPANY FORE 12 FORE 21 FORE 21 FORE 21	*SW-42D *SW-42C *SW-42B SW-42A *SW-46A *SW-40A *SW-40A	SW-400 #SW-38D SW-38C W-38C W-38C SW-410	•\$W-43D W-43C /-43B	ng Montar Greek
Coordinates:	ı	N	E		Signature(s):		~ ^ -	1.4	
								Zach S	Musser	

Event:

August 2022 Surface Water Sampling
Frog Mortar Creek, Martin State Airport
112IC09567

Project Site Name:

Sample ID: Sample Location: QA/QC Duplicate ID: MS/MSD Collected:		Sample Da Sample Ti	ate:	22 August, 1143						
	YES	NO								
MATRIX / CONCENTRA [] Stream [] Spring [X] Other (Tidal cree	[] Pond [] Lake	er)			Concentratio					
SAMPLE DATA:										
Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other
Grab	1 ft below surface	clear	7.64	7.36	29.3	9.1	4.85	4	196	
ANALYSIS, PRESERVA	TION AND B		QUIRMENTS					I		
Analysis VOCs, TICs	USEPA S	Method W846 Meth	od 8260C	Preserv HCI	pH<2	Number 3	Vol. 40 mL	Bottle T		Collected yes
OBSERVATIONS / NOT	ES:				MAP:					
Water depth =		feet				SW-JTA AND ARE COLORS FORD 41 WETLAND FORD 41 WETLAND FORD 41 WETLAND FORD 41 FORD	\$W-42D \$W-42C \$W-42B \$W-42A \$W-42A \$W-40A \$W-40A		•SW-43D W-43C	og Menter Græds
Coordinates:	١	N .	E		Signature(s):		Zach I	Musser	

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: 112IC09567

Sample ID:	MSA-SW4	2A - 08222	22	Sampled By:	Zach Musser	
Sample Location:	MSA-SW4	12A		Sample Date:	22 August, 2022	
QA/QC Duplicate ID	QA/QC Duplicate ID:				1226	
MS/MSD Collected:	YES	NO				

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA:												
Method	Depth	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	Other		
			(S.U.)	(mS/cm)	(C°)	(NTU)	(mg/L)	(% or ppt)	(mV)			
Grab	1 ft below surface	clear	7.62	7.24	29.57	9.41	4.85	4	178			

ANALYSIS, PRESERVATION AND BOTTLE REQUIRMENTS

Analysis Method Preservative Number Vol. Bottle Type Collected

VOCs, TICs USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

Analysis USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

Analysis USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

OBSERVATIONS / NOTES: MAP:

Water depth = 2.4 feet

Coordinates:	N N	<u> </u>	Signature(s).
			Zach Musser

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: 112IC09567

Sample ID:	MSA-SW4	12B - 0822	22	Sampled By:	Zach Musser	
Sample Location:	MSA-SW4	12B		Sample Date:	22 August, 2022	
QA/QC Duplicate ID	:			Sample Time:	1228	
MS/MSD Collected:	YES	NO				

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA:										
Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other
Grab	1 ft below surface	clear	7.67	7.27	29.67	10.7	4.79	4	178	

ANALYSIS, PRESERVATION AND BOTTLE REQUIRMENTS

Analysis Method Preservative Number Vol. Bottle Type Collected

VOCs, TICs USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

Analysis USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

Analysis USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

Analysis Vol. Bottle Type Collected

OBSERVATIONS / NOTES: MAP:

Water depth = 4.4 feet

Coordinates:	N	E	Signature(s):	
				Zach Musser

Event:

Project Site Name:

August 2022 Surface Water Sampling
Frog Mortar Creek, Martin State Airport
112IC09567

Sample Date: 22 August, 2022	Sample ID:	MSA-SW4		2		Sampled E		Zach Muss			
MATRIX / CONCENTRATION:	Sample Location:	MSA-SW4	2C						2022		
		VEC	NO			Sample II	me:	1231			
[] Stream [] Pond [] Lake [] High Concentration [] High Concent	WIS/WISD Collected.	152	NO								
[] Stream [] Pond [] Lake [] High Concentration [] High Concent	MATRIX / CONCENTRA	TION:									
Method Depth Color pH (S.U.) (mS/cm) (C°) (NTU) (mg/L) (% or ppt) (mv) (my) (mg/L) (% or ppt) (mv) (mg/L) (ms/L)	[] Stream [] Spring	[] Pond [] Lake	er)								
Method Depth Color pH (S.U.) (mS/cm) (C°) (NTU) (mg/L) (% or ppt) (mv) (my) (mg/L) (% or ppt) (mv) (mg/L) (ms/L)	SAMPLE DATA:										
Grab 1 ft below surface clear 7.72 7.28 29.66 8.68 4.84 4 182 ANALYSIS, PRESERVATION AND BOTTLE REQUIRMENTS ANAlysis Method Preservative Number Vol. Bottle Type Collected VOCs, TiCs USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes Water depth = 5.7 feet Signature(s): Signat		Depth	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	Other
ANALYSIS, PRESERVATION AND BOTTLE REQUIRMENTS Analysis		•									
Analysis Method Preservative Number Vol. Bottle Type Collected VOCs, TICs USEPA SW846 Method 8260C HCI pH<2 3 40 mL glass yes Water depth = 5.7 feet Signature(s): Signature(s):	Grab		clear	7.72	7.28	29.66	8.68	4.84	4	182	
VOCs, TICs USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes Water depth = 5.7 feet Signature(s): Signature(s):	ANALYSIS, PRESERVA	TION AND E	OTTLE REC	QUIRMENTS							
OBSERVATIONS / NOTES: Water depth = 5.7 feet MAP: Figure 1											Collected
Water depth = 5.7 feet	VOCs, TICs	USEPA S	W846 Meth	od 8260C	HCI	pH<2	3	40 mL	gla	ass	yes
Water depth = 5.7 feet											
Water depth = 5.7 feet											
Water depth = 5.7 feet											
Water depth = 5.7 feet											
Water depth = 5.7 feet											
Water depth = 5.7 feet											
Water depth = 5.7 feet											
Water depth = 5.7 feet											
SW 42D SW 42D	OBSERVATIONS / NOT	ES:				MAP:					
Coordinates: N E Signature(s):	Water depth =	5.7	feet			NATION OF THE PROPERTY OF THE	ANG AR	SW-42D SW-42D SW-42C SW-42A SW-42A SW-46A SW-40A SW-40A	5W-38C 1-38B 5W-48A 5W-48A 5W-41C 5W-41A 5W-41A 5W-41A 5W-43A 5W-43A	•SW-43D W-43C	reg Mester Greek
Zach Musser	Coordinates:	ı	N	E		Signature(s):		~ ^ -	1.4	
									Zach T	Musser	

Event:

Project Site Name:

August 2022 Surface Water Sampling Frog Mortar Creek, Martin State Airport 112IC09567

Sample ID:	MSA-SW42	2D - 08222	2		Sampled E	Зу:	Zach Muss	er		
Sample Location:	MSA-42D				Sample Da	ate:	22 August	2022		
QA/QC Duplicate ID:					Sample Ti	me:	1235			
MS/MSD Collected:	YES	NO								
MATRIX / CONCENTRA	TION:									
[] Stream [] Spring [X] Other (Tidal cree	[] Pond [] Lake k - freshwat	er)			Concentratio Concentratio					
SAMPLE DATA:										
Method	Depth	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	Other
Mictiou	Берин	00101	(S.U.)	(mS/cm)	(C°)	(NTU)	(mg/L)	(% or ppt)	(mV)	Other
Grab	1 ft below surface	clear	7.74	7.28	29.7	8.97	5.12	4	177	
ANALYSIS, PRESERVA		BOTTLE REC	QUIRMENTS		•	•				
Analysis		Method		Preserv	ative	Number	Vol.	Bottle T	ype	Collected
VOCs, TICs	USEPA S	W846 Meth	nod 8260C	HCI	pH<2	3	40 mL		ass	yes
OBSERVATIONS / NOT	FS:				MAP:					
OBOLITATIONO / NOT	LU.				ACTOR A	N. C.		- 65	9	
Water depth =	>6	feet			TARRY MATTER AND THE PROPERTY OF THE PROPERTY	AND ARE DESCRIPTION OF THE PROPERTY OF THE PRO	\$W-42D \$W-42C \$W-42B \$W-42A \$W-46A \$W-46A \$W-46A \$W-46A	SW-490 -SW-3ED -SW-3ED -SW-49A -SW-41A -SW-41A -SW-41A	•\$W-43D W-43C !-43B	ag Mexiar Greek
Coordinates:	ı	N	E		Signature(s):		~ ^ -	1.4	
								Zach S	Musser	

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: 112IC09567

Sample ID:	MSA-SW4	13A - 08222	22	Sampled By:	Zach Musser
Sample Location:	MSA-SW4	13A		Sample Date:	22 August, 2022
QA/QC Duplicate ID	:			Sample Time:	1112
MS/MSD Collected:	YES	NO			
	•				

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA:										
Method	Depth	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	Other
			(S.U.)	(mS/cm)	(C°)	(NTU)	(mg/L)	(% or ppt)	(mV)	
Grab	1 ft below surface	clear	7.54	7.4	29.01	10.6	5.14	4.1	166	

ANALYSIS, PRESERVATION AND BOTTLE REQUIRMENTS

Analysis Method Preservative Number Vol. Bottle Type Collected

VOCs, TICs USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

OBSERVATIONS / NOTES: MAP:

Water depth = 2.2 feet

Coordinates:	N	E	Signature(s):
			Zach Musser

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: 112IC09567

Sample ID:	MSA-SW4	13B - 08222	22	Sampled By:	Zach Musser
Sample Location:	MSA-SW4	13B		Sample Date:	22 August, 2022
QA/QC Duplicate ID	:			Sample Time:	1117
MS/MSD Collected:	YES	NO			

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA:	SAMPLE DATA:										
Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other	
Grab	1 ft below surface	clear	7.61	7.38	29.32	7.46	4.8	4.1	178		

ANALYSIS, PRESERVATION AND BOTTLE REQUIRMENTS

Analysis Method Preservative Number Vol. Bottle Type Collected

VOCs, TICs USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

Analysis Weshirm of the collected o

OBSERVATIONS / NOTES: MAP:

Water depth = 3.2 feet

Coordinates:	N	E	Signature(s):	
				Zach Musser

Event:

Project Site Name:

August 2022 Surface Water Sampling Frog Mortar Creek, Martin State Airport 112IC09567

		3C - 082222	2		Sampled E	•	Zach Muss			
	MSA-SW43	3C			Sample Da		22 August,	2022		
QA/QC Duplicate ID:					Sample Tir	me:	1119			
MS/MSD Collected:	YES	NO								
MATRIX / CONCENTRA	TION:									
I 104				rv : i	.	-				
[] Stream	[] Pond				Concentratio					
[] Spring [X] Other (Tidal cree	[]Lake	or)		[] High C	Concentratio	11				
	uesiiwat									
SAMPLE DATA:										
Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other
Grab	1 ft below surface	clear	7.6	7.37	29.34	6.42	4.88	4.1	188	
ANALYSIS, PRESERVA		SOTTLE REG	QUIRMENTS							
Analysis		Method		Preserv		Number	Vol.	Bottle Ty		Collected
VOCs, TICs	USEPA S	W846 Meth	od 8260C	HCI p	pH<2	3	40 mL	gla		yes
							_			
								<u> </u>		
								 		
								 		
								 		
								 		
								<u> </u>		
OBSERVATIONS / NOTI	ES:				MAP:					
					金额 计图	direction of	Delica and			IL James
Water depth =	5.2	feet			W 1	•sw •sw-376	1-37D C	=	1	
						\$W-37A		主	1. Als	107
							• \$W-42D	業		
					MARYL	AND AR	• SW-42C • SW-42B	1	1	1 1 1 1
					MATIONA	Carlo S	SW-42A	W 450	13	LAVE!
							SW-46A ◆ S	10C		E P
					The same		SW-408		MAL	9/X.
					THE X	POND #2		•SW-38D	1 4	Ty .
						WETLAND	\$W-47A	W-38C		7
					100	DOND #1	SW-3	-30D 8A SW-41D SW-48A SW-41C		1
						- Y/S		*SW-41B SW-41A		h.W10
										g Mortar Greek
								•SW-49A •SW	V-43C	
					Tomo Abit	11 36	(m) (m)	* SW-43	43B	100
					NAR.	w w Treat	Contract of the second	, em	A PARTIES	
Coordinates:	ı	N	E		Signature(s	s):		760	Margage	
								∠ach 9	Musser	

Event:

Project Site Name:

August 2022 Surface Water Sampling Frog Mortar Creek, Martin State Airport 112IC09567

Project No.:

Sample ID:	MSA-SW4	3D - 08222	2		Sampled E	Зу:	Zach Muss	ser		
Sample Location:	MSA-43D				Sample Da	ate:	22 August	, 2022		
QA/QC Duplicate ID:					Sample Ti	me:	1125			
MS/MSD Collected:	YES	NO								
MATRIX / CONCENTRA	TION:									
[] Stream [] Spring [X] Other (Tidal cree	[] Pond [] Lake k - freshwat	er)			Concentratio					
SAMPLE DATA:										
Method	Donth	Color	nU	S.C.	Tomp	Turbidity	DO	Salinity	ORP	Other
Wethod	Depth	Color	pH (S.U.)	(mS/cm)	Temp. (C°)	(NTU)	(mg/L)	(% or ppt)	(mV)	Other
Grab	1 ft below surface	clear	7.6	7.4	29.27	8.12	4.85	4.1	189	
ANALYSIS, PRESERVA		BOTTLE REC	QUIRMENTS							
Analysis		Method		Preserv	ative	Number	Vol.	Bottle T	уре	Collected
VOCs, TICs	USEPA S	W846 Meth	nod 8260C	HCI	pH<2	3	40 mL		ass	yes
OBSERVATIONS / NOT	EG.				MAP:			<u>l</u>		
OBSERVATIONS / NOT	ES.				WAP.		_	-	A	
Water depth =	>6	feet			TARRY TO THE TARRY	AND ART OF THE PROPERTY OF THE	\$W-42D \$W-42C \$W-42B \$W-42A \$W-46A \$W-46A \$W-46A \$W-46A	\$W-400 40C 40C 8W-38D \$W-38C \$W-38C \$W-41A \$W-41A \$W-41A	•\$W-43D W-43C /-43B	29 Mexter Greek
Coordinates:	ı	N	E		Signature(s):		~ ^	1.4	
								Zach S	Musser	

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: <u>112IC09567</u>

Sample ID:	MSA-SW4	16A - 08222		Sampled By:	Zach Musser
Sample Location:	MSA-SW4	16A		Sample Date:	22 August, 2022
QA/QC Duplicate ID	QA/QC Duplicate ID:				1222
MS/MSD Collected:	NO				

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA: Method Depth Color рΗ S.C. Temp. Turbidity DO Salinity ORP Other (S.U.) (mS/cm) (C°) (NTU) (mg/L) (% or ppt) (mV) 1 ft below Grab clear 7.59 7.25 29.47 9.91 4.59 174 surface

ANALYSIS, PRESERV	ATION AND BOTTLE REQUIRMEN	ITS				
Analysis	Method	Preservative	Number	Vol.	Bottle Type	Collected
VOCs, TICs	USEPA SW846 Method 8260C	HCI pH<2	3	40 mL	glass	yes
		1				

MAP:

OBSERVATIONS / NOTES:

Water depth = 2.6 feet

Coordinates:	N	E	Signature(s):
			Zach Musser

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: 112IC09567

Sample ID:	MSA-SW4	7A - 08222	22	Sampled By:	Zach Musser	
Sample Location:	Location: MSA-SW47A				22 August, 2022	
QA/QC Duplicate ID	:			Sample Time:	1205	
MS/MSD Collected:	YES	NO				

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

surface

SAMPLE DATA:										
Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other
Grab	1 ft below	clear	7.64	7.33	29.32	7.13	4.76	4	180	

Analysis Method Preservative Number Vol. Bottle Type Collected

VOCs, TICs USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

OBSERVATIONS / NOTES: MAP:

Water depth = 2.2 feet

Coordinates: N E Signature(s):

Zach Musser

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: 112IC09567

Sample ID:	MSA-SW4	8A - 08222	22	Sampled By:	Zach Musser		
Sample Location:	MSA-SW4	-8A		Sample Date: 22 August, 2022			
QA/QC Duplicate ID	:			Sample Time:	1148		
MS/MSD Collected:	YES	NO					

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA:										
Method	Depth	Color	pH (S.U.)	S.C. (mS/cm)	Temp. (C°)	Turbidity (NTU)	DO (mg/L)	Salinity (% or ppt)	ORP (mV)	Other
Grab	1 ft below	clear	7.65	7.32	29.33	8.33	4.81	4	194	

ANALYSIS, PRESERVATION AND BOTTLE REQUIRMENTS

Analysis Method Preservative Number Vol. Bottle Type Collected

VOCs, TICs USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

OBSERVATIONS / NOTES: MAP:

Water depth = 1.9 feet

Coordinates:	N	E	Signature(s):
			Zach Musser

Event: August 2022 Surface Water Sampling

Project Site Name: Frog Mortar Creek, Martin State Airport

Project No.: 112IC09567

Sample ID:	MSA-SW4	19A - 08222	22	Sampled By:	Zach Musser
Sample Location:	MSA-SW4	19A		Sample Date:	22 August, 2022
QA/QC Duplicate ID	QA/QC Duplicate ID:			Sample Time:	1130
MS/MSD Collected: YES NO					

MATRIX / CONCENTRATION:

[] Stream [] Pond [X] Low Concentration [] Spring [] Lake [] High Concentration

[X] Other (Tidal creek - freshwater)

SAMPLE DATA:										
Method	Depth	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	Other
			(S.U.)	(mS/cm)	(C°)	(NTU)	(mg/L)	(% or ppt)	(mV)	
Grab	1 ft below surface	clear	7.6	7.39	29.29	7.75	4.69	4.1	186	

ANALYSIS, PRESERVATION AND BOTTLE REQUIRMENTS

Analysis Method Preservative Number Vol. Bottle Type Collected

VOCs, TICs USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

Analysis USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

Analysis USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

Analysis USEPA SW846 Method 8260C HCl pH<2 3 40 mL glass yes

OBSERVATIONS / NOTES: MAP:

Water depth = 2.9 feet

Coordinates:	N	E	Signature(s):
			Zach Musser

APPENDIX B—DATA-VALIDATION AND FULL LABORATORY REPORTS

INTERNAL CORRESPONDENCE

TO: S. BRENNER DATE: SEPTEMBER 15, 2022

FROM: E. SEDLMYER COPIES: DV FILE

SUBJECT: ORGANIC DATA VALIDATION – VOC

LOCKHEED MARTIN CORPORATION (LMC) - MARTIN STATE AIRPORT (MSA)

FROG MORTAR CREEK SURFACE WATER SAMPLING

SDG 240-171981-1

SAMPLES: 30/Aqueous/VOC

MSA-SW37A-082222	MSA-SW37B-082222	MSA-SW37C-082222
MSA-SW37D-082222	MSA-SW38A-082222	MSA-SW38B-082222
MSA-SW38C-082222	MSA-SW38D-082222	MSA-SW40A-082222
MSA-SW40B-082222	MSA-SW40C-082222	MSA-SW40D-082222
MSA-SW41A-082222	MSA-SW41B-082222	MSA-SW41C-082222
MSA-SW41D-082222	MSA-SW42A-082222	MSA-SW42B-082222
MSA-SW42C-082222	MSA-SW42D-082222	MSA-SW43A-082222
MSA-SW43B-082222	MSA-SW43C-082222	MSA-SW43D-082222
MSA-SW46A-082222	MSA-SW47A-082222	MSA-SW48A-082222
MCV C/V/VUV U02222	MCA CIMEOD 000000	TD 000000

MSA-SW49A-082222 MSA-SWEQB-082222 TB-082222

Overview

The sample set for LMC-MSA Frog Mortar Creek, SDG 240-171981-1 consisted of twenty-eight (28) aqueous environmental samples, one (1) equipment blank, and one (1) trip blank. All thirty (30) aqueous samples were analyzed for Volatile Organic Compounds (VOC). No field duplicate sample pair was included in this SDG.

The samples were collected by Tetra Tech, Inc. on August 22, 2022 and analyzed by Eurofins / Test America, Inc. All analyses were conducted in accordance with SW-846 Method 8260C analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory preparation/method blanks, surrogate spike recoveries, laboratory control sample results, matrix spike/matrix spike duplicate results, internal standard results, chromatographic resolution, compound identification, tentatively identified compounds, compound/analyte quantitation, and detection limits. Areas of concern are listed below.

Major

 As stated in the laboratory case narrative, 2-chloroethyl vinyl ether cannot be reliably recovered in an acid preserved samples. All samples in this SDG were acid preserved. The non-detected results reported for 2-chloroethyl vinyl ether were qualified as rejected, (UR) in the acid preserved samples.

Minor

The VOC continuing calibration performed on instrument A3UX22 on 08/29/2022 @ 11:30 had Percent Differences (%Ds) for bromomethane, chloroethane, dichlorofluoromethane, tertiary-butyl alcohol, vinyl acetate, tetrachloroethene, 1,1,1,2-tetrachloroethane, and bromoform, which exceeded the 20% quality control limit. Samples MSA-SW37A-082222, MSA-SW37B-082222, MSA-SW37C-082222, MSA-SW37D-082222, MSA-SW38B-082222, MSA-SW38-082222, MSA-SW38B-082222, MSA-SW38B-082222, MSA-SW38B-0822222,

TO: S. BRENNER SDG: 240-171981-1

SW38C-082222, MSA-SW38D-082222, MSA-SW40A-082222, MSA-SW40B-082222, MSA-SW40C-082222, MSA-SW40D-082222, MSA-SW41A-082222, MSA-SW41B-082222, MSA-SW41B-082222, MSA-SW41D-082222, MSA-SW42B-082222, and MSA-SW42C-082222 were affected. The non-detected results reported for these compounds in the affected samples were qualified as estimated, (UJ).

- The VOC continuing calibration performed on instrument A3UX22 on 08/30/2022 @ 14:10 had %Ds for bromomethane, chloroethane, tertiary-butyl alcohol, vinyl acetate, 1,1,1,2-tetrachloroethane, and bromoform, which exceeded the 20% quality control limit. Samples MSA-SW42D-082222, MSA-SW43A-082222, MSA-SW43B-082222, MSA-SW43C-082222, MSA-SW43C-082222, MSA-SW49A-082222, MSA-SW46A-082222, MSA-SW49A-082222, MSA-SWEQB-082222, and TB-082222 were affected. The non-detected results reported for these compounds in the affected samples were qualified as estimated, (UJ).
- A Tentatively Identified Compound (TIC) search was performed for the compound chlorodifluoromethane. The laboratory did not detect this compound in the samples in this SDG. The laboratory assigned a Reporting Limit (RL) of 1 µg/L. Because the GC/MS was not calibrated for this compound, the RL is not based on a representative detection limit. The non-detected results reported for chlorodifluoromethane were qualified as estimated, (UJ).

Notes

Non-detected results were reported to the MDL.

The LCS (240-540740/5) had percent recoveries greater than the quality control limits for bromoform and 1,1,1,2-tetrachloroethane. Samples MSA-SW42D-082222, MSA-SW43A-082222, MSA-SW43B-082222, MSA-SW43C-082222, MSA-SW43D-082222, MSA-SW46A-082222, MSA-SW47A-082222, MSA-SW49A-082222, MSA-SWEQB-082222, and TB-082222 were affected. No action was taken on this basis as bromoform and 1,1,1,2-tetrachloroethane were not detected in the affected samples.

Executive Summary

Laboratory Performance: VOC continuing calibrations contained %Ds for several compounds that exceeded 20%. Non-detected chlorodifluoromethane results were estimated because the compound was evaluated via TIC library search.

Other Factors Affecting Data Quality: 2-Chloroethyl vinyl ether results were rejected because the samples were acid preserved.

TO: S. BRENNER PAGE 3

SDG: 240-171981-1

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Organic Superfund Methods Data Review" (November 2020). The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech, Inc. Edward SedImyer Data Validator

Edward Dedlinger

Tetra Tech, Inc. Joseph A. Samchuck Data Validation Manager

Attachments:

Appendix A – Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted method detection limit for sample and method.		
J	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).		
J+	The result is an estimated quantity, but the result may be biased high.		
J-	The result is an estimated quantity, but the result may be biased low.		
UJ	The sample result (detected) is unusable due to the quality of the data generated		
R			
UR	The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.		

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC

Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 09567	NSAMPLE	MSA-SW37A-0	082222		MSA-SW37B-	082222		MSA-SW37C-	082222	2	MSA-SW37D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-1			240-171981-2			240-171981-3			240-171981-4		
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROET	HANE	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С
1,1,1-TRICHLOROETHANE	≣	0.48	U		0.48	U		0.48	U		0.48	U	
1,1,2,2-TETRACHLOROET	HANE	0.6	U		0.6	U		0.6	U		0.6	U	
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.41	U		0.41	U		0.41	U		0.41	U	
1,1-DICHLOROETHANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,1-DICHLOROETHENE		0.49	U		0.49	U		0.49	U		0.49	U	
1,1-DICHLOROPROPENE		0.36	U		0.36	U		0.36	U		0.36	U	
1,2,3-TRICHLOROBENZEN	NE	0.54	U		0.54	U		0.54	U		0.54	U	
1,2,3-TRICHLOROPROPA	NE	0.52			0.52			0.52			0.52	U	
1,2,3-TRIMETHYLBENZEN	IE .	0.31	U		0.31	U		0.31	U		0.31	U	
1,2,4-TRICHLOROBENZEN	NE	0.77	U		0.77	U		0.77	U		0.77	U	
1,2,4-TRIMETHYLBENZEN	ΙE	0.52	U		0.52	U		0.52	U		0.52	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.91	U		0.91	U		0.91	U		0.91	U	
1,2-DIBROMOETHANE		0.41	U		0.41	U		0.41	U		0.41	U	
1,2-DICHLOROBENZENE		0.48	U		0.48	U		0.48	U		0.48	U	
1,2-DICHLOROETHANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,2-DICHLOROPROPANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,3-DICHLOROBENZENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,3-DICHLOROPROPANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,4-DICHLOROBENZENE		0.41	U		0.41	U		0.41	U		0.41	U	
2,2-DICHLOROPROPANE		0.78	U		0.78	U		0.78	U		0.78	U	
2-BUTANONE		1.2	U		1.2	U		1.2	U		1.2	U	
2-CHLOROETHYL VINYL E	ETHER	1.5	UR	М	1.5	UR	M	1.5	UR	M	1.5	UR	М
2-CHLOROTOLUENE		0.57			0.57			0.57			0.57	U	
2-HEXANONE		1.1	U		1.1	U		1.1	U		1.1	U	
4-CHLOROTOLUENE		0.43	U		0.43	U		0.43	U		0.43	U	
4-ISOPROPYLTOLUENE		0.56	U		0.56	U		0.56	U		0.56	U	
4-METHYL-2-PENTANONE	Ī	0.99	U		0.99	U		0.99	U		0.99	U	
ACETONE		5.4	U		5.4	U		5.4	U		5.4	U	
BENZENE		0.42			0.42	U		0.42			0.42	U	
BROMOBENZENE		0.5	U		0.5	U		0.5	U		0.5	U	
BROMOCHLOROMETHAN	IE	0.54	U		0.54	U		0.54	U		0.54	U	
BROMODICHLOROMETHA	ANE	0.17	U		0.17	U		0.17	U		0.17	U	
BROMOFORM		0.76	UJ	С	0.76	UJ	С	0.76	UJ	С	0.76	UJ	С
BROMOMETHANE		0.42	UJ	С	0.42	UJ	С	0.42	UJ	С	0.42	UJ	С

PROJ_NO: 09567	NSAMPLE	MSA-SW38A-0)82222		MSA-SW38B-0	082222		MSA-SW38C-	082222		MSA-SW38D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-5			240-171981-6			240-171981-7			240-171981-8		
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
1,1,1,2-TETRACHLOROE	THANE	0.43	UJ	С									
1,1,1-TRICHLOROETHAN	E	0.48	U										
1,1,2,2-TETRACHLOROE	THANE	0.6	U										
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.41	U										
1,1-DICHLOROETHANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,1-DICHLOROETHENE		0.49	U		0.49	U		0.49	U		0.49	U	
1,1-DICHLOROPROPENE		0.36	U		0.36	U		0.36	U		0.36	U	
1,2,3-TRICHLOROBENZE	NE	0.54	U		0.54			0.54	U		0.54	U	
1,2,3-TRICHLOROPROPA	NE	0.52	U										
1,2,3-TRIMETHYLBENZEI	NE	0.31	U										
1,2,4-TRICHLOROBENZE	NE	0.77	U										
1,2,4-TRIMETHYLBENZEI	NE	0.52	U										
1,2-DIBROMO-3-CHLORO	PROPANE	0.91	U										
1,2-DIBROMOETHANE		0.41	U		0.41	U		0.41	U		0.41	U	
1,2-DICHLOROBENZENE		0.48	U		0.48	U		0.48	U		0.48	U	
1,2-DICHLOROETHANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,2-DICHLOROPROPANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,3-DICHLOROBENZENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,3-DICHLOROPROPANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,4-DICHLOROBENZENE		0.41	U		0.41	U		0.41	U		0.41	U	
2,2-DICHLOROPROPANE		0.78	U		0.78	U		0.78	U		0.78	U	
2-BUTANONE		1.2	U		1.2	U		1.2	U		1.2	U	
2-CHLOROETHYL VINYL	ETHER	1.5	UR	M	1.5	UR	М	1.5	UR	M	1.5	UR	M
2-CHLOROTOLUENE		0.57	U		0.57	U		0.57	U		0.57	U	
2-HEXANONE		1.1	U		1.1	U		1.1	U		1.1	U	
4-CHLOROTOLUENE		0.43	U		0.43	U		0.43	U		0.43	U	
4-ISOPROPYLTOLUENE		0.56	U		0.56	U		0.56	U		0.56	U	
4-METHYL-2-PENTANON	E	0.99	U										
ACETONE		5.4	U		5.4	U		5.4	U		5.4	U	
BENZENE		0.42	U		0.42			0.42			0.42		
BROMOBENZENE		0.5	U		0.5			0.5	U		0.5	U	
BROMOCHLOROMETHAI	NE	0.54	U										
BROMODICHLOROMETH	ANE	0.17	U										
BROMOFORM		0.76		С	0.76		С		UJ	С	0.76		С
BROMOMETHANE		0.42	UJ	С									

PROJ_NO: 09567	NSAMPLE	MSA-SW40A-0	82222		MSA-SW40B-0)82222		MSA-SW40C-	082222		MSA-SW40D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-9			240-171981-10)		240-171981-1	1		240-171981-12	2	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROET	HANE	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С
1,1,1-TRICHLOROETHAN	E	0.48	U		0.48	U		0.48	U		0.48	U	
1,1,2,2-TETRACHLOROET	HANE	0.6	U		0.6	U		0.6	U		0.6	U	
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.41	U		0.41			0.41	U		0.41	U	
1,1-DICHLOROETHANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,1-DICHLOROETHENE		0.49	U		0.49	U		0.49	U		0.49	U	
1,1-DICHLOROPROPENE		0.36			0.36			0.36			0.36		
1,2,3-TRICHLOROBENZE	NE	0.54	_		0.54	U		0.54	U		0.54	U	
1,2,3-TRICHLOROPROPA	NE	0.52	U		0.52	U		0.52	U		0.52	U	
1,2,3-TRIMETHYLBENZEN	IE .	0.31	U		0.31	_		0.31	U		0.31	U	
1,2,4-TRICHLOROBENZE	NE	0.77	U		0.77	U		0.77			0.77	U	
1,2,4-TRIMETHYLBENZEN	IE .	0.52	U		0.52	U		0.52	U		0.52	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.91	U		0.91	U		0.91	U		0.91	U	
1,2-DIBROMOETHANE		0.41	U		0.41			0.41	U		0.41	U	
1,2-DICHLOROBENZENE		0.48	U		0.48			0.48	U		0.48	U	
1,2-DICHLOROETHANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,2-DICHLOROPROPANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,3-DICHLOROBENZENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,3-DICHLOROPROPANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,4-DICHLOROBENZENE		0.41	U		0.41			0.41	U		0.41		
2,2-DICHLOROPROPANE		0.78	U		0.78			0.78			0.78		
2-BUTANONE		1.2			1.2			1.2			1.2		
2-CHLOROETHYL VINYL	ETHER	1.5		М		UR	M		UR	М	+	UR	M
2-CHLOROTOLUENE		0.57			0.57			0.57	_		0.57	_	
2-HEXANONE		1.1			1.1			1.1			1.1		
4-CHLOROTOLUENE		0.43			0.43			0.43			0.43		
4-ISOPROPYLTOLUENE		0.56			0.56			0.56			0.56		
4-METHYL-2-PENTANONI	Ī	0.99			0.99			0.99	 		0.99		
ACETONE		5.4			5.4			5.4			5.4		
BENZENE		0.42			0.42			0.42	_		0.42	-	
BROMOBENZENE		0.5			0.5			0.5			0.5		
BROMOCHLOROMETHAN		0.54			0.54			0.54			0.54		
BROMODICHLOROMETH	ANE	0.17			0.17			0.17			0.17		
BROMOFORM		0.76		С	0.76		С	0.76		С	0.76		С
BROMOMETHANE		0.42	UJ	С	0.42	UJ	С	0.42	UJ	С	0.42	UJ	С

PROJ_NO: 09567	NSAMPLE	MSA-SW41A-0	082222		MSA-SW41B-	082222		MSA-SW41C-	082222)	MSA-SW41D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-13	3		240-171981-1	4		240-171981-1	5		240-171981-16	6	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROET	THANE	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С
1,1,1-TRICHLOROETHAN	E	0.48	U		0.48	U		0.48	U		0.48	U	
1,1,2,2-TETRACHLOROET	THANE	0.6	U		0.6	U		0.6	U		0.6	U	
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.41	U		0.41	U		0.41	U		0.41	U	
1,1-DICHLOROETHANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,1-DICHLOROETHENE		0.49	U		0.49	U		0.49	U		0.49	U	
1,1-DICHLOROPROPENE		0.36	U		0.36	U		0.36	U		0.36	U	
1,2,3-TRICHLOROBENZEI	NE	0.54	U		0.54	U		0.54	U		0.54	U	
1,2,3-TRICHLOROPROPA	NE	0.52	U		0.52	U		0.52	U		0.52	U	
1,2,3-TRIMETHYLBENZEN	ΝE	0.31	U		0.31	U		0.31	U		0.31	U	
1,2,4-TRICHLOROBENZEI	NE	0.77	U		0.77	U		0.77	U		0.77	U	
1,2,4-TRIMETHYLBENZEN	ΝE	0.52	U		0.52	U		0.52	U		0.52	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.91	U		0.91	U		0.91	U		0.91	U	
1,2-DIBROMOETHANE		0.41	U		0.41	U		0.41	U		0.41	U	
1,2-DICHLOROBENZENE		0.48	U		0.48	U		0.48	U		0.48	U	
1,2-DICHLOROETHANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,2-DICHLOROPROPANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,3-DICHLOROBENZENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,3-DICHLOROPROPANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,4-DICHLOROBENZENE		0.41	U		0.41	U		0.41	U		0.41	U	
2,2-DICHLOROPROPANE		0.78	U		0.78	U		0.78	U		0.78	U	
2-BUTANONE		1.2	U		1.2	U		1.2	U		1.2	U	
2-CHLOROETHYL VINYL	ETHER	1.5	UR	М	1.5	UR	M	1.5	UR	М	1.5	UR	М
2-CHLOROTOLUENE		0.57			0.57			0.57			0.57	U	
2-HEXANONE		1.1	U		1.1	U		1.1	U		1.1	U	
4-CHLOROTOLUENE		0.43	U		0.43	U		0.43	U		0.43	U	
4-ISOPROPYLTOLUENE		0.56			0.56	U		0.56	U		0.56	U	
4-METHYL-2-PENTANON	≣	0.99	U		0.99	U		0.99	U		0.99	U	
ACETONE		5.4	U		5.4	U		5.4	U		5.4	U	
BENZENE		0.42			0.42	U		0.42			0.42	U	
BROMOBENZENE		0.5	U		0.5	U		0.5	U		0.5	U	
BROMOCHLOROMETHAN	NE	0.54	U		0.54	U		0.54	U		0.54	U	
BROMODICHLOROMETH	ANE	0.17	U		0.17	U		0.17	U		0.17	U	
BROMOFORM		0.76	UJ	С	0.76	UJ	С	0.76	UJ	С	0.76	UJ	С
BROMOMETHANE		0.42	UJ	С	0.42	UJ	С	0.42	UJ	С	0.42	UJ	С

PROJ_NO: 09567	NSAMPLE	MSA-SW42A-0)82222		MSA-SW42B-0)82222		MSA-SW42C-	-082222		MSA-SW42D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-17	7		240-171981-18	3		240-171981-1	9		240-171981-20)	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROE	THANE	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С
1,1,1-TRICHLOROETHAN	ΙE	0.48	U		0.48	U		0.48	U		0.48	U	
1,1,2,2-TETRACHLOROE	THANE	0.6	U		0.6	U		0.6	U		0.6	U	
1,1,2-TRICHLOROTRIFLU	JOROETHANE	0.41	U		0.41	U		0.41	U		0.41	U	
1,1-DICHLOROETHANE		0.47	U		0.47	U		0.47	' U		0.47	U	
1,1-DICHLOROETHENE		0.49	U		0.49	U		0.49	U		0.49	U	
1,1-DICHLOROPROPENE		0.36	U		0.36	U		0.36	U		0.36	U	
1,2,3-TRICHLOROBENZE	NE	0.54	U		0.54	U		0.54	U		0.54	U	
1,2,3-TRICHLOROPROPA	NE	0.52	U		0.52	U		0.52	! U		0.52	U	
1,2,3-TRIMETHYLBENZEI	NE	0.31	U		0.31	U		0.31	U		0.31	U	
1,2,4-TRICHLOROBENZE	NE	0.77	U		0.77	U		0.77	' U		0.77	U	
1,2,4-TRIMETHYLBENZEI	NE	0.52	U		0.52	U		0.52	2 U		0.52	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.91	U		0.91	U		0.91	U		0.91	U	
1,2-DIBROMOETHANE		0.41	U		0.41	U		0.41	U		0.41	U	
1,2-DICHLOROBENZENE		0.48	U		0.48	U		0.48	U		0.48	U	
1,2-DICHLOROETHANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,2-DICHLOROPROPANE		0.47	U		0.47	U		0.47	' U		0.47	U	
1,3-DICHLOROBENZENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,3-DICHLOROPROPANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,4-DICHLOROBENZENE		0.41	U		0.41	U		0.41	U		0.41	U	
2,2-DICHLOROPROPANE		0.78	U		0.78	U		0.78	U		0.78	U	
2-BUTANONE		1.2	U		1.2	U		1.2	U		1.2	U	
2-CHLOROETHYL VINYL	ETHER	1.5	UR	M	1.5	UR	M	1.5	UR	M	1.5	UR	M
2-CHLOROTOLUENE		0.57	U		0.57	U		0.57	' U		0.57	U	
2-HEXANONE		1.1	U		1.1	U		1.1	U		1.1	U	
4-CHLOROTOLUENE		0.43	U		0.43	U		0.43	U		0.43	U	
4-ISOPROPYLTOLUENE		0.56	U		0.56	U		0.56	U		0.56	U	
4-METHYL-2-PENTANON	E	0.99	U		0.99	U		0.99	U		0.99	U	
ACETONE		5.4	U		5.4	U		5.4	U		5.4	U	
BENZENE		0.42	U		0.42			0.42			0.42		
BROMOBENZENE		0.5	U		0.5			0.5	U		0.5	U	
BROMOCHLOROMETHAI	NE	0.54	U		0.54	U		0.54	U		0.54	U	
BROMODICHLOROMETH	IANE	0.17	U		0.17	U		0.17	'U		0.17	U	
BROMOFORM		0.76		С	0.76		С		UJ	С	0.76		С
BROMOMETHANE		0.42	UJ	С	0.42	UJ	С	0.42	UJ	С	0.42	UJ	С

PROJ_NO: 09567	NSAMPLE	MSA-SW43A-0)82222		MSA-SW43B-0	082222		MSA-SW43C-	082222		MSA-SW43D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-21	I		240-171981-22	2		240-171981-2	3		240-171981-24	4	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROET	THANE	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С
1,1,1-TRICHLOROETHAN	E	0.48	U		0.48	U		0.48	U		0.48	U	
1,1,2,2-TETRACHLOROET	THANE	0.6	U		0.6	U		0.6	U		0.6	U	
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.41	U		0.41			0.41	U		0.41	U	
1,1-DICHLOROETHANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,1-DICHLOROETHENE		0.49	U		0.49	U		0.49	U		0.49	U	
1,1-DICHLOROPROPENE		0.36			0.36			0.36			0.36		
1,2,3-TRICHLOROBENZE	NE	0.54			0.54	U		0.54	U		0.54	U	
1,2,3-TRICHLOROPROPA	NE	0.52	U		0.52	U		0.52	U		0.52	U	
1,2,3-TRIMETHYLBENZEN	NE .	0.31	U		0.31	_		0.31	U		0.31	U	
1,2,4-TRICHLOROBENZE	NE	0.77	U		0.77	U		0.77			0.77	U	
1,2,4-TRIMETHYLBENZEN	NE .	0.52	U		0.52	U		0.52	U		0.52	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.91	U		0.91	U		0.91	U		0.91	U	
1,2-DIBROMOETHANE		0.41	U		0.41			0.41	U		0.41	U	
1,2-DICHLOROBENZENE		0.48	U		0.48			0.48	U		0.48	U	
1,2-DICHLOROETHANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,2-DICHLOROPROPANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,3-DICHLOROBENZENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,3-DICHLOROPROPANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,4-DICHLOROBENZENE		0.41	U		0.41			0.41	U		0.41		
2,2-DICHLOROPROPANE		0.78	U		0.78			0.78			0.78		
2-BUTANONE		1.2			1.2			1.2	_		1.2		
2-CHLOROETHYL VINYL	ETHER	1.5		М		UR	M		UR	M	+	UR	M
2-CHLOROTOLUENE		0.57			0.57	-		0.57	_		0.57	_	
2-HEXANONE		1.1			1.1			1.1			1.1		
4-CHLOROTOLUENE		0.43			0.43			0.43			0.43		
4-ISOPROPYLTOLUENE		0.56	U		0.56			0.56			0.56		
4-METHYL-2-PENTANONI		0.99			0.99	_		0.99			0.99		
ACETONE		5.4			5.4			5.4	_		5.4		
BENZENE		0.42			0.42	_		0.42	_		0.42	-	
BROMOBENZENE		0.5			0.5			0.5	_		0.5		
BROMOCHLOROMETHAN		0.54			0.54			0.54	_		0.54		
BROMODICHLOROMETH	ANE	0.17			0.17			0.17			0.17		
BROMOFORM		0.76		С	0.76		С	0.76		С	0.76		С
BROMOMETHANE		0.42	UJ	С	0.42	UJ	С	0.42	UJ	С	0.42	UJ	С

PROJ_NO: 09567	NSAMPLE	MSA-SW46A-0	082222		MSA-SW47A-	082222		MSA-SW48A-0	082222)	MSA-SW49A-0	082222	
SDG: 240-171981-1	LAB_ID	240-171981-26	3		240-171981-2	7		240-171981-28	3		240-171981-29	9	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROET	HANE	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С
1,1,1-TRICHLOROETHANI	E	0.48	U		0.48	U		0.48	U		0.48	U	
1,1,2,2-TETRACHLOROET	HANE	0.6	U		0.6	U		0.6	U		0.6	U	
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.41	U		0.41	U		0.41	U		0.41	U	
1,1-DICHLOROETHANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,1-DICHLOROETHENE		0.49	U		0.49	U		0.49	U		0.49	U	
1,1-DICHLOROPROPENE		0.36	U		0.36	U		0.36	U		0.36	U	
1,2,3-TRICHLOROBENZE	NE	0.54	U		0.54	U		0.54	U		0.54	U	
1,2,3-TRICHLOROPROPA	NE	0.52	U		0.52	U		0.52	U		0.52	U	
1,2,3-TRIMETHYLBENZEN	IE	0.31	U		0.31	U		0.31	U		0.31	U	
1,2,4-TRICHLOROBENZEI	NE	0.77	U		0.77	U		0.77	U		0.77	U	
1,2,4-TRIMETHYLBENZEN	1E	0.52	U		0.52	U		0.52	U		0.52	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.91	U		0.91	U		0.91	U		0.91	U	
1,2-DIBROMOETHANE		0.41	U		0.41	U		0.41	U		0.41	U	
1,2-DICHLOROBENZENE		0.48	U		0.48	U		0.48	U		0.48	U	
1,2-DICHLOROETHANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,2-DICHLOROPROPANE		0.47	U		0.47	U		0.47	U		0.47	U	
1,3-DICHLOROBENZENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,3-DICHLOROPROPANE		0.21	U		0.21	U		0.21	U		0.21	U	
1,4-DICHLOROBENZENE		0.41	U		0.41	U		0.41	U		0.41	U	
2,2-DICHLOROPROPANE		0.78	U		0.78	U		0.78	U		0.78	U	
2-BUTANONE		1.2	U		1.2	U		1.2	U		1.2	U	
2-CHLOROETHYL VINYL I	ETHER	1.5	UR	М	1.5	UR	M	1.5	UR	M	1.5	UR	М
2-CHLOROTOLUENE		0.57	U		0.57	U		0.57	U		0.57	U	
2-HEXANONE		1.1	U		1.1	U		1.1	U		1.1	U	
4-CHLOROTOLUENE		0.43	U		0.43	U		0.43			0.43	U	
4-ISOPROPYLTOLUENE		0.56	U		0.56	U		0.56	U		0.56	U	
4-METHYL-2-PENTANONE	Ē	0.99	U		0.99	U		0.99			0.99	U	
ACETONE		5.4	U		5.4	U		5.4	U		5.4	U	
BENZENE		0.42			0.42	U		0.42			0.42	U	
BROMOBENZENE		0.5			0.5	U		0.5	U		0.5	U	
BROMOCHLOROMETHAN	IE	0.54			0.54	U		0.54	U		0.54	U	
BROMODICHLOROMETH.	ANE	0.17	U		0.17	U		0.17	U		0.17	U	
BROMOFORM		0.76	UJ	С	0.76	UJ	С	0.76	UJ	С	0.76	UJ	С
BROMOMETHANE		0.42	UJ	С	0.42	UJ	С	0.42	UJ	С	0.42	UJ	С

PROJ_NO: 09567	NSAMPLE	MSA-SWEQB-	082222		TB-082222		
SDG: 240-171981-1	LAB_ID	240-171981-30			240-171981-2	5	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM		
	UNITS	UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0		
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROET	HANE	0.43	UJ	С	0.43	UJ	С
1,1,1-TRICHLOROETHANE		0.48	U		0.48	U	
1,1,2,2-TETRACHLOROET	HANE	0.6	U		0.6	U	
1,1,2-TRICHLOROTRIFLUO	DROETHANE	0.41	U		0.41	U	
1,1-DICHLOROETHANE		0.47	U		0.47	U	
1,1-DICHLOROETHENE		0.49	U		0.49	U	
1,1-DICHLOROPROPENE		0.36	U		0.36	U	
1,2,3-TRICHLOROBENZEN	IE	0.54	U		0.54	U	
1,2,3-TRICHLOROPROPAN	NE .	0.52	U		0.52	U	
1,2,3-TRIMETHYLBENZEN	E	0.31	U		0.31	U	
1,2,4-TRICHLOROBENZEN	IE	0.77	U		0.77	U	
1,2,4-TRIMETHYLBENZEN	E	0.52	U		0.52	U	
1,2-DIBROMO-3-CHLOROF	PROPANE	0.91	U		0.91	U	
1,2-DIBROMOETHANE		0.41	U		0.41	U	
1,2-DICHLOROBENZENE		0.48	U		0.48	U	
1,2-DICHLOROETHANE		0.21	U		0.21	U	
1,2-DICHLOROPROPANE		0.47	U		0.47	U	
1,3-DICHLOROBENZENE		0.45	U		0.45	U	
1,3-DICHLOROPROPANE		0.21	U		0.21	U	
1,4-DICHLOROBENZENE		0.41	U		0.41	U	
2,2-DICHLOROPROPANE		0.78	U		0.78	U	
2-BUTANONE		1.2	U		1.2	U	
2-CHLOROETHYL VINYL E	THER	1.5	UR	М	1.5	UR	M
2-CHLOROTOLUENE		0.57	U		0.57	U	
2-HEXANONE		1.1	U		1.1	U	
4-CHLOROTOLUENE		0.43	U		0.43	U	
4-ISOPROPYLTOLUENE		0.56	U		0.56	U	
4-METHYL-2-PENTANONE		0.99			0.99		
ACETONE		5.4	_		5.4		
BENZENE		0.42			0.42		
BROMOBENZENE		0.5			0.5		
BROMOCHLOROMETHAN		0.54			0.54		
BROMODICHLOROMETHA	NE	0.17			0.17		
BROMOFORM		0.76		С	0.76		С
BROMOMETHANE		0.42	UJ	С	0.42	UJ	С

PROJ_NO: 09567	NSAMPLE	MSA-SW37A-0	082222		MSA-SW37B-0)82222		MSA-SW37C-	082222		MSA-SW37D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-1			240-171981-2			240-171981-3			240-171981-4		
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
CARBON DISULFIDE		0.59	U		0.59	U		0.59	U		0.59	U	
CARBON TETRACHLORI	DE	0.26	U										
CHLOROBENZENE		0.38	U		0.38	U		0.38	U		0.38		
CHLORODIBROMOMETH	IANE	0.39	U		0.39	U		0.39	U		0.39		
CHLORODIFLUOROMET	HANE	1	UJ	Q									
CHLOROETHANE		0.83		С									
CHLOROFORM		0.47	U		0.47	U		0.47	U		0.47	U	
CHLOROMETHANE		0.63	U		0.63			0.63	U		0.63	U	
CIS-1,2-DICHLOROETHE	NE	0.46	U										
CIS-1,3-DICHLOROPROP	PENE	0.61	U		0.61	U		0.61			0.61		
DIBROMOMETHANE		0.4	U		0.4	U		0.4	U		0.4		
DICHLORODIFLUOROME	THANE	0.35	UJ	С									
DIISOPROPYL ETHER		0.17	U		0.17	U		0.17	U		0.17	U	
ETHYL TERT-BUTYL ETH	IER	0.4	U										
ETHYLBENZENE		0.42	U		0.42	U		0.42	U		0.42	U	
HEXACHLOROBUTADIEN	NE	0.83	U										
ISOPROPYLBENZENE		0.49	U		0.49			0.49	U		0.49	U	
M+P-XYLENES		0.42	U		0.42	U		0.42	U		0.42	U	
METHYL TERT-BUTYL E	THER	0.47	U		0.47			0.47	U		0.47	U	
METHYLENE CHLORIDE		2.6	U		2.6	U		2.6	U		2.6	U	
NAPHTHALENE		0.8	U		0.8	U		0.8	U		0.8	U	
N-BUTYLBENZENE		0.6	_		0.6	_		0.6	U		0.6	U	
N-PROPYLBENZENE		0.57			0.57			0.57			0.57		
O-XYLENE		0.42			0.42			0.42			0.42		
SEC-BUTYLBENZENE		0.53			0.53			0.53	_		0.53		
STYRENE		0.45			0.45			0.45			0.45		
TERT-AMYL METHYL ET	HER	0.43	_		0.43			0.43			0.43	_	
TERT-BUTYLBENZENE		0.48			0.48			0.48			0.48		
TERTIARY-BUTYL ALCO		7.2		С	7.2		С	7.2		С		UJ	С
TETRACHLOROETHENE		0.44		С									
TOLUENE		0.44			0.44			0.44			0.44	_	
TOTAL XYLENES		0.42			0.42			0.42			0.42		
TRANS-1,2-DICHLOROE	THENE	0.51			0.51			0.51			0.51		
TRANS-1,3-DICHLOROPE	ROPENE	0.67	_		0.67			0.67			0.67	_	
TRICHLOROETHENE		0.44	U		0.44	U		0.44	U		0.44	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW38A-0	082222		MSA-SW38B-	082222		MSA-SW38C-0	082222	2	MSA-SW38D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-5			240-171981-6			240-171981-7			240-171981-8		
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.59	U		0.59	U		0.59	U		0.59	U	
CARBON TETRACHLORID	ÞΕ	0.26	U		0.26	U		0.26	U		0.26	U	
CHLOROBENZENE		0.38	U		0.38	U		0.38	U		0.38	U	
CHLORODIBROMOMETH/	ANE	0.39	U		0.39	U		0.39	U		0.39	U	
CHLORODIFLUOROMETH	IANE	1	UJ	Q	1	UJ	Q	1	UJ	Q	1	UJ	Q
CHLOROETHANE		0.83	UJ	С	0.83	UJ	С	0.83	UJ	С	0.83	UJ	С
CHLOROFORM		0.47			0.47	U		0.47	U		0.47	U	
CHLOROMETHANE		0.63	U		0.63	U		0.63	U		0.63	U	
CIS-1,2-DICHLOROETHEN	IE .	0.46	U		0.46	U		0.46	U		0.46	U	
CIS-1,3-DICHLOROPROPE	ENE	0.61	U		0.61	U		0.61	U		0.61	U	
DIBROMOMETHANE		0.4	U		0.4	U		0.4	U		0.4	U	
DICHLORODIFLUOROME	THANE	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С
DIISOPROPYL ETHER		0.17	U		0.17	U		0.17	U		0.17	U	
ETHYL TERT-BUTYL ETHI	ER	0.4	U		0.4	U		0.4	U		0.4	U	
ETHYLBENZENE		0.42	U		0.42	U		0.42	U		0.42	U	
HEXACHLOROBUTADIEN	E	0.83	U		0.83	U		0.83	U		0.83	U	
ISOPROPYLBENZENE		0.49	U		0.49	U		0.49	U		0.49	U	
M+P-XYLENES		0.42	U		0.42	U		0.42	U		0.42	U	
METHYL TERT-BUTYL ET	HER	0.47	U		0.47	U		0.47	U		0.47	U	
METHYLENE CHLORIDE		2.6	U		2.6	U		2.6	U		2.6	U	
NAPHTHALENE		0.8	U		0.8	U		0.8	U		0.8	U	
N-BUTYLBENZENE		0.6	U		0.6	U		0.6	_		0.6		
N-PROPYLBENZENE		0.57			0.57	U		0.57	U		0.57	U	
O-XYLENE		0.42			0.42			0.42			0.42	U	
SEC-BUTYLBENZENE		0.53	U		0.53	U		0.53	U		0.53	U	
STYRENE		0.45	U		0.45	U		0.45			0.45	U	
TERT-AMYL METHYL ETH	IER	0.43	U		0.43	U		0.43	U		0.43	U	
TERT-BUTYLBENZENE		0.48	U		0.48	U		0.48	U		0.48	U	
TERTIARY-BUTYL ALCOH	OL	7.2		С	+	UJ	С	7.2		С	7.2		С
TETRACHLOROETHENE		0.44		С	0.44		С	0.44		С	0.44		С
TOLUENE		0.44			0.44			0.44	_		0.44	_	
TOTAL XYLENES		0.42		ļ	0.42			0.42			0.42		
TRANS-1,2-DICHLOROET	HENE	0.51		ļ	0.51			0.51			0.51		
TRANS-1,3-DICHLOROPR	OPENE	0.67		ļ	0.67	_		0.67			0.67		
TRICHLOROETHENE		0.44	U		0.44	U		0.44	U		0.44	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW40A-0	082222		MSA-SW40B-	082222		MSA-SW40C-0)82222		MSA-SW40D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-9			240-171981-1	0		240-171981-1			240-171981-12	2	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.59	U		0.59	U		0.59	U		0.59	U	
CARBON TETRACHLORID	ÞΕ	0.26	U		0.26	U		0.26	U		0.26	U	
CHLOROBENZENE		0.38	U		0.38	U		0.38	U		0.38	U	
CHLORODIBROMOMETH/	ANE	0.39	U		0.39	U		0.39	U		0.39	U	
CHLORODIFLUOROMETH	IANE	1	UJ	Q	1	UJ	Q	1	UJ	Q	1	UJ	Q
CHLOROETHANE		0.83	UJ	С	0.83	UJ	С	0.83	UJ	С	0.83	UJ	С
CHLOROFORM		0.47			0.47	U		0.47	U		0.47	U	
CHLOROMETHANE		0.63	U		0.63	U		0.63	U		0.63	U	
CIS-1,2-DICHLOROETHEN	IE .	0.46	U		0.46	U		0.46	U		0.46	U	
CIS-1,3-DICHLOROPROPE	ENE	0.61	U		0.61	U		0.61	U		0.61	U	
DIBROMOMETHANE		0.4	U		0.4	U		0.4	U		0.4	U	
DICHLORODIFLUOROME	THANE	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С
DIISOPROPYL ETHER		0.17	U		0.17	U		0.17	U		0.17	U	
ETHYL TERT-BUTYL ETHI	ER	0.4	U		0.4	U		0.4	U		0.4	U	
ETHYLBENZENE		0.42	U		0.42	U		0.42	U		0.42	U	
HEXACHLOROBUTADIEN	E	0.83	U		0.83	U		0.83	U		0.83	U	
ISOPROPYLBENZENE		0.49	U		0.49	U		0.49	U		0.49	U	
M+P-XYLENES		0.42	U		0.42	U		0.42	U		0.42	U	
METHYL TERT-BUTYL ET	HER	0.47	U		0.47	U		0.47	U		0.47	U	
METHYLENE CHLORIDE		2.6	U		2.6	U		2.6	U		2.6		
NAPHTHALENE		0.8	U		0.8	U		0.8	U		0.8	U	
N-BUTYLBENZENE		0.6	U		0.6	U		0.6			0.6		
N-PROPYLBENZENE		0.57			0.57	U		0.57	U		0.57	U	
O-XYLENE		0.42	U		0.42	U		0.42	U		0.42	U	
SEC-BUTYLBENZENE		0.53	U		0.53	U		0.53	U		0.53	U	
STYRENE		0.45	U		0.45	U		0.45			0.45	U	
TERT-AMYL METHYL ETH	IER	0.43	U		0.43	U		0.43	U		0.43	U	
TERT-BUTYLBENZENE		0.48	U		0.48			0.48	U		0.48	U	
TERTIARY-BUTYL ALCOH	OL	7.2		С		UJ	С	7.2		С	7.2		С
TETRACHLOROETHENE		0.44		С	0.44		С	0.44		С	0.44	-	С
TOLUENE		0.44		ļ	0.44			0.44			0.44	_	
TOTAL XYLENES		0.42	U		0.42	U		0.42	U		0.42		
TRANS-1,2-DICHLOROET	HENE	0.51			0.51			0.51			0.51	U	
TRANS-1,3-DICHLOROPR	OPENE	0.67	U		0.67	U		0.67	U		0.67	U	
TRICHLOROETHENE		0.44	U		0.44	U		0.44	U		0.44	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW41A-0	082222		MSA-SW41B-0)82222		MSA-SW41C-	082222		MSA-SW41D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-13	3		240-171981-14	1		240-171981-1	5		240-171981-1		
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.59	U		0.59	U		0.59	U		0.59	U	
CARBON TETRACHLORI	DE	0.26	U		0.26	U		0.26	U		0.26	U	
CHLOROBENZENE		0.38	U		0.38	U		0.38	U		0.38	U	
CHLORODIBROMOMETH	HANE	0.39	U		0.39	U		0.39	U		0.39	U	
CHLORODIFLUOROMET	HANE	1	UJ	Q	1	UJ	Q	1	UJ	Q	1	UJ	Q
CHLOROETHANE		0.83	UJ	С	0.83	UJ	С	0.83	UJ	С	0.83	UJ	С
CHLOROFORM		0.47	U		0.47	U		0.47	U		0.47	U	
CHLOROMETHANE		0.63	U		0.63			0.63	U		0.63	U	
CIS-1,2-DICHLOROETHE	NE	0.46	U		0.46	U		0.46	U		0.46	U	
CIS-1,3-DICHLOROPROF	PENE	0.61	U		0.61	U		0.61	U		0.61	U	
DIBROMOMETHANE		0.4	U		0.4	U		0.4	U		0.4	U	
DICHLORODIFLUOROME	ETHANE	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С
DIISOPROPYL ETHER		0.17	U		0.17	U		0.17	U		0.17	U	
ETHYL TERT-BUTYL ETH	HER	0.4	U		0.4	U		0.4	U		0.4	U	
ETHYLBENZENE		0.42	U		0.42	U		0.42	U		0.42	U	
HEXACHLOROBUTADIE	NE	0.83	U		0.83	U		0.83	U		0.83	U	
ISOPROPYLBENZENE		0.49	U		0.49			0.49	U		0.49	U	
M+P-XYLENES		0.42	U		0.42	U		0.42	U		0.42	U	
METHYL TERT-BUTYL E	THER	0.47			0.47			0.47	U		0.47	U	
METHYLENE CHLORIDE		2.6	U		2.6	U		2.6	U		2.6	U	
NAPHTHALENE		0.8	U		0.8	U		0.8	U		0.8	U	
N-BUTYLBENZENE		0.6	U		0.6	_		0.6	U		0.6	U	
N-PROPYLBENZENE		0.57	U		0.57			0.57			0.57		
O-XYLENE		0.42	-		0.42			0.42			0.42		
SEC-BUTYLBENZENE		0.53	U		0.53			0.53	_		0.53		
STYRENE		0.45	U		0.45			0.45			0.45	U	
TERT-AMYL METHYL ET	HER	0.43	_		0.43			0.43			0.43	_	
TERT-BUTYLBENZENE		0.48			0.48			0.48			0.48		
TERTIARY-BUTYL ALCO		7.2		С	7.2		С	7.2		С		UJ	С
TETRACHLOROETHENE		0.44		С	0.44		С	0.44		С	0.44		С
TOLUENE		0.44	-		0.44			0.44			0.44	_	
TOTAL XYLENES		0.42	U		0.42			0.42			0.42	U	
TRANS-1,2-DICHLOROE	THENE	0.51			0.51			0.51			0.51		
TRANS-1,3-DICHLOROP	ROPENE	0.67	U		0.67	U		0.67	U		0.67	U	
TRICHLOROETHENE		0.44	U		0.44	U		0.44	U		0.44	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW42A-0	082222		MSA-SW42B-0)82222		MSA-SW42C-	082222		MSA-SW42D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-17	7		240-171981-18	3		240-171981-19	9		240-171981-2)	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.59	U		0.59	U		0.59	U		0.59	U	
CARBON TETRACHLORI	DE	0.26	U		0.26	U		0.26	U		0.26	U	
CHLOROBENZENE		0.38	U		0.38	U		0.38	U		0.38	U	
CHLORODIBROMOMETH	HANE	0.39	U		0.39	U		0.39	U		0.39	U	
CHLORODIFLUOROMET	HANE	1	UJ	Q	1	UJ	Q	1	UJ	Q	1	UJ	Q
CHLOROETHANE		0.83	UJ	С	0.83	UJ	С	0.83	UJ	С	0.83	UJ	С
CHLOROFORM		0.47	U		0.47	U		0.47	U		0.47	U	
CHLOROMETHANE		0.63	U		0.63			0.63	U		0.63	U	
CIS-1,2-DICHLOROETHE	NE	0.46	U		0.46	U		0.46	U		0.46	U	
CIS-1,3-DICHLOROPROF	PENE	0.61	U		0.61	U		0.61			0.61	U	
DIBROMOMETHANE		0.4	U		0.4	U		0.4	U		0.4	U	
DICHLORODIFLUOROME	ETHANE	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С	0.35	U	
DIISOPROPYL ETHER		0.17	U		0.17	U		0.17	U		0.17	U	
ETHYL TERT-BUTYL ETH	HER	0.4	U		0.4	U		0.4	U		0.4	U	
ETHYLBENZENE		0.42	U		0.42	U		0.42	U		0.42	U	
HEXACHLOROBUTADIE	NE	0.83	U		0.83	U		0.83	U		0.83	U	
ISOPROPYLBENZENE		0.49	U		0.49			0.49	U		0.49	U	
M+P-XYLENES		0.42	U		0.42	U		0.42	U		0.42	U	
METHYL TERT-BUTYL E	THER	0.47			0.47			0.47	U		0.47	U	
METHYLENE CHLORIDE		2.6	U		2.6	U		2.6	U		2.6	U	
NAPHTHALENE		0.8	U		0.8	U		0.8	U		0.8	U	
N-BUTYLBENZENE		0.6			0.6	_		0.6	U		0.6	U	
N-PROPYLBENZENE		0.57	U		0.57	U		0.57			0.57		
O-XYLENE		0.42	-		0.42			0.42			0.42		
SEC-BUTYLBENZENE		0.53	U		0.53			0.53	_		0.53		
STYRENE		0.45	U		0.45			0.45			0.45	U	
TERT-AMYL METHYL ET	HER	0.43	_		0.43			0.43			0.43	_	
TERT-BUTYLBENZENE		0.48			0.48			0.48			0.48		
TERTIARY-BUTYL ALCO		7.2		С	7.2		С	7.2		С	7.2		С
TETRACHLOROETHENE		0.44		С	0.44		С	0.44		С	0.44	_	
TOLUENE		0.44	-		0.44			0.44			0.44	_	
TOTAL XYLENES		0.42			0.42			0.42			0.42		
TRANS-1,2-DICHLOROE	THENE	0.51			0.51			0.51			0.51		
TRANS-1,3-DICHLOROPI	ROPENE	0.67	_		0.67			0.67			0.67	_	
TRICHLOROETHENE		0.44	U		0.44	U		0.44	U		0.44	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW43A-0	082222		MSA-SW43B-0)82222		MSA-SW43C-	082222		MSA-SW43D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-2	1		240-171981-22	2		240-171981-23	3		240-171981-2	4	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.59	U		0.59	U		0.59	U		0.59	U	
CARBON TETRACHLORI	DE	0.26	U		0.26	U		0.26	U		0.26	U	
CHLOROBENZENE		0.38	U		0.38	U		0.38	U		0.38	U	
CHLORODIBROMOMETH	HANE	0.39	U		0.39	U		0.39	U		0.39	U	
CHLORODIFLUOROMET	HANE	1	UJ	Q	1	UJ	Q	1	UJ	Q	1	UJ	Q
CHLOROETHANE		0.83	UJ	С	0.83	UJ	С	0.83	UJ	С	0.83	UJ	С
CHLOROFORM		0.47	U		0.47	U		0.47	U		0.47	U	
CHLOROMETHANE		0.63	U		0.63			0.63	U		0.63	U	
CIS-1,2-DICHLOROETHE	NE	0.46	U		0.46	U		0.46	U		0.46	U	
CIS-1,3-DICHLOROPROF	PENE	0.61	U		0.61	U		0.61			0.61		
DIBROMOMETHANE		0.4	U		0.4	U		0.4	U		0.4	U	
DICHLORODIFLUOROME	ETHANE	0.35	U		0.35	U		0.35	U		0.35	U	
DIISOPROPYL ETHER		0.17	U		0.17	U		0.17	U		0.17	U	
ETHYL TERT-BUTYL ETH	HER	0.4	U		0.4	U		0.4	U		0.4	U	
ETHYLBENZENE		0.42	U		0.42	U		0.42	U		0.42	U	
HEXACHLOROBUTADIE	NE	0.83	U		0.83	U		0.83	U		0.83	U	
ISOPROPYLBENZENE		0.49	U		0.49			0.49	U		0.49	U	
M+P-XYLENES		0.42	U		0.42	U		0.42	U		0.42	U	
METHYL TERT-BUTYL E	THER	0.47			0.47			0.47	U		0.47	U	
METHYLENE CHLORIDE		2.6	U		2.6	U		2.6	U		2.6	U	
NAPHTHALENE		0.8	U		0.8	U		0.8	U		0.8	U	
N-BUTYLBENZENE		0.6	U		0.6	_		0.6	U		0.6	U	
N-PROPYLBENZENE		0.57	U		0.57	U		0.57			0.57		
O-XYLENE		0.42	U		0.42	U		0.42	U		0.42	U	
SEC-BUTYLBENZENE		0.53	U		0.53	U		0.53	U		0.53	U	
STYRENE		0.45	U		0.45	U		0.45	U		0.45	U	
TERT-AMYL METHYL ET	HER	0.43	U		0.43			0.43			0.43	U	
TERT-BUTYLBENZENE		0.48			0.48			0.48			0.48		
TERTIARY-BUTYL ALCO	HOL	7.2	UJ	С	7.2		С	7.2	UJ	С	7.2	UJ	С
TETRACHLOROETHENE		0.44	U		0.44			0.44	U		0.44	U	
TOLUENE		0.44	U		0.44	U		0.44	U		0.44	U	
TOTAL XYLENES		0.42	U		0.42			0.42			0.42	U	
TRANS-1,2-DICHLOROE	THENE	0.51	U		0.51			0.51			0.51	U	
TRANS-1,3-DICHLOROPI	ROPENE	0.67	U		0.67			0.67	U		0.67	U	
TRICHLOROETHENE		0.44	U		0.44	U		0.44	U		0.44	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW46A-0)82222		MSA-SW47A-	082222		MSA-SW48A-0	82222		MSA-SW49A-0)82222	
SDG: 240-171981-1	LAB_ID	240-171981-26	3		240-171981-2	7		240-171981-28	3		240-171981-29)	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.59	U		0.59	U		0.59	U		0.59	U	
CARBON TETRACHLORID	ÞΕ	0.26	U		0.26	U		0.26	U		0.26	U	
CHLOROBENZENE		0.38	U		0.38	U		0.38	U		0.38	U	
CHLORODIBROMOMETHA	ANE	0.39	U		0.39	U		0.39	U		0.39	U	
CHLORODIFLUOROMETH	IANE	1	UJ	Q	1	UJ	Q	1	UJ	Q	1	UJ	Q
CHLOROETHANE		0.83	UJ	С	0.83	UJ	С	0.83	UJ	С	0.83	UJ	С
CHLOROFORM		0.47			0.47	U		0.47	U		0.47	U	
CHLOROMETHANE		0.63	U		0.63	U		0.63	U		0.63	U	
CIS-1,2-DICHLOROETHEN	IE .	0.46	U		0.46	U		0.46	U		0.46	U	
CIS-1,3-DICHLOROPROPE	ENE	0.61	U		0.61	U		0.61	U		0.61	U	
DIBROMOMETHANE		0.4	U		0.4	U		0.4	U		0.4	U	
DICHLORODIFLUOROME	THANE	0.35	U		0.35	U		0.35	U		0.35	U	
DIISOPROPYL ETHER		0.17	U		0.17	U		0.17	U		0.17	U	
ETHYL TERT-BUTYL ETH	ER	0.4	U		0.4	U		0.4	U		0.4	U	
ETHYLBENZENE		0.42			0.42	U		0.42	U		0.42	U	
HEXACHLOROBUTADIEN	E	0.83	U		0.83	U		0.83	U		0.83	U	
ISOPROPYLBENZENE		0.49	U		0.49	U		0.49	U		0.49		
M+P-XYLENES		0.42			0.42	!		0.42			0.42		
METHYL TERT-BUTYL ET	HER	0.47	U		0.47	U		0.47	U		0.47	U	
METHYLENE CHLORIDE		2.6	U		2.6	U		2.6	U		2.6		
NAPHTHALENE		0.8	U		0.8	U		0.8	U		0.8	U	
N-BUTYLBENZENE		0.6			0.6	<u> </u>		0.6			0.6		
N-PROPYLBENZENE		0.57			0.57			0.57			0.57		
O-XYLENE		0.42			0.42			0.42			0.42	U	
SEC-BUTYLBENZENE		0.53			0.53	-		0.53			0.53		
STYRENE		0.45			0.45			0.45			0.45		
TERT-AMYL METHYL ETH	IER	0.43			0.43	_		0.43			0.43		
TERT-BUTYLBENZENE		0.48			0.48			0.48			0.48		
TERTIARY-BUTYL ALCOH	OL	7.2		С		UJ	С	7.2		С	7.2		С
TETRACHLOROETHENE		0.44			0.44			0.44			0.44		<u> </u>
TOLUENE		0.44			0.44			0.44			0.44		<u> </u>
TOTAL XYLENES		0.42		ļ	0.42			0.42			0.42		
TRANS-1,2-DICHLOROETI		0.51			0.51			0.51			0.51		
TRANS-1,3-DICHLOROPR	OPENE	0.67			0.67	_		0.67			0.67		
TRICHLOROETHENE		0.44	U		0.44	U		0.44	U		0.44	U	

PROJ_NO: 09567	NSAMPLE	MSA-SWEQB-	.082222		TB-082222		
SDG: 240-171981-1	LAB ID	240-171981-30			240-171981-2	<u> </u>	
FRACTION: OV	SAMP_DATE	8/22/2022	,		8/22/2022	,	
MEDIA: WATER	QC_TYPE	NM			NM		
MEDIA: WATER	UNITS	UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0		
	DUP_OF	0.0			0.0		
PARAMETER	20: _0:	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.59	U		0.59	U	
CARBON TETRACHLORID	E	0.26	U		0.26	U	
CHLOROBENZENE		0.38	U		0.38	U	
CHLORODIBROMOMETHA	NE	0.39	U		0.39	U	
CHLORODIFLUOROMETH	ANE	1	UJ	Q	1	UJ	Q
CHLOROETHANE		0.83	UJ	С	0.83	UJ	С
CHLOROFORM		0.47	U		0.47	U	
CHLOROMETHANE		0.63	U		0.63	U	
CIS-1,2-DICHLOROETHEN	E	0.46	U		0.46	U	
CIS-1,3-DICHLOROPROPE	NE	0.61	U		0.61	U	
DIBROMOMETHANE		0.4	U		0.4	U	
DICHLORODIFLUOROMET	HANE	0.35	U		0.35	U	
DIISOPROPYL ETHER		0.17	U		0.17	U	
ETHYL TERT-BUTYL ETHE	R	0.4	U		0.4	U	
ETHYLBENZENE		0.42	U		0.42	U	
HEXACHLOROBUTADIENE	≣	0.83	U		0.83	U	
ISOPROPYLBENZENE		0.49	U		0.49	U	
M+P-XYLENES		0.42	U		0.42	U	
METHYL TERT-BUTYL ETH	HER	0.47	U		0.47	U	
METHYLENE CHLORIDE		2.6	U		2.6	U	
NAPHTHALENE		0.8	U		0.8	U	
N-BUTYLBENZENE		0.6	U		0.6	U	
N-PROPYLBENZENE		0.57	U		0.57	U	
O-XYLENE		0.42			0.42		
SEC-BUTYLBENZENE		0.53			0.53		
STYRENE		0.45			0.45		
TERT-AMYL METHYL ETH	ER	0.43			0.43		
TERT-BUTYLBENZENE		0.48		-	0.48		_
TERTIARY-BUTYL ALCOH	OL	7.2		С	7.2		С
TETRACHLOROETHENE		0.44 0.44		-	0.44		
TOLUENE				-	0.44		
TOTAL XYLENES		0.42 0.51		-	0.42		
· ·	ANS-1,2-DICHLOROETHENE			-	0.51		
TRANS-1,3-DICHLOROPRO	JPENE	0.67			0.67		
TRICHLOROETHENE		0.44	U		0.44	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW37A-0	082222		MSA-SW37B-0	082222		MSA-SW37C-0	082222		MSA-SW37D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-1			240-171981-2			240-171981-3			240-171981-4		
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L						UG/L			UG/L		
	PCT_SOLIDS	0.0	0 0					0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
TRICHLOROFLUOROMET	HANE	0.45	U		0.45	U		0.45	U		0.45	U	
VINYL ACETATE	-	0.61	0.43 UJ C		0.61	UJ	С	0.61	UJ	С	0.61	UJ	С
VINYL CHLORIDE		0.45	U		0.45	U		0.45	U		0.45	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW38A-0	082222		MSA-SW38B-0	082222		MSA-SW38C-0	082222		MSA-SW38D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-5			240-171981-6			240-171981-7			240-171981-8		
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L						UG/L			UG/L		
	PCT_SOLIDS	0.0	.0 0					0.0			0.0		
	DUP_OF		0.0										
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
TRICHLOROFLUOROMET	HANE	0.45	U		0.45	U		0.45	U		0.45	U	
VINYL ACETATE	-	0.61	0.43 UJ C		0.61	UJ	С	0.61	UJ	С	0.61	UJ	С
VINYL CHLORIDE	-	0.45	U		0.45	U		0.45	U		0.45	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW40A-0	082222		MSA-SW40B-0	082222		MSA-SW40C-	082222		MSA-SW40D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-9			240-171981-10)		240-171981-1	1		240-171981-12	2	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L						UG/L			UG/L		
	PCT_SOLIDS	0.0	.0 0					0.0			0.0		
	DUP_OF		0.0										
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
TRICHLOROFLUOROMET	HANE	0.45	U		0.45	U		0.45	U		0.45	U	
VINYL ACETATE	-	0.61	0.61 UJ C		0.61	UJ	С	0.61	UJ	С	0.61	UJ	С
VINYL CHLORIDE		0.45	U		0.45	U		0.45	U		0.45	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW41A-0	082222		MSA-SW41B-0	082222		MSA-SW41C-0	082222		MSA-SW41D-0	082222	
SDG: 240-171981-1	LAB_ID	240-171981-13	3		240-171981-14	4		240-171981-1	5		240-171981-16	3	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L						UG/L			UG/L		
	PCT_SOLIDS	0.0	.0 0.					0.0			0.0		
	DUP_OF		0.0										
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
TRICHLOROFLUOROMET	HANE	0.45	U		0.45	U		0.45	U		0.45	U	
VINYL ACETATE	-	0.61	UJ	С	0.61	UJ	С	0.61	UJ	С	0.61	UJ	С
VINYL CHLORIDE		0.45	U		0.45	U		0.45	U		0.45	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW42A-0	082222		MSA-SW42B-0	082222		MSA-SW42C-0	082222		MSA-SW42D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-17	7		240-171981-18	3		240-171981-19	9		240-171981-20)	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM						NM			NM		
	UNITS	UG/L						UG/L			UG/L		
	PCT_SOLIDS	0.0	.0 0					0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
TRICHLOROFLUOROMET	HANE	0.45	U		0.45	U		0.45	U		0.45	U	
VINYL ACETATE	-	0.61	0.61 UJ C		0.61	UJ	С	0.61	UJ	С	0.61	UJ	С
VINYL CHLORIDE		0.45	U		0.45	U		0.45	U		0.45	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW43A-0	082222		MSA-SW43B-0	082222		MSA-SW43C-0	082222		MSA-SW43D-	082222	
SDG: 240-171981-1	LAB_ID	240-171981-2 ⁴	1		240-171981-22	2		240-171981-23	3		240-171981-24	4	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L						UG/L			UG/L		
	PCT_SOLIDS	0.0	.0 0					0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
TRICHLOROFLUOROMET	HANE	0.45	U		0.45	U		0.45	U		0.45	U	
VINYL ACETATE		0.61	0.43 UJ C		0.61	UJ	С	0.61	UJ	С	0.61	UJ	С
VINYL CHLORIDE		0.45	U		0.45	U		0.45	U		0.45	U	

PROJ_NO: 09567	NSAMPLE	MSA-SW46A-0	082222		MSA-SW47A-0	082222		MSA-SW48A-0	082222		MSA-SW49A-0	082222	
SDG: 240-171981-1	LAB_ID	240-171981-26	3		240-171981-27	7		240-171981-28	3		240-171981-29	9	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022			8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L						UG/L			UG/L		
	PCT_SOLIDS	0.0	.0 0					0.0			0.0		
	DUP_OF		0.0										
PARAMETER		RESULT	VQL	QLCD									
TRICHLOROFLUOROMET	HANE	0.45	U										
VINYL ACETATE		0.61	UJ	С									
VINYL CHLORIDE		0.45	U		0.45	U		0.45	U		0.45	U	

PROJ_NO: 09567	NSAMPLE	MSA-SWEQB-	082222		TB-082222		
SDG: 240-171981-1	LAB_ID	240-171981-30)		240-171981-25	5	
FRACTION: OV	SAMP_DATE	8/22/2022			8/22/2022		
MEDIA: WATER	QC_TYPE	NM			NM		
	UNITS	UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0		
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD
TRICHLOROFLUOROMETI	HANE	0.45	U		0.45	U	
VINYL ACETATE	-	0.61	UJ	С	0.61	UJ	С
VINYL CHLORIDE		0.45	U		0.45	U	

Appendix B

Results as Reported by the Laboratory

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37A-082222 Lab Sample ID: 240-171981-1

Matrix: Water Lab File ID: 227982.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:40

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 13:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

			1		
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	Ū	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37A-082222 Lab Sample ID: 240-171981-1

Matrix: Water Lab File ID: 227982.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:40

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 13:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37A-082222 Lab Sample ID: 240-171981-1

Matrix: Water Lab File ID: 227982.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:40

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 13:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	106		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		62-137
2037-26-5	Toluene-d8 (Surr)	102		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW37A-082222 Lab Sample ID: 240-171981-1 Matrix: Water Lab File ID: 227982.D Analysis Method: 8260C Date Collected: 08/22/2022 12:40 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 13:53 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37B-082222 Lab Sample ID: 240-171981-2

Matrix: Water Lab File ID: 227983.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:42

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 14:17

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37B-082222 Lab Sample ID: 240-171981-2

Matrix: Water Lab File ID: 227983.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:42

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 14:17

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Job No.: 240-171981-1

 SDG No.: MSA Frog Mortar Creek

 Client Sample ID: MSA-SW37B-082222
 Lab Sample ID: 240-171981-2

 Matrix: Water
 Lab File ID: 227983.D

 Analysis Method: 8260C
 Date Collected: 08/22/2022 12:42

Sample wt/vol: 5 (mL)

Date Analyzed: 08/29/2022 14:17

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u>

Analysis Batch No.: 540508 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	97		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		62-137
2037-26-5	Toluene-d8 (Surr)	104		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW37B-082222 Lab Sample ID: 240-171981-2 Matrix: Water Lab File ID: 227983.D Analysis Method: 8260C Date Collected: 08/22/2022 12:42 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 14:17 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37C-082222 Lab Sample ID: 240-171981-3

Matrix: Water Lab File ID: 227984.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:44

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 14:40

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek	
Client Sample ID: MSA-SW37C-082222	Lab Sample ID: 240-171981-3
Matrix: Water	Lab File ID: 227984.D
Analysis Method: 8260C	Date Collected: 08/22/2022 12:44
Sample wt/vol: 5(mL)	Date Analyzed: 08/29/2022 14:40
Soil Aliquot Vol:	Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540508 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth	0.41	U	1.0	0.41

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW37C-082222 Lab Sample ID: 240-171981-3

Matrix: Water Lab File ID: 227984.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:44

Date Analyzed: 08/29/2022 14:40 Sample wt/vol: 5(mL)

Soil Aliquot Vol: Dilution Factor: 1

GC Column: DB-624 ID: 0.18(mm) Soil Extract Vol.:

Purge Volume: 5.0(mL) Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540508 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	103		62-137
2037-26-5	Toluene-d8 (Surr)	102		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW37C-082222 Lab Sample ID: 240-171981-3 Matrix: Water Lab File ID: 227984.D Analysis Method: 8260C Date Collected: 08/22/2022 12:44 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 14:40 ___ Dilution Factor: 1 Soil Aliquot Vol: GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek	
Client Sample ID: MSA-SW37D-082222	Lab Sample ID: 240-171981-4
Matrix: Water	Lab File ID: 227985.D
Analysis Method: 8260C	Date Collected: 08/22/2022 12:47
Sample wt/vol: 5(mL)	Date Analyzed: 08/29/2022 15:04
Soil Aliquot Vol:	Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624
 ID: 0.18 (mm)

 Purge Volume: 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u>

Analysis Batch No.: 540508 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Analysis Batch No.: 540508

Client Sample ID: MSA-SW37D-082222 Lab Sample ID: 240-171981-4

Matrix: Water Lab File ID: 227985.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:47

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 15:04

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: _____ GC Column: DB-624 ID: 0.18(mm)

Units: ug/L

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37D-082222 Lab Sample ID: 240-171981-4

Matrix: Water Lab File ID: 227985.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:47

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:04

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	99		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	103		62-137
2037-26-5	Toluene-d8 (Surr)	103		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW37D-082222 Lab Sample ID: 240-171981-4 Matrix: Water Lab File ID: 227985.D Analysis Method: 8260C Date Collected: 08/22/2022 12:47 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:04 ___ Dilution Factor: 1 Soil Aliquot Vol: GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227986.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:53

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:27

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38A-082222 Lab Sample ID: 240-171981-5

Matrix: Water Lab File ID: 227986.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:53

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 15:27

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38A-082222 Lab Sample ID: 240-171981-5

Matrix: Water Lab File ID: 227986.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:53

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:27

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		62-137
2037-26-5	Toluene-d8 (Surr)	103		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW38A-082222 Lab Sample ID: 240-171981-5 Matrix: Water Lab File ID: 227986.D Analysis Method: 8260C Date Collected: 08/22/2022 11:53 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:27 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38B-082222 Lab Sample ID: 240-171981-6

Matrix: Water Lab File ID: 227987.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:55

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:51

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

SDG No.: MSA Frog Mortar Creek	
Client Sample ID: MSA-SW38B-082222	Lab Sample ID: 240-171981-6
Matrix: Water	Lab File ID: 227987.D
Analysis Method: 8260C	Date Collected: 08/22/2022 11:55
Sample wt/vol: 5(mL)	Date Analyzed: 08/29/2022 15:51

Soil Aliquot Vol: _____ Dilution Factor: 1____

Lab Name: Eurofins Canton Job No.: 240-171981-1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

% Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38B-082222 Lab Sample ID: 240-171981-6

Matrix: Water Lab File ID: 227987.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:55

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 15:51

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	97		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	103		62-137
2037-26-5	Toluene-d8 (Surr)	102		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW38B-082222 Lab Sample ID: 240-171981-6 Matrix: Water Lab File ID: 227987.D Date Collected: 08/22/2022 11:55 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:51 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

 SDG No.: MSA Frog Mortar Creek

 Client Sample ID: MSA-SW38C-082222
 Lab Sample ID: 240-171981-7

 Matrix: Water
 Lab File ID: 227988.D

 Analysis Method: 8260C
 Date Collected: 08/22/2022 11:58

 Sample wt/vol: 5 (mL)
 Date Analyzed: 08/29/2022 16:15

Soil Aliquot Vol: _____ Dilution Factor: 1____

Lab Name: Eurofins Canton Job No.: 240-171981-1

Soil Extract Vol.: _____ GC Column: DB-624 ID: 0.18(mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

 SDG No.: MSA Frog Mortar Creek

 Client Sample ID: MSA-SW38C-082222
 Lab Sample ID: 240-171981-7

 Matrix: Water
 Lab File ID: 227988.D

 Analysis Method: 8260C
 Date Collected: 08/22/2022 11:58

 Sample wt/vol: 5 (mL)
 Date Analyzed: 08/29/2022 16:15

Soil Aliquot Vol: _____ Dilution Factor: 1____

Lab Name: Eurofins Canton Job No.: 240-171981-1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	Ū	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38C-082222 Lab Sample ID: 240-171981-7

Matrix: Water Lab File ID: 227988.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:58

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 16:15

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		62-137
2037-26-5	Toluene-d8 (Surr)	102		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW38C-082222 Lab Sample ID: 240-171981-7 Matrix: Water Lab File ID: 227988.D Date Collected: 08/22/2022 11:58 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 16:15 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Job No.: 240-171981-1

 SDG No.: MSA Frog Mortar Creek

 Client Sample ID: MSA-SW38D-082222
 Lab Sample ID: 240-171981-8

 Matrix: Water
 Lab File ID: 227989.D

 Analysis Method: 8260C
 Date Collected: 08/22/2022 12:00

 Sample wt/vol: 5(mL)
 Date Analyzed: 08/29/2022 16:38

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Soil Extract Vol.: _____ GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540508 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38D-082222 Lab Sample ID: 240-171981-8

Matrix: Water Lab File ID: 227989.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:00

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 16:38

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38D-082222

Matrix: Water

Lab Sample ID: 240-171981-8

Lab File ID: 227989.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:00
Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 16:38

Soil Aliquot Vol: Dilution Factor: 1

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540508 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		62-137
2037-26-5	Toluene-d8 (Surr)	100		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW38D-082222 Lab Sample ID: 240-171981-8 Matrix: Water Lab File ID: 227989.D Analysis Method: 8260C Date Collected: 08/22/2022 12:00 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 16:38 ___ Dilution Factor: 1 Soil Aliquot Vol: GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40A-082222 Lab Sample ID: 240-171981-9

Matrix: Water Lab File ID: 227990.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:11
Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 17:02

Soil Aliquot Vol: Dilution Factor: 1

Lab Name: Eurofins Canton Job No.: 240-171981-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek	
Client Sample ID: MSA-SW40A-082222	Lab Sample ID: 240-171981-9
Matrix: Water	Lab File ID: 227990.D
Analysis Method: 8260C	Date Collected: 08/22/2022 12:11
Sample wt/vol: 5(mL)	Date Analyzed: 08/29/2022 17:02

Soil Aliquot Vol: _____ Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

Analysis Batch No.: 540508 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	Ū	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40A-082222 Lab Sample ID: 240-171981-9

Matrix: Water Lab File ID: 227990.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:11

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:02

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	95		56-136
1868-53-7	Dibromofluoromethane (Surr)	104		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	101		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW40A-082222 Lab Sample ID: 240-171981-9 Matrix: Water Lab File ID: 227990.D Analysis Method: 8260C Date Collected: 08/22/2022 12:11 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 17:02 ___ Dilution Factor: 1 Soil Aliquot Vol: GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227991.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:14

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:26

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227991.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:14

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:26

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227991.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:14

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:26

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	92		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		62-137
2037-26-5	Toluene-d8 (Surr)	101		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW40B-082222 Lab Sample ID: 240-171981-10 Matrix: Water Lab File ID: 227991.D Analysis Method: 8260C Date Collected: 08/22/2022 12:14 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 17:26 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

 SDG No.:
 MSA Frog Mortar Creek

 Client Sample ID:
 MSA-SW40C-082222
 Lab Sample ID:
 240-171981-11

 Matrix:
 Water
 Lab File ID:
 227992.D

 Analysis Method:
 8260C
 Date Collected:
 08/22/2022
 12:17

 Sample wt/vol:
 5 (mL)
 Date Analyzed:
 08/29/2022
 17:49

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

Lab Name: Eurofins Canton Job No.: 240-171981-1

% Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40C-082222 Lab Sample ID: 240-171981-11

Matrix: Water Lab File ID: 227992.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:17

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:49

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40C-082222 Lab Sample ID: 240-171981-11

Matrix: Water Lab File ID: 227992.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:17

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:49

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540508 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	94		56-136
1868-53-7	Dibromofluoromethane (Surr)	105		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		62-137
2037-26-5	Toluene-d8 (Surr)	99		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW40C-082222 Lab Sample ID: 240-171981-11 Matrix: Water Lab File ID: 227992.D Analysis Method: 8260C Date Collected: 08/22/2022 12:17 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 17:49 ___ Dilution Factor: 1 Soil Aliquot Vol: GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40D-082222 Lab Sample ID: 240-171981-12

Matrix: Water Lab File ID: 227993.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:20

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 18:13

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40D-082222

Matrix: Water

Lab File ID: 227993.D

Analysis Method: 8260C

Date Collected: 08/22/2022 12:20

Sample wt/vol: 5(mL)

Date Analyzed: 08/29/2022 18:13

Soil Aliquot Vol: Dilution Factor: 1

Lab Name: Eurofins Canton Job No.: 240-171981-1

Soil Extract Vol.: _____ GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40D-082222 Lab Sample ID: 240-171981-12

Matrix: Water Lab File ID: 227993.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:20

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 18:13

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	103		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	100		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW40D-082222 Lab Sample ID: 240-171981-12 Matrix: Water Lab File ID: 227993.D Analysis Method: 8260C Date Collected: 08/22/2022 12:20 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 18:13 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41A-082222 Lab Sample ID: 240-171981-13

Matrix: Water Lab File ID: 227994.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:34

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 18:37

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

			1		
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	Ū	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41A-082222 Lab Sample ID: 240-171981-13

Matrix: Water Lab File ID: 227994.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:34

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 18:37

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41A-082222 Lab Sample ID: 240-171981-13

Matrix: Water Lab File ID: 227994.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:34

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 18:37

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	94		56-136
1868-53-7	Dibromofluoromethane (Surr)	105		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		62-137
2037-26-5	Toluene-d8 (Surr)	99		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW41A-082222 Lab Sample ID: 240-171981-13 Matrix: Water Lab File ID: 227994.D Analysis Method: 8260C Date Collected: 08/22/2022 11:34 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 18:37 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41B-082222 Lab Sample ID: 240-171981-14

Matrix: Water Lab File ID: 227995.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:38

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:01

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41B-082222 Lab Sample ID: 240-171981-14

Matrix: Water Lab File ID: 227995.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:38

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 19:01

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41B-082222 Lab Sample ID: 240-171981-14

Matrix: Water Lab File ID: 227995.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:38

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:01

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	93		56-136
1868-53-7	Dibromofluoromethane (Surr)	104		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	98		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW41B-082222 Lab Sample ID: 240-171981-14 Matrix: Water Lab File ID: 227995.D Analysis Method: 8260C Date Collected: 08/22/2022 11:38 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 19:01 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41C-082222 Lab Sample ID: 240-171981-15

Matrix: Water Lab File ID: 227996.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:40

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:24

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

SDG No.: MSA Frog Mortar Creek	
Client Sample ID: MSA-SW41C-082222	Lab Sample ID: 240-171981-15
Matrix: Water	Lab File ID: 227996.D
Analysis Method: 8260C	Date Collected: 08/22/2022 11:40
Sample wt/vol: 5(mL)	Date Analyzed: 08/29/2022 19:24

Soil Aliquot Vol: _____ Dilution Factor: 1

Lab Name: Eurofins Canton Job No.: 240-171981-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

Purge Volume: 5.0 (mL) Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41C-082222 Lab Sample ID: 240-171981-15

Matrix: Water Lab File ID: 227996.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:40

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:24

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	95		56-136
1868-53-7	Dibromofluoromethane (Surr)	105		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		62-137
2037-26-5	Toluene-d8 (Surr)	99		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW41C-082222 Lab Sample ID: 240-171981-15 Matrix: Water Lab File ID: 227996.D Analysis Method: 8260C Date Collected: 08/22/2022 11:40 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 19:24 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227997.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:43

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:48

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41D-082222 Lab Sample ID: 240-171981-16

Matrix: Water Lab File ID: 227997.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:43

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:48

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227997.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:43

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:48

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	93		56-136
1868-53-7	Dibromofluoromethane (Surr)	102		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		62-137
2037-26-5	Toluene-d8 (Surr)	98		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW41D-082222 Lab Sample ID: 240-171981-16 Matrix: Water Lab File ID: 227997.D Analysis Method: 8260C Date Collected: 08/22/2022 11:43 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 19:48 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227998.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:26

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:11

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Soil Extract Vol.: _____ GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42A-082222 Lab Sample ID: 240-171981-17

Matrix: Water Lab File ID: 227998.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:26

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:11

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42A-082222 Lab Sample ID: 240-171981-17

Matrix: Water Lab File ID: 227998.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:26

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:11

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	92		56-136
1868-53-7	Dibromofluoromethane (Surr)	104		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		62-137
2037-26-5	Toluene-d8 (Surr)	97		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW42A-082222 Lab Sample ID: 240-171981-17 Matrix: Water Lab File ID: 227998.D Analysis Method: 8260C Date Collected: 08/22/2022 12:26 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 20:11 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227999.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:28

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:35

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227999.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:28

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:35

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42B-082222 Lab Sample ID: 240-171981-18

Matrix: Water Lab File ID: 227999.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:28

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:35

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	93		56-136
1868-53-7	Dibromofluoromethane (Surr)	104		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		62-137
2037-26-5	Toluene-d8 (Surr)	98		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW42B-082222 Lab Sample ID: 240-171981-18 Matrix: Water Lab File ID: 227999.D Analysis Method: 8260C Date Collected: 08/22/2022 12:28 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 20:35 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42C-082222 Lab Sample ID: 240-171981-19

Matrix: Water Lab File ID: 228000.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:31

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 20:59

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228000.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:31

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:59

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Soil Extract Vol.: ____ GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	Ū	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228000.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:31

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 20:59

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	91		56-136
1868-53-7	Dibromofluoromethane (Surr)	103		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	96		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW42C-082222 Lab Sample ID: 240-171981-19 Matrix: Water Lab File ID: 228000.D Analysis Method: 8260C Date Collected: 08/22/2022 12:31 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 20:59 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

 SDG No.: MSA Frog Mortar Creek

 Client Sample ID: MSA-SW42D-082222
 Lab Sample ID: 240-171981-20

 Matrix: Water
 Lab File ID: 228015.D

 Analysis Method: 8260C
 Date Collected: 08/22/2022 12:35

 Sample wt/vol: 5 (mL)
 Date Analyzed: 08/30/2022 17:44

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

Lab Name: Eurofins Canton Job No.: 240-171981-1

% Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42D-082222 Lab Sample ID: 240-171981-20

Matrix: Water Lab File ID: 228015.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:35

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 17:44

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42D-082222 Lab Sample ID: 240-171981-20

Matrix: Water Lab File ID: 228015.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:35

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 17:44

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	97		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		62-137
2037-26-5	Toluene-d8 (Surr)	101		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW42D-082222 Lab Sample ID: 240-171981-20 Matrix: Water Lab File ID: 228015.D Analysis Method: 8260C Date Collected: 08/22/2022 12:35 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 17:44 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624 ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: ____ Level: (low/med) Low Analysis Batch No.: 540740 Units: ug/L MATCH CAS NO. COMPOUND NAME RT RESULT Q

75-45-6

Chlorodifluoromethane TIC

QUALITY

1.0 U

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43A-082222 Lab Sample ID: 240-171981-21

Matrix: Water Lab File ID: 228016.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:12
Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 18:08

Soil Aliquot Vol: Dilution Factor: 1

Lab Name: Eurofins Canton Job No.: 240-171981-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43A-082222 Lab Sample ID: 240-171981-21

Matrix: Water Lab File ID: 228016.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:12

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:08

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Job No.: 240-171981-1

 SDG No.: MSA Frog Mortar Creek

 Client Sample ID: MSA-SW43A-082222
 Lab Sample ID: 240-171981-21

 Matrix: Water
 Lab File ID: 228016.D

 Analysis Method: 8260C
 Date Collected: 08/22/2022 11:12

Analysis Method: 8260C Date Collected: 08/22/2022 11:12

Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 18:08

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540740 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		62-137
2037-26-5	Toluene-d8 (Surr)	103		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW43A-082222 Lab Sample ID: 240-171981-21 Matrix: Water Lab File ID: 228016.D Analysis Method: 8260C Date Collected: 08/22/2022 11:12 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 18:08 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43B-082222 Lab Sample ID: 240-171981-22

Matrix: Water Lab File ID: 228017.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:17

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:31

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228017.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:17

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:31

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228017.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:17

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:31

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	106		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		62-137
2037-26-5	Toluene-d8 (Surr)	100		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW43B-082222 Lab Sample ID: 240-171981-22 Matrix: Water Lab File ID: 228017.D Analysis Method: 8260C Date Collected: 08/22/2022 11:17 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 18:31 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228018.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:19

Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 18:55

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek	
Client Sample ID: MSA-SW43C-082222	Lab Sample ID: 240-171981-23

Matrix: Water Lab File ID: 228018.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:19

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:55

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

Analysis Batch No.: 540740 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228018.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:19

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:55

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		62-137
2037-26-5	Toluene-d8 (Surr)	102		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW43C-082222 Lab Sample ID: 240-171981-23 Matrix: Water Lab File ID: 228018.D Analysis Method: 8260C Date Collected: 08/22/2022 11:19 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 18:55 ___ Dilution Factor: 1 Soil Aliquot Vol: GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43D-082222 Lab Sample ID: 240-171981-24

Matrix: Water Lab File ID: 228019.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:25

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 19:18

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43D-082222 Lab Sample ID: 240-171981-24

Matrix: Water Lab File ID: 228019.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:25

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 19:18

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

Purge Volume: $5.0 \, (\text{mL})$ Heated Purge: $(Y/N) \, N$ pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43D-082222 Lab Sample ID: 240-171981-24

Matrix: Water Lab File ID: 228019.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:25

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 19:18

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		62-137
2037-26-5	Toluene-d8 (Surr)	100		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW43D-082222 Lab Sample ID: 240-171981-24 Matrix: Water Lab File ID: 228019.D Date Collected: 08/22/2022 11:25 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 19:18 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: TB-082222 Lab Sample ID: 240-171981-25

Matrix: Water Lab File ID: 228013.D

Analysis Method: 8260C Date Collected: 08/22/2022 00:00

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 16:57

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: TB-082222 Lab Sample ID: 240-171981-25

Matrix: Water Lab File ID: 228013.D

Analysis Method: 8260C Date Collected: 08/22/2022 00:00

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 16:57

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	Ū	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: TB-082222 Lab Sample ID: 240-171981-25

Matrix: Water Lab File ID: 228013.D

Analysis Method: 8260C Date Collected: 08/22/2022 00:00

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 16:57

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	106		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	94		62-137
2037-26-5	Toluene-d8 (Surr)	104		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: TB-082222 Lab Sample ID: 240-171981-25 Matrix: Water Lab File ID: 228013.D Analysis Method: 8260C Date Collected: 08/22/2022 00:00 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 16:57 ___ Dilution Factor: 1 Soil Aliquot Vol: GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW46A-082222 Lab Sample ID: 240-171981-26

Lab File ID: 228020.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:22

Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 19:42

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

Purge Volume: 5.0 (mL) Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Matrix: Water

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW46A-082222 Lab Sample ID: 240-171981-26

Matrix: Water Lab File ID: 228020.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:22

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 19:42

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW46A-082222 Lab Sample ID: 240-171981-26

Matrix: Water Lab File ID: 228020.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:22

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 19:42

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	95		56-136
1868-53-7	Dibromofluoromethane (Surr)	106		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		62-137
2037-26-5	Toluene-d8 (Surr)	99		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW46A-082222 Lab Sample ID: 240-171981-26 Matrix: Water Lab File ID: 228020.D Analysis Method: 8260C Date Collected: 08/22/2022 12:22 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 19:42 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW47A-082222 Lab Sample ID: 240-171981-27

Matrix: Water Lab File ID: 228021.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:05

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:06

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228021.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:05

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:06

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW47A-082222 Lab Sample ID: 240-171981-27

Matrix: Water Lab File ID: 228021.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:05

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:06

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	101		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW47A-082222 Lab Sample ID: 240-171981-27 Matrix: Water Lab File ID: 228021.D Analysis Method: 8260C Date Collected: 08/22/2022 12:05 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 20:06 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW48A-082222 Lab Sample ID: 240-171981-28

Matrix: Water Lab File ID: 228022.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:48

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:29

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

SDG No.: MSA Frog	Mortar Creek		
Client Sample ID:	MSA-SW48A-082222	Lab Sample	ID: 240-171981-28
Matrix: Water		Lab File ID	: 228022.D

 Analysis Method:
 8260C
 Date Collected:
 08/22/2022
 11:48

 Sample wt/vol:
 5 (mL)
 Date Analyzed:
 08/30/2022
 20:29

Soil Aliquot Vol: _____ Dilution Factor: 1____

Lab Name: Eurofins Canton Job No.: 240-171981-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

 % Moisture:
 % Solids:
 Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228022.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:48

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:29

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	95		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		62-137
2037-26-5	Toluene-d8 (Surr)	100		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW48A-082222 Lab Sample ID: 240-171981-28 Matrix: Water Lab File ID: 228022.D Analysis Method: 8260C Date Collected: 08/22/2022 11:48 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 20:29 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW49A-082222 Lab Sample ID: 240-171981-29

Matrix: Water Lab File ID: 228023.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:30

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW49A-082222 Lab Sample ID: 240-171981-29

Matrix: Water Lab File ID: 228023.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:30

Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 20:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	Ū	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW49A-082222 Lab Sample ID: 240-171981-29

Matrix: Water Lab File ID: 228023.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:30

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	106		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	99		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW49A-082222 Lab Sample ID: 240-171981-29 Matrix: Water Lab File ID: 228023.D Analysis Method: 8260C Date Collected: 08/22/2022 11:30 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 20:53 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek	
Client Sample ID: MSA-SWEQB-082222	Lab Sample ID: 240-171981-30
Matrix: Water	Lab File ID: 228014.D
Analysis Method: 8260C	Date Collected: 08/22/2022 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 08/30/2022 17:20
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

 % Moisture:
 % Solids:
 Level: (low/med) Low

Analysis Batch No.: 540740 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.
71-43-2	Benzene	0.42	U	1.0	0.43
108-86-1	Bromobenzene	0.50	U	1.0	0.5
74-97-5	Bromochloromethane	0.54	U	1.0	0.5
75-27-4	Bromodichloromethane	0.17	U	1.0	0.1
75-25-2	Bromoform	0.76	U *+	1.0	0.7
74-83-9	Bromomethane	0.42	U	1.0	0.4
78-93-3	2-Butanone	1.2	U	10	1.
75-15-0	Carbon disulfide	0.59	U	1.0	0.5
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.2
108-90-7	Chlorobenzene	0.38	U	1.0	0.3
75-00-3	Chloroethane	0.83	U	1.0	0.8
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.
67-66-3	Chloroform	0.47	U	1.0	0.4
74-87-3	Chloromethane	0.63	U	1.0	0.6
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.5
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.4
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.4
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.6
124-48-1	Dibromochloromethane	0.39	U	1.0	0.3
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.9
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.4
74-95-3	Dibromomethane	0.40	U	1.0	0.4
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.4
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.4
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.4
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.3
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.4
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.2
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.4
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.4
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.2
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.7
563-58-6	1,1-Dichloropropene	0.36	ŢŢ	1.0	0.3

SDG No.: MSA Frog Mortar Creek	
Client Sample ID: MSA-SWEQB-082222	Lab Sample ID: 240-171981-30
Matrix: Water	Lab File ID: 228014.D
Analysis Method: 8260C	Date Collected: 08/22/2022 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 08/30/2022 17:20

Soil Aliquot Vol: _____ Dilution Factor: 1

Lab Name: Eurofins Canton Job No.: 240-171981-1

Soil Extract Vol.: _____ GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	Ū	1.0	0.41

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SWEQB-082222 Lab Sample ID: 240-171981-30

Matrix: Water Lab File ID: 228014.D

Analysis Method: 8260C Date Collected: 08/22/2022 00:00

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 17:20

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	97		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		62-137
2037-26-5	Toluene-d8 (Surr)	103		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SWEQB-082222 Lab Sample ID: 240-171981-30 Matrix: Water Lab File ID: 228014.D Analysis Method: 8260C Date Collected: 08/22/2022 00:00 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 17:20 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Appendix C

Support Documentation

ANALYTICAL REPORT

Job Number: 240-171981-1

SDG Number: MSA Frog Mortar Creek

Job Description: MSA Surface Water Sampling

For: Tetra Tech, Inc. 20251 Century Blvd Suite 200 Germantown, MD 20874

Attention: Josh Mullis

Roxanne Cisneros

Approved for release. Roxanne Cisneros Senior Project Manager 9/1/2022 11:24 AM

Roxanne Cisneros, Senior Project Manager 180 S. Van Buren Avenue, Barberton, OH, 44203 (615)301-5761 roxanne.cisneros@et.eurofinsus.com 09/01/2022

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager. This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Job Narrative 240-171981-1

Comments

No additional comments.

Receipt

The samples were received on 8/23/2022 3:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) analyzed in batch 240-540508 was outside the method criteria for Bromomethane and Chloroethane. An MRL standard at or below the reporting limit (RL) was analyzed with the affected samplesMSA-SW37A-082222 (240-171981-1), MSA-SW37B-082222 (240-171981-2), MSA-SW37C-082222 (240-171981-3), MSA-SW37D-082222 (240-171981-4), MSA-SW38A-082222 (240-171981-5), MSA-SW38B-082222 (240-171981-6), MSA-SW38C-082222 (240-171981-7), MSA-SW38D-082222 (240-171981-8), MSA-SW40A-082222 (240-171981-9), MSA-SW40B-082222 (240-171981-10), MSA-SW40C-082222 (240-171981-11), MSA-SW40D-082222 (240-171981-12), MSA-SW41A-082222 (240-171981-13), MSA-SW41B-082222 (240-171981-14), MSA-SW41C-082222 (240-171981-15), MSA-SW41D-082222 (240-171981-16), MSA-SW42A-082222 (240-171981-17), MSA-SW42B-082222 (240-171981-18), MSA-SW42C-082222 (240-171981-19), (CCV 240-540508/4), (CCVIS 240-540508/3), (LCS 240-540508/5), (LCS 240-540508/6), (MB 240-540508/8) and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8260C: The continuing calibration verification (CCV) associated with batch 240-540508 recovered above the upper control limit for Bromoform, 1,1,1,2-Tetrachloroethane, 2-Methyl-2-Propanol, Vinyl Acetate, and Tetrachloroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MSA-SW37A-082222 (240-171981-1), MSA-SW37B-082222 (240-171981-2), MSA-SW37C-082222 (240-171981-3), MSA-SW37D-082222 (240-171981-4), MSA-SW38A-082222 (240-171981-5), MSA-SW38B-082222 (240-171981-6), MSA-SW38C-082222 (240-171981-7), MSA-SW38D-082222 (240-171981-8), MSA-SW40A-082222 (240-171981-9), MSA-SW40B-082222 (240-171981-10), MSA-SW40C-082222 (240-171981-11), MSA-SW40D-082222 (240-171981-12), MSA-SW41A-082222 (240-171981-13), MSA-SW41B-082222 (240-171981-14), MSA-SW41C-082222 (240-171981-15), MSA-SW41D-082222 (240-171981-16), MSA-SW42A-082222 (240-171981-17), MSA-SW42B-082222 (240-171981-18), MSA-SW42C-082222 (240-171981-19), (CCV 240-540508/4), (CCVIS 240-540508/3), (LCS 240-540508/5), (LCS 240-540508/6), (MB 240-540508/8)

Method 8260C: The preservative used in the sample containers provided is not compatible with one of the Method 8260 analytes requested. The following samples were received preserved with hydrochloric acid: MSA-SW37A-082222 (240-171981-1), MSA-SW37B-082222 (240-171981-2), MSA-SW37C-082222 (240-171981-3), MSA-SW37D-082222 (240-171981-4), MSA-SW38A-082222 (240-171981-5), MSA-SW38B-082222 (240-171981-6), MSA-SW38C-082222 (240-171981-7), MSA-SW38D-082222 (240-171981-8), MSA-SW40D-082222 (240-171981-9), MSA-SW40B-082222 (240-171981-10), MSA-SW40C-082222 (240-171981-11), MSA-SW40D-082222 (240-171981-12), MSA-SW41A-082222 (240-171981-13), MSA-SW41B-082222 (240-171981-14), MSA-SW41C-082222 (240-171981-15), MSA-SW41D-082222 (240-171981-16), MSA-SW42A-082222 (240-171981-17), MSA-SW42B-082222 (240-171981-18) and MSA-SW42C-082222 (240-171981-19). The requested target analyte list includes 2-Chloroethyl vinyl ether, an acid-labile compound that degrades in an acidic medium.

Methods 8260C: The continuing calibration verification (CCV) associated with batch 240-540740 recovered above the upper control limit for Bromoform, 1,1,1,2-Tetrachloroethane, Vinyl Acetate, 2-Methyl-2-Propanol and trans-1,4-Dichloro-2-Butene>. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MSA-SW42D-082222 (240-171981-20), MSA-SW43A-082222 (240-171981-21), MSA-SW43B-082222 (240-171981-22), MSA-SW43C-082222 (240-171981-23), MSA-SW43D-082222 (240-171981-24), TB-082222 (240-171981-25), MSA-SW46A-082222 (240-171981-26), MSA-SW47A-082222 (240-171981-27), MSA-SW48A-082222 (240-171981-28), MSA-SW49A-082222 (240-171981-29), MSA-SWEQB-082222 (240-171981-30), (CCV 240-540740/4), (CCVIS 240-540740/3), (LCS 240-540740/5), (LCS 240-540740/8)

Methods 8260C: The continuing calibration verification (CCV) analyzed in batch 240-540740 was outside the method criteria for Chloroethane, Bromomethane, and 2-Methylnaphthalene. An MRL standard at or below the reporting limit (RL) was analyzed with the affected samplesMSA-SW42D-082222 (240-171981-20), MSA-SW43A-082222 (240-171981-21), MSA-SW43B-082222 (240-171981-22), MSA-SW43C-082222 (240-171981-23), MSA-SW43D-082222 (240-171981-24), TB-082222 (240-171981-25), MSA-SW46A-082222 (240-171981-26), MSA-SW47A-082222 (240-171981-27), MSA-SW48A-082222 (240-171981-28), MSA-SW49A-082222 (240-171981-29), MSA-SWEQB-082222 (240-171981-30), (CCV 240-540740/4), (CCVIS 240-540740/3), (LCS 240-540740/5), (LCS 240-540740/6), (MB 240-540740/8), (240-172135-B-3) and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Methods 8260C: The laboratory control sample (LCS) for analytical batch 240-540740 recovered outside control limits for Bromoform and 1,1,1,2-Tetrachloroethane. These analytes were biased high in the LCS and were not detected in the associated samplesMSA-SW42D-082222 (240-171981-20), MSA-SW43A-082222 (240-171981-21), MSA-SW43B-082222 (240-171981-22), MSA-SW43C-082222 (240-171981-23), MSA-SW43D-082222 (240-171981-24), TB-082222 (240-171981-25), MSA-SW46A-082222 (240-171981-26), MSA-SW47A-082222 (240-171981-27), MSA-SW48A-082222 (240-171981-28), MSA-SW49A-082222 (240-171981-29), MSA-SWEQB-082222 (240-171981-30), (LCS 240-540740/5), (LCS 240-540740/6), (MB 240-540740/8); therefore, the data have been reported.

Method 8260C: The preservative used in the sample containers provided is not compatible with one of the Method 8260 analytes requested. The following samples were received preserved with hydrochloric acid: MSA-SW42D-082222 (240-171981-20), MSA-SW43A-082222 (240-171981-21), MSA-SW43B-082222 (240-171981-22), MSA-SW43C-082222 (240-171981-23), MSA-SW43D-082222 (240-171981-24), TB-082222 (240-171981-25), MSA-SW46A-082222 (240-171981-26), MSA-SW47A-082222 (240-171981-27), MSA-SW48A-082222 (240-171981-28), MSA-SW49A-082222 (240-171981-29) and MSA-SWEQB-082222 (240-171981-30). The requested target analyte list includes 2-Chloroethyl vinyl ether, an acid-labile compound that degrades in an acidic medium.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No additional analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method Summary

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET CAN
5030C	Purge and Trap	SW846	EET CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Sample Summary

Client: Tetra Tech, Inc. Project/Site: MSA Surface Water Sampling Job ID: 240-171981-1 SDG: MSA Frog Mortar Creek

ah Camula ID	Olicat Comple ID	Madulis	Callagead	Descined	
ab Sample ID 240-171981-1	Client Sample ID MSA-SW37A-082222	Matrix Water	Collected 08/22/22 12:40	Received 08/23/22 15:30	
240-17 1961-1	MSA-SW37B-082222	vvater Water	08/22/22 12:40	08/23/22 15:30	
240-17 1961-2	MSA-SW37C-082222	vvater Water	08/22/22 12:44	08/23/22 15:30	
240-17 1961-3 240-171981-4	MSA-SW37D-082222		08/22/22 12:44		
		Water		08/23/22 15:30	
40-171981-5	MSA-SW38A-082222	Water	08/22/22 11:53	08/23/22 15:30	
40-171981-6	MSA-SW38B-082222	Water	08/22/22 11:55	08/23/22 15:30	
40-171981-7	MSA-SW38C-082222	Water	08/22/22 11:58	08/23/22 15:30	
40-171981-8	MSA-SW38D-082222	Water	08/22/22 12:00	08/23/22 15:30	
40-171981-9	MSA-SW40A-082222	Water	08/22/22 12:11	08/23/22 15:30	
40-171981-10	MSA-SW40B-082222	Water	08/22/22 12:14	08/23/22 15:30	
40-171981-11	MSA-SW40C-082222	Water	08/22/22 12:17	08/23/22 15:30	
40-171981-12	MSA-SW40D-082222	Water	08/22/22 12:20	08/23/22 15:30	
40-171981-13	MSA-SW41A-082222	Water	08/22/22 11:34	08/23/22 15:30	
40-171981-14	MSA-SW41B-082222	Water	08/22/22 11:38	08/23/22 15:30	
40-171981-15	MSA-SW41C-082222	Water	08/22/22 11:40	08/23/22 15:30	
40-171981-16	MSA-SW41D-082222	Water	08/22/22 11:43	08/23/22 15:30	
40-171981-17	MSA-SW42A-082222	Water	08/22/22 12:26	08/23/22 15:30	
40-171981-18	MSA-SW42B-082222	Water	08/22/22 12:28	08/23/22 15:30	
40-171981-19	MSA-SW42C-082222	Water	08/22/22 12:31	08/23/22 15:30	
40-171981-20	MSA-SW42D-082222	Water	08/22/22 12:35	08/23/22 15:30	
40-171981-21	MSA-SW43A-082222	Water	08/22/22 11:12	08/23/22 15:30	
40-171981-22	MSA-SW43B-082222	Water	08/22/22 11:17	08/23/22 15:30	
40-171981-23	MSA-SW43C-082222	Water	08/22/22 11:19	08/23/22 15:30	
40-171981-24	MSA-SW43D-082222	Water	08/22/22 11:25	08/23/22 15:30	
40-171981-25	TB-082222	Water	08/22/22 00:00	08/23/22 15:30	
40-171981-26	MSA-SW46A-082222	Water	08/22/22 12:22	08/23/22 15:30	
40-171981-27	MSA-SW47A-082222	Water	08/22/22 12:05	08/23/22 15:30	
40-171981-28	MSA-SW48A-082222	Water	08/22/22 11:48	08/23/22 15:30	
40-171981-29	MSA-SW49A-082222	Water	08/22/22 11:30	08/23/22 15:30	
40-171981-30	MSA-SWEQB-082222	Water		08/23/22 15:30	

3.6/3.6

Baltimore #201

CANTON

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

CANTON 180 S. VAN BUREN AVE RABREDTON OH 44002		Chain of Custody Record		THE LEADER IN ENVIRONMENTAL TESTING
Client Contact Client Contact	Project Manager: Josh Mullis	Site Contact: Josh Mullis	Date: 8/23/2022 [C	LestAmerica Laboratories, Inc.
Tetra Tech	Tel/Fax: 410-279-2700	Lab Contact: Roxanne Cisneros		1 of 3 COCs
20251 Century Blvd, Suite 200	Analysis Turnaround Time			Job No.
Germantown, MD 20874	Calendar (C) or Work Days (W)	>097		
(301) 528-3021 Phone	TAT if different from Below STANDARD			
(301) 528-3000 FAX	2 weeks	H.J. →		SDG No.
Project Name: MSA Surface Water Sampling	l week	- 77/		
Site: MSA Frog Mortar Creek	2 days			
PROJECT # 112IC09567	l day			Sampler: J Mullis
Sample Identification	Sample Bate Time Type Mat	Matrix Cent. Filtered Sa		Sample Specific Notes:
MSA-SW37A-082 2 22	8/2 4 2022 174 SW Water	er 3 x		
MSA-SW37B-082722	8/2 2 2022 12 42 SW Water	er 3 x		
D MSA-SW37C-082 2 22	8 2 x 2022 / x 44 SW Water	er 3		
0 MSA-SW37D-082 1 22	8/22/2022 (247) SW Water	er 3 x		
255280-V8SMS-VSW 941	8.2 1. 2022 // 5 3 SW Water	er 3 x		
of MSA-SW38B-082122	8/2 % 2022 //55 SW Water	er 3 x		
MSA-SW38C-082 2 22	8222022 1958 sw Water	er 3 x		
MSA-SW38D-082222	8/2\$-2022 (DOO) SW Water	er 3 x		
MSA-SW40A-08222	8/2 2 /2022 72 SW Water	3 x		
MSA-SW40B-082 2 22	8/2 2/ 2022 (> (\ SW Water	er 3 x	ain of Custody	
MSA-SW40C-082 \$ 22	8/22/2022 /217 SW Water	3 x		
MSA-SW40D-082 2 2	8/22/2022 12.20 SW Water	er 3 x		
= HCl; 3= H2SO4; 4=HNO3;	5=NaOH; 6= Other	2		
Possible Hazard Identification Non-Hazard Planmable Skin Irritant	Poison B Aknown	Sample Disposal (A fee may	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mont	longer than 1 month) For Months
Special Instructions/QC Requirements & Comments:				
Relinquished by my Mont	te Jech	Date Time. Received by:	Company BACT D	Date Time: 1540
Relinquished by:		Strine: Received by Strine: Received by	Company	7.23 1.1 15.23
Rei@uished by:	Company	Date/Time: Received by:	1 10	10/11/11

Form No. CA-C-W1-002, Rev. 2, dated 03/06/2012

Company

Company

Received by

Date/Time:

180 S. VAN BUREN AVE BARBERTON, OH, 44203

CANTON

Chain of Custody Record

TestAmerica

TestAmerica Laboratories, Inc. Months 2 of 3 COCs Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Machine Sample Specific Notes. Sampler, J Mullis SDG No COC No Job No. Archive For Date: 8/27/2022 Disposal By Lab Carrier: Fedex Lab Contact: Roxanne Cisneros Return To Client Site Contact: Josh Mullis AOCs + Freen 113/22 + TIC (8260C) Filtered Sample # of Cout. Matrix Water TAT if different from Below STANDARD Analysis Turnaround Time Calendar (C) or Work Days (W) Sample Type Unknown 2 weeks 2 days Project Manager: Josh Mullis week SW SW SW SW SW SW SW 8/21/2022 // SW SW SW SW I day 5211 Sample Time 8/22/2022 1235 8/22/2022 1117 8/22/2022 1/43 8/21/2022 126 81222022 1228 8/22/2022 123/ Tel/Fax: 410-279-2700 ch// 2202218 8/22/2022 1119 8/22/2022 1/34 8/22/2022 1/38 8/22/22/22 Sample Date Powen B Preservation Used: 1= Icc, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Skin Irritani Special Instructions/QC Requirements & Comments: Project Name: MSA Surface Water Sampling Sample Identification MSA-SW41B-082122 MSA-SW41C-082922 MSA-SW41D-082122 MSA-SW42A-082**1**22 MSA-SW42B-08222 MSA-SW42D-082**2**22 MSA-SW43A-082222 MSA-SW41A-082122 MSA-SW42C-082122 MSA-SW43B-0821/22 MSA-SW43C-082 \$22 MSA-SW43D-082 222 FAX Phone Client Contact - Flammable 20251 Century Blvd, Suite 200 Site: MSA Frog Mortar Creek Possible Hazard Identification PROJECT # 112IC09567 Germantown, MD 20874 Non-Hazard (301) 528-3000 301) 528-3021 Tetra Tech Page \$42 of \$44

Form No. CA-C-WI-002, Rev. 2, dated 03/06/2012

Company

Received by

Company

09201/2022

agy 1

1540 Date/Time: 81242 Date Time:

Relinquished by

Relinquished by

15 %

Company

Received by

Battimore #201

CANTON 180 S. VAN BUREN AVE BARBERTON, OH, 44203

Chain of Custody Record

TestAmerica

TestAmerica Laboratories, Inc.

C Hent Contact	Project Manager: Josh Mullis		Site Contact: Josh Mullis	Date: 8/22/2022	COC No
Tetra Tech	Tel/Fax: 410-279-2700		Lab Contact: Roxanne Cisneros	Carrier: Fedex	3 of 3 COCs
20251 Century Blvd, Suite 200	Analysis Turnaround Time	ime	(:		Job No
Germantown, MD 20874	Calendar (C) or Work Days (W))098		
(301) 528-3021 Phone	TAT if different from Below STANDARD	NDARD	78)		
(301) 528-3000 FAX	2 weeks		DI.L.		SDG No
Project Name: MSA Surface Water Sampling	- week		+ 777		
Site MSA Frog Mortar Creek	2 days				
PROJECT # 112IC09567	l day				Sampler J Mullis
Sample Identification	Sample Bate Time Type	# of Matrix Cont.	VOCs + Fr		Sample Specific Notes
TB-0827422	8/2 3/2 022 0000 SW	Water 2			
MSA-SW46A-08222	8/22/2022 12 2 SW	Water 3	×		
— MSA-SW47A-082 2 2	8/22/2/2/2 SW	Water 3	×.		
6 MSA-SW48A-082 2 2	8/2#2022 1/48 SW	Water 3	×		
6 MSA-SW49A-082122	ws C11 22022 8w	Water 3	*		
MSA-SWEQB-082 72 2	8/2#2022 0000 SW	Water 3	×		
94					
4					
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4 4=HNO3; 5=NaOH; 6= Other	OII; 6= Other		2		
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Potson B — hknown		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mont	assessed if samples are retained Ion Disposal By Lab Archive For	ed longer than 1 month) ve For Months
Special instructions/C. Reduitements & Collinelles:			4		
Relinquished by: Jun MWM	Company Cola Tech	Sate/Time	Received by:	Company Mcd	Date Time M. 1549
Relinquished by:	Company	Date Time 18	Received by Carrelan B.	Company	Par Time - 15.30
Refusived by:	Company	Date/Time:	Received by:	Company	Date/Time:
022				Form No.	Form No. CA-C-WI-002, Rev. 2, dated 03/06/2012

Form No. CA-C-WI-602, Rev. 2, dated 03/06/2012

Eurofins - Canton Sample Receipt Form/Narrative Login #: 17 1 18 1
Barberton Facility Ciona 102V () +0(h) Site Name Cooler unpacked by:
CHEM TO THE SITE INDINE
FedEx: 1 st Grd Exp UPS FAS Clipper Client Drop Off Eurofins Courier Other Receipt After-hours: Drop-off Date/Time Storage Location
Eurofins Cooler # 7 Foam Box Client Cooler Box Other
Packing material used: Subble Wrop Foam Plastic Bag None Other
COOLANT: Vet Ice Blue Ice Dry Ice Water None
IR GUN# IR-13 (CF 0.0 °C) Observed Cooler Temp. Oc Corrected Cooler Temp. Oc
IR GUN #IR-15 (CF -0.7°C) Observed Cooler Temp°C Corrected Cooler Temp°C
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity Yes No
-Were the seals on the outside of the cooler(s) signed & dated? Yes No NA checked for pH by
-Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes No Receiving:
-Were tamper/custody seals intact and uncompromised?
5. Snippers' packing stip attached to the cooler(s)?
4. Did custody papers accompany the sample(s)? TOC
5. Were the custody papers relinquished & signed in the appropriate place? (Yes No (Yes No (Yes No
6. Was/were the person(s) who collected the samples clearly identified on the COC? (Yet No. 7. Did all bottles arrive in good condition (Unbroken)?
8 Could all hottle labels (ID/Date/Time) be reconciled with the COC? Yet No
9. For each sample, does the COC specify preservatives ()/N), # of containers (Y)N), and sample type of grab/comp(Y/N)
10. Were correct bottle(s) used for the test(s) indicated? (Leg No
11. Sufficient quantity received to perform indicated analyses?
12. Are these work share samples and all listed on the COC? Yes (No.
If yes, Quertions 13-17 have been checked at the originating laboratory.
13. Were all preserved sample(s) at the correct pH upon receipt? Yes No NA pH Strip Lot# HC34699-
14. Were VOAs on the COC?
15. Were air bubbles >6 mm in any VOA vials? Larger than this.
16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #
17. Was a LL Hg or Me Hg trip blank present?Yes No
Contacted PM by via Verbal Voice Mail Other
Concerning
Concerning
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
19. SAMPLE CONDITION
Sample(s) were received after the recommended holding time had expired.
Sample(s) were received in a broken container.
Sample(s) 5 \(\times \) \(\ti
DEUTIS, DUTIC DUTID, TTIV HAM DU 48 A
Sample(s) were further preserved in the laboratory.
Time preserved:Preservative(s) added/Lot number(s):
MOND - 15 Free March 12 May March 10 A P.
VOA Sample Preservation - Date/Time VOAs Frozen:

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofin	s Canton	Job No.: 240-171981-1	
SDG No.: MSA Frog	Mortar Creek		
Client Sample ID:		Lab Sample ID: MB 240-5	40508/8
Matrix: Water		Lab File ID: 227981.D	
Analysis Method:	8260C	Date Collected:	
Sample wt/vol: 5(mL)	Date Analyzed: 08/29/20	22 13:29
Soil Aliquot Vol:		Dilution Factor: 1	
Soil Extract Vol.	:	GC Column: DB-624	ID: 0.18(mm)
Purge Volume: 5.0	(mL)	Heated Purge: (Y/N) N	рН:
% Moisture:	% Solids:	Level: (low/med) Low	
Analysis Batch No.	• 540508	IInite ug/I	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofin	s Canton	Job No.: 240-171981-1	
SDG No.: MSA Frog	Mortar Creek		
Client Sample ID:		Lab Sample ID: MB 240-5	40508/8
Matrix: Water		Lab File ID: 227981.D	
Analysis Method:	8260C	Date Collected:	
Sample wt/vol: 5(mL)	Date Analyzed: 08/29/20	22 13:29
Soil Aliquot Vol:		Dilution Factor: 1	
Soil Extract Vol.	:	GC Column: DB-624	ID: 0.18(mm)
Purge Volume: 5.0	(mL)	Heated Purge: (Y/N) N	рН:
% Moisture:	% Solids:	Level: (low/med) Low	
Analysis Batch No.	• 540508	IInite ug/I	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: Lab Sample ID: MB 240-540508/8 Matrix: Water Lab File ID: 227981.D Analysis Method: 8260C Date Collected: Date Analyzed: 08/29/2022 13:29 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm) ____ Heated Purge: (Y/N) N___ pH: _____ Purge Volume: 5.0(mL) % Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	104		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	113		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Canton	Job No.: 240-171981-1			
SDG No.: MSA Frog Mortar Creek				
Client Sample ID:	Lab Sample ID: MB 240-540740/8			
Matrix: Water Lab File ID: 228011.D				
Analysis Method: 8260C	Date Collected:			
Sample wt/vol: 5(mL)	Date Analyzed: 08/30/2022 16:09			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH:			
% Moisture: % Solids:	Level: (low/med) Low			
Analysis Batch No.: 540740	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	Ū	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofin	s Canton	Job No.: 240-171981-1		
SDG No.: MSA Frog	Mortar Creek			
Client Sample ID:		Lab Sample ID: MB 240-540740/8		
Matrix: Water		Lab File ID: 228011.D		
Analysis Method:	8260C	Date Collected:		
Sample wt/vol: 5(mL)	Date Analyzed: 08/30/2022 16:09		
Soil Aliquot Vol:		Dilution Factor: 1		
Soil Extract Vol.	:	GC Column: DB-624 ID: 0.18 (mm)		
Purge Volume: 5.0	(mL)	Heated Purge: (Y/N) N pH:		
% Moisture:	% Solids:	Level: (low/med) Low		
Analysis Patch No	• 540740	IInite: ua/I		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: Lab Sample ID: MB 240-540740/8 Matrix: Water Lab File ID: 228011.D Analysis Method: 8260C Date Collected: Date Analyzed: 08/30/2022 16:09 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm) Purge Volume: 5.0(mL) ____ Heated Purge: (Y/N) N___ pH: _____ % Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	97		56-136
1868-53-7	Dibromofluoromethane (Surr)	113		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		62-137
2037-26-5	Toluene-d8 (Surr)	101		78-122

FORM II GC/MS VOA SURROGATE RECOVERY

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Level: Low

GC Column (1): DB-624 ID: 0.18 (mm)

Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
MSA-SW37A-082222	240-171981-1	106	102	102	98
MSA-SW37B-082222	240-171981-2	108	101	104	97
MSA-SW37C-082222	240-171981-3	108	103	102	98
MSA-SW37D-082222	240-171981-4	108	103	103	99
MSA-SW38A-082222	240-171981-5	108	102	103	98
MSA-SW38B-082222	240-171981-6	108	103	102	97
MSA-SW38C-082222	240-171981-7	107	102	102	96
MSA-SW38D-082222	240-171981-8	107	105	100	96
MSA-SW40A-082222	240-171981-9	104	98	101	95
MSA-SW40B-082222	240-171981-10	107	101	101	92
MSA-SW40C-082222	240-171981-11	105	101	99	94
MSA-SW40D-082222	240-171981-12	103	98	100	96
MSA-SW41A-082222	240-171981-13	105	100	99	94
MSA-SW41B-082222	240-171981-14	104	98	98	93
MSA-SW41C-082222	240-171981-15	105	100	99	95
MSA-SW41D-082222	240-171981-16	102	96	98	93
MSA-SW42A-082222	240-171981-17	104	99	97	92
MSA-SW42B-082222	240-171981-18	104	97	98	93
MSA-SW42C-082222	240-171981-19	103	98	96	91
MSA-SW42D-082222	240-171981-20	108	99	101	97
MSA-SW43A-082222	240-171981-21	108	99	103	98
MSA-SW43B-082222	240-171981-22	106	97	100	96
MSA-SW43C-082222	240-171981-23	108	99	102	96
MSA-SW43D-082222	240-171981-24	107	100	100	96
TB-082222	240-171981-25	106	94	104	98
MSA-SW46A-082222	240-171981-26	106	97	99	95
MSA-SW47A-082222	240-171981-27	107	98	101	96
MSA-SW48A-082222	240-171981-28	107	97	100	95
MSA-SW49A-082222	240-171981-29	106	98	99	96
MSA-SWEQB-082222	240-171981-30	108	96	103	97
	MB 240-540508/8	104	98	113	98
	MB 240-540740/8	113	105	101	97
	LCS 240-540508/5	102	95	107	102
	LCS 240-540508/6	103	98	104	102
	LCS 240-540740/5	105	98	108	104

	QC LIMITS
DBFM = Dibromofluoromethane (Surr)	73-120
DCA = 1,2-Dichloroethane-d4 (Surr)	62-137
TOL = Toluene-d8 (Surr)	78-122
BFB = 4-Bromofluorobenzene (Surr)	56-136

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II GC/MS VOA SURROGATE RECOVERY

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Level: Low

GC Column (1): DB-624 ID: 0.18(mm)

Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
	LCS 240-540740/6	105	91	102	102

	QC LIMITS
DBFM = Dibromofluoromethane (Surr)	73-120
DCA = 1,2-Dichloroethane-d4 (Surr)	62-137
TOL = Toluene-d8 (Surr)	78-122
BFB = 4-Bromofluorobenzene (Surr)	56-136

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Level: Low Lab File ID: 227978.D

Lab ID: LCS 240-540508/5 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Acetone	50.0	47.6	95	50-149	
Benzene	25.0	24.3	97	77-123	
Bromobenzene	25.0	27.5	110	80-122	
Bromochloromethane	25.0	21.5	86	71-121	
Bromodichloromethane	25.0	23.7	95	69-126	
Bromoform	25.0	31.6	127	57-129	
Bromomethane	25.0	13.6	54	36-142	
2-Butanone	50.0	51.3	103	54-156	
Carbon disulfide	25.0	22.8	91	43-140	
Carbon tetrachloride	25.0	27.1	108	55-137	
Chlorobenzene	25.0	25.3	101	80-121	
Chloroethane	25.0	13.0	52	38-152	
2-Chloroethyl vinyl ether	25.0	24.3	97	40-157	
Chloroform	25.0	22.6	90	74-122	
Chloromethane	25.0	20.1	80	47-143	
2-Chlorotoluene	25.0	25.8	103		
4-Chlorotoluene	25.0	26.7	107	80-125	
cis-1,2-Dichloroethene	25.0	23.2	93	77-123	
cis-1,3-Dichloropropene	25.0	24.7	99	64-130	
Dibromochloromethane	25.0	27.2	109	70-124	
1,2-Dibromo-3-Chloropropane	25.0	27.6	111	53-135	
1,2-Dibromoethane	25.0	25.6	103		
Dibromomethane	25.0	27.3	109	67-131	
1,2-Dichlorobenzene	25.0	25.9	104	78-120	
1,3-Dichlorobenzene	25.0	26.1	104	80-120	
1,4-Dichlorobenzene	25.0	26.1	104	80-120	
Dichlorodifluoromethane	25.0	18.9	75	34-153	
1,1-Dichloroethane	25.0	22.9	92	72-127	
1,2-Dichloroethane	25.0	22.0	88	66-128	
1,1-Dichloroethene	25.0	24.3	97	63-134	
1,2-Dichloropropane	25.0	24.1	97	75-133	
1,3-Dichloropropane	25.0	24.9	100		
2,2-Dichloropropane	25.0	24.2	97	48-142	
1,1-Dichloropropene	25.0	24.7	99	71-124	
Ethylbenzene	25.0	24.6	98		
Hexachlorobutadiene	25.0	24.9	100	37-162	
2-Hexanone	50.0	51.9	104	43-167	
Isopropylbenzene	25.0	24.5	98		
Methylene Chloride	25.0	23.7	95		
4-Methyl-2-pentanone	50.0	50.5	101		
Methyl tert-butyl ether	25.0	23.4	93		
m-Xylene & p-Xylene	25.0	24.5	98	80-120	

[#] Column to be used to flag recovery and RPD values

Job No.: 240-171981-1 Lab Name: Eurofins Canton

SDG No.: MSA Frog Mortar Creek

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 227978.D

 Lab ID:
 LCS 240-540508/5
 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	%	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	"
Naphthalene	25.0	23.7	95		
n-Butylbenzene	25.0	22.2	89	62-139	
n-Propylbenzene	25.0	24.9	100	76-127	
o-Xylene	25.0	24.5	98	80-123	
p-Isopropyltoluene	25.0	24.0	96	71-132	
sec-Butylbenzene	25.0	23.2	93	69-135	
Styrene	25.0	24.9	99	80-135	
tert-Butyl alcohol	250	286	115	33-153	
tert-Butylbenzene	25.0	24.0	96	64-134	
1,1,1,2-Tetrachloroethane	25.0	29.1	116	71-124	
1,1,2,2-Tetrachloroethane	25.0	26.3	105	58-157	
Tetrachloroethene	25.0	28.5	114	76-123	
Toluene	25.0	24.3	97	80-123	
trans-1,2-Dichloroethene	25.0	23.4	94	75-124	
trans-1,3-Dichloropropene	25.0	26.2	105	57-129	
1,2,3-Trichlorobenzene	25.0	25.1	100	45-149	
1,2,4-Trichlorobenzene	25.0	25.9	104	44-147	
1,1,1-Trichloroethane	25.0	23.7	95		
Trichloroethene	25.0	26.5	106	70-122	
Trichlorofluoromethane	25.0	17.8	71	30-170	
1,2,3-Trichloropropane	25.0	25.9	104	57-150	
1,1,2-Trichloro-1,2,2-trichflu	25.0	25.0	100	51-146	
oroethane					
1,2,4-Trimethylbenzene	25.0	24.3	97	===	
Vinyl acetate	25.0	24.1	96		
Vinyl chloride	25.0	20.6	82		
Xylenes, Total	50.0	49.0	98	80-121	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

Job No.: 240-171981-1 Lab Name: Eurofins Canton

SDG No.: MSA Frog Mortar Creek

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 227979.D

 Lab ID:
 LCS 240-540508/6
 Client ID:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC	QC LIMITS REC	#
Diisopropyl ether	25.0	25.4	102	70-124	
Ethyl-t-butyl ether (ETBE)	25.0	23.9	95	62-135	
Tert-amyl-methyl ether (TAME)	25.0	22.3	89	60-128	
1,2,3-Trimethylbenzene	25.0	23.5	94	72-133	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Level: Low Lab File ID: 228008.D

Lab ID: LCS 240-540740/5 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	્ર	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Acetone	50.0	49.6	99	50-149	
Benzene	25.0	24.8	99	77-123	
Bromobenzene	25.0	26.1	104	80-122	
Bromochloromethane	25.0	22.3	89	71-121	
Bromodichloromethane	25.0	24.9	100	69-126	
Bromoform	25.0	34.9	140	57-129	*+
Bromomethane	25.0	20.1	80	36-142	
2-Butanone	50.0	53.6	107	54-156	
Carbon disulfide	25.0	23.8	95	43-140	
Carbon tetrachloride	25.0	28.7	115	55-137	
Chlorobenzene	25.0	26.0	104	80-121	
Chloroethane	25.0	17.9	72	38-152	
2-Chloroethyl vinyl ether	25.0	24.5	98	40-157	
Chloroform	25.0	23.6	94	74-122	
Chloromethane	25.0	20.4	82	47-143	
2-Chlorotoluene	25.0	24.9	99		
4-Chlorotoluene	25.0	26.7	107	80-125	
cis-1,2-Dichloroethene	25.0	23.8	95	77-123	
cis-1,3-Dichloropropene	25.0	24.8	99	64-130	
Dibromochloromethane	25.0	30.3	121	70-124	
1,2-Dibromo-3-Chloropropane	25.0	29.3	117	53-135	
1,2-Dibromoethane	25.0	26.7	107		
Dibromomethane	25.0	28.0	112	67-131	
1,2-Dichlorobenzene	25.0	26.0	104	78-120	
1,3-Dichlorobenzene	25.0	26.8	107	80-120	
1,4-Dichlorobenzene	25.0	26.4	105		
Dichlorodifluoromethane	25.0	22.3	89		
1,1-Dichloroethane	25.0	23.0	92	72-127	
1,2-Dichloroethane	25.0	22.9	91	66-128	
1,1-Dichloroethene	25.0	25.1	100		
1,2-Dichloropropane	25.0	24.1	96		
1,3-Dichloropropane	25.0	25.3	101	68-139	
2,2-Dichloropropane	25.0	24.9	100		
1,1-Dichloropropene	25.0	24.1	96	71-124	
Ethylbenzene	25.0	25.2	101		
Hexachlorobutadiene	25.0	21.1	84		
2-Hexanone	50.0	57.5	115		
Isopropylbenzene	25.0	25.1	100		
Methylene Chloride	25.0	24.3	97		
4-Methyl-2-pentanone	50.0	54.7	109		
Methyl tert-butyl ether	25.0	23.7	95		
m-Xylene & p-Xylene	25.0	25.5	102	80-120	

[#] Column to be used to flag recovery and RPD values

Job No.: 240-171981-1 Lab Name: Eurofins Canton

SDG No.: MSA Frog Mortar Creek

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 228008.D

 Lab ID:
 LCS 240-540740/5
 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Naphthalene	25.0	24.4	98	53-138	
n-Butylbenzene	25.0	22.5	90	62-139	
n-Propylbenzene	25.0	24.2	97	76-127	
o-Xylene	25.0	25.6	102	80-123	
p-Isopropyltoluene	25.0	24.5	98	71-132	
sec-Butylbenzene	25.0	23.8	95	69-135	
Styrene	25.0	25.8	103	80-135	
tert-Butyl alcohol	250	311	124	33-153	
tert-Butylbenzene	25.0	24.2	97	64-134	
1,1,1,2-Tetrachloroethane	25.0	31.3	(125	71-124	*+
1,1,2,2-Tetrachloroethane	25.0	25.7	103	58-157	
Tetrachloroethene	25.0	29.3	117	76-123	
Toluene	25.0	24.9	100	80-123	
trans-1,2-Dichloroethene	25.0	24.4	97	75-124	
trans-1,3-Dichloropropene	25.0	27.3	109	57-129	
1,2,3-Trichlorobenzene	25.0	24.1	96	45-149	
1,2,4-Trichlorobenzene	25.0	24.2	97	44-147	
1,1,1-Trichloroethane	25.0	25.3	101	64-131	
Trichloroethene	25.0	26.6	106	70-122	
Trichlorofluoromethane	25.0	21.2	85	30-170	
1,2,3-Trichloropropane	25.0	26.4	106	57-150	
1,1,2-Trichloro-1,2,2-trichflu	25.0	25.3	101	51-146	
oroethane					
1,2,4-Trimethylbenzene	25.0	24.9	99		
Vinyl acetate	25.0	30.9	124	44-145	
Vinyl chloride	25.0	20.7	83		
Xylenes, Total	50.0	51.1	102	80-121	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

Job No.: 240-171981-1 Lab Name: Eurofins Canton

SDG No.: MSA Frog Mortar Creek

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 228009.D

 Lab ID:
 LCS 240-540740/6
 Client ID:

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Diisopropyl ether	25.0	25.1	100	70-124	
Ethyl-t-butyl ether (ETBE)	25.0	23.6	94	62-135	
Tert-amyl-methyl ether (TAME)	25.0	22.5	90	60-128	
1,2,3-Trimethylbenzene	25.0	24.2	97	72-133	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: 227981.D Lab Sample ID: MB 240-540508/8

Matrix: Water Heated Purge: (Y/N) N

Instrument ID: A3UX22 Date Analyzed: 08/29/2022 13:29

GC Column: DB-624 ID: 0.18 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 240-540508/5	227978.D	08/29/2022 12:18
	LCS 240-540508/6	227979.D	08/29/2022 12:41
MSA-SW37A-082222	240-171981-1	227982.D	08/29/2022 13:53
MSA-SW37B-082222	240-171981-2	227983.D	08/29/2022 14:17
MSA-SW37C-082222	240-171981-3	227984.D	08/29/2022 14:40
MSA-SW37D-082222	240-171981-4	227985.D	08/29/2022 15:04
MSA-SW38A-082222	240-171981-5	227986.D	08/29/2022 15:27
MSA-SW38B-082222	240-171981-6	227987.D	08/29/2022 15:51
MSA-SW38C-082222	240-171981-7	227988.D	08/29/2022 16:15
MSA-SW38D-082222	240-171981-8	227989.D	08/29/2022 16:38
MSA-SW40A-082222	240-171981-9	227990.D	08/29/2022 17:02
MSA-SW40B-082222	240-171981-10	227991.D	08/29/2022 17:26
MSA-SW40C-082222	240-171981-11	227992.D	08/29/2022 17:49
MSA-SW40D-082222	240-171981-12	227993.D	08/29/2022 18:13
MSA-SW41A-082222	240-171981-13	227994.D	08/29/2022 18:37
MSA-SW41B-082222	240-171981-14	227995.D	08/29/2022 19:01
MSA-SW41C-082222	240-171981-15	227996.D	08/29/2022 19:24
MSA-SW41D-082222	240-171981-16	227997.D	08/29/2022 19:48
MSA-SW42A-082222	240-171981-17	227998.D	08/29/2022 20:11
MSA-SW42B-082222	240-171981-18	227999.D	08/29/2022 20:35
MSA-SW42C-082222	240-171981-19	228000.D	08/29/2022 20:59

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: 228011.D Lab Sample ID: MB 240-540740/8

Matrix: Water Heated Purge: (Y/N) N

Instrument ID: A3UX22 Date Analyzed: 08/30/2022 16:09

GC Column: DB-624 ID: 0.18 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 240-540740/5	228008.D	08/30/2022 14:58
	LCS 240-540740/6	228009.D	08/30/2022 15:21
TB-082222	240-171981-25	228013.D	08/30/2022 16:57
MSA-SWEQB-082222	240-171981-30	228014.D	08/30/2022 17:20
MSA-SW42D-082222	240-171981-20	228015.D	08/30/2022 17:44
MSA-SW43A-082222	240-171981-21	228016.D	08/30/2022 18:08
MSA-SW43B-082222	240-171981-22	228017.D	08/30/2022 18:31
MSA-SW43C-082222	240-171981-23	228018.D	08/30/2022 18:55
MSA-SW43D-082222	240-171981-24	228019.D	08/30/2022 19:18
MSA-SW46A-082222	240-171981-26	228020.D	08/30/2022 19:42
MSA-SW47A-082222	240-171981-27	228021.D	08/30/2022 20:06
MSA-SW48A-082222	240-171981-28	228022.D	08/30/2022 20:29
MSA-SW49A-082222	240-171981-29	228023.D	08/30/2022 20:53

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: BFB22244.D BFB Injection Date: 04/07/2022

Instrument ID: A3UX22 BFB Injection Time: 15:03

Analysis Batch No.: 522080

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	16.5	
75	30.0 - 60.0 % of mass 95	47.2	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.5	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	Greater than 50% of mass 95	77.0	
175	5.0 - 9.0 % of mass 174	5.7	(7.4) 1
176	95.0 - 101.0 % of mass 174	74.6	(96.9) 1
177	5.0 - 9.0 % of mass 176	4.8	(6.4) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 240-522080/3	225035.D	04/07/2022	15:46
	IC 240-522080/4	225036.D	04/07/2022	16:09
	IC 240-522080/5	225037.D	04/07/2022	16:33
	IC 240-522080/6	225038.D	04/07/2022	16:56
	IC 240-522080/7	225039.D	04/07/2022	17:20
	ICIS 240-522080/8	225040.D	04/07/2022	17:44
	IC 240-522080/9	225041.D	04/07/2022	18:07
	IC 240-522080/10	225042.D	04/07/2022	18:31
	IC 240-522080/11	225043.D	04/07/2022	18:55
	IC 240-522080/18	225050.D	04/07/2022	21:40
	IC 240-522080/19	225051.D	04/07/2022	22:04
	IC 240-522080/20	225052.D	04/07/2022	22:28
	IC 240-522080/21	225053.D	04/07/2022	22:52
	IC 240-522080/22	225054.D	04/07/2022	23:15
	IC 240-522080/23	225055.D	04/07/2022	23:39
	IC 240-522080/24	225056.D	04/08/2022	0:02
	IC 240-522080/25	225057.D	04/08/2022	0:26
	IC 240-522080/26	225058.D	04/08/2022	0:50
	ICV 240-522080/28	225060.D	04/08/2022	1:37

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: BFB22256.D BFB Injection Date: 04/28/2022

Instrument ID: A3UX22 BFB Injection Time: 15:10

Analysis Batch No.: 524416

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	20.2	
75	30.0 - 60.0 % of mass 95	51.6	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.6	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	Greater than 50% of mass 95	65.3	
175	5.0 - 9.0 % of mass 174	4.9	(7.4) 1
176	95.0 - 101.0 % of mass 174	62.5	(95.7) 1
177	5.0 - 9.0 % of mass 176	4.2	(6.7) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 240-524416/3	225395.D	04/28/2022	15:53
	IC 240-524416/4	225396.D	04/28/2022	16:16
	IC 240-524416/5	225397.D	04/28/2022	16:40
	IC 240-524416/6	225398.D	04/28/2022	17:04
	IC 240-524416/7	225399.D	04/28/2022	17:27
	ICIS 240-524416/8	225400.D	04/28/2022	17:51
	IC 240-524416/9	225401.D	04/28/2022	18:15
	IC 240-524416/10	225402.D	04/28/2022	18:39
	IC 240-524416/11	225403.D	04/28/2022	19:03
	ICV 240-524416/14	225406.D	04/28/2022	20:14

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: BFB22344.D BFB Injection Date: 08/29/2022

Instrument ID: A3UX22 BFB Injection Time: 10:47

Analysis Batch No.: 540508

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	18.0		
75	30.0 - 60.0 % of mass 95	48.4		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	6.8		
173	Less than 2.0 % of mass 174	0.0	(0.0) 1	
174	Greater than 50% of mass 95	77.2		
175	5.0 - 9.0 % of mass 174	5.9	(7.7) 1	
176	95.0 - 101.0 % of mass 174	74.6	(96.6) 1	
177	5.0 - 9.0 % of mass 176	5.0	(6.7) 2	

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 240-540508/3	227976.D	08/29/2022	11:30
	CCV 240-540508/4	227977.D	08/29/2022	11:54
	LCS 240-540508/5	227978.D	08/29/2022	12:18
	LCS 240-540508/6	227979.D	08/29/2022	12:41
	MB 240-540508/8	227981.D	08/29/2022	13:29
MSA-SW37A-082222	240-171981-1	227982.D	08/29/2022	13:53
MSA-SW37B-082222	240-171981-2	227983.D	08/29/2022	14:17
MSA-SW37C-082222	240-171981-3	227984.D	08/29/2022	14:40
MSA-SW37D-082222	240-171981-4	227985.D	08/29/2022	15:04
MSA-SW38A-082222	240-171981-5	227986.D	08/29/2022	15:27
MSA-SW38B-082222	240-171981-6	227987.D	08/29/2022	15:51
MSA-SW38C-082222	240-171981-7	227988.D	08/29/2022	16:15
MSA-SW38D-082222	240-171981-8	227989.D	08/29/2022	16:38
MSA-SW40A-082222	240-171981-9	227990.D	08/29/2022	17:02
MSA-SW40B-082222	240-171981-10	227991.D	08/29/2022	17:26
MSA-SW40C-082222	240-171981-11	227992.D	08/29/2022	17:49
MSA-SW40D-082222	240-171981-12	227993.D	08/29/2022	18:13
MSA-SW41A-082222	240-171981-13	227994.D	08/29/2022	18:37
MSA-SW41B-082222	240-171981-14	227995.D	08/29/2022	19:01
MSA-SW41C-082222	240-171981-15	227996.D	08/29/2022	19:24
MSA-SW41D-082222	240-171981-16	227997.D	08/29/2022	19:48
MSA-SW42A-082222	240-171981-17	227998.D	08/29/2022	20:11
MSA-SW42B-082222	240-171981-18	227999.D	08/29/2022	20:35
MSA-SW42C-082222	240-171981-19	228000.D	08/29/2022	20:59

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: BFB22346.D BFB Injection Date: 08/30/2022

Instrument ID: A3UX22 BFB Injection Time: 13:27

Analysis Batch No.: 540740

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	17.1	
75	30.0 - 60.0 % of mass 95	47.2	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.4	
173	Less than 2.0 % of mass 174	0.2	(0.2) 1
174	Greater than 50% of mass 95	82.1	
175	5.0 - 9.0 % of mass 174	6.0	(7.3) 1
176	95.0 - 101.0 % of mass 174	78.8	(96.0) 1
177	5.0 - 9.0 % of mass 176	5.0	(6.3) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 240-540740/3	228006.D	08/30/2022	14:10
	CCV 240-540740/4	228007.D	08/30/2022	14:34
	LCS 240-540740/5	228008.D	08/30/2022	14:58
	LCS 240-540740/6	228009.D	08/30/2022	15:21
	MB 240-540740/8	228011.D	08/30/2022	16:09
TB-082222	240-171981-25	228013.D	08/30/2022	16:57
MSA-SWEQB-082222	240-171981-30	228014.D	08/30/2022	17:20
MSA-SW42D-082222	240-171981-20	228015.D	08/30/2022	17:44
MSA-SW43A-082222	240-171981-21	228016.D	08/30/2022	18:08
MSA-SW43B-082222	240-171981-22	228017.D	08/30/2022	18:31
MSA-SW43C-082222	240-171981-23	228018.D	08/30/2022	18:55
MSA-SW43D-082222	240-171981-24	228019.D	08/30/2022	19:18
MSA-SW46A-082222	240-171981-26	228020.D	08/30/2022	19:42
MSA-SW47A-082222	240-171981-27	228021.D	08/30/2022	20:06
MSA-SW48A-082222	240-171981-28	228022.D	08/30/2022	20:29
MSA-SW49A-082222	240-171981-29	228023.D	08/30/2022	20:53

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Sample No.: ICIS 240-522080/8 Date Analyzed: 04/07/2022 17:44

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): 225040.D Heated Purge: (Y/N) N

Calibration ID: 65265

	FB		CBNZd5		DCBd4	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT	1111015	6.96	814036	10.17	432421	12.18
UPPER LIMIT	2222030	7.46	1628072	10.67	864842	12.68
LOWER LIMIT	555508	6.46	407018	9.67	216211	11.68
LAB SAMPLE ID CLIENT SAMPLE ID						
ICV 240-522080/28	1023963	6.96	750080	10.17	392850	12.18

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Sample No.: ICIS 240-524416/8 Date Analyzed: 04/28/2022 17:51

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): 225400.D Heated Purge: (Y/N) N

Calibration ID: 65475

		FB		CBNZd5		DCBd	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MI	D-POINT	1311546	6.96	970370	10.17	502732	12.18
UPPER LIMIT		2623092	7.46	1940740	10.67	1005464	12.68
LOWER LIMIT		655773	6.46	485185	9.67	251366	11.68
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 240-524416/14		1358856	6.96	1012778	10.17	520201	12.18
CCVIS 240-540508/3		1109816	6.96	823078	10.17	434851	12.17
CCVIS 240-540740/3		691024	6.96	556964	10.17	287841	12.17

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\sharp}$ Column used to flag values outside QC limits

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Sample No.: CCVIS 240-540508/3 Date Analyzed: 08/29/2022 11:30

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): 227976.D Heated Purge: (Y/N) N

Calibration ID: 65475

		FB		CBNZc	15	DCBd.	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		1109816	6.96	823078	10.17	434851	12.17
UPPER LIMIT		2219632	7.46	1646156	10.67	869702	12.67
LOWER LIMIT		554908	6.46	411539	9.67	217426	11.67
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCV 240-540508/4		1102555	6.96	834790	10.17	424799	12.17
LCS 240-540508/5		1131958	6.96	849189	10.17	437484	12.17
LCS 240-540508/6		1113684	6.96	838802	10.17	433403	12.17
MB 240-540508/8		1091309	6.96	749476	10.17	400055	12.17
240-171981-1	MSA-SW37A-082222	1076521	6.96	826366	10.17	425626	12.17
240-171981-2	MSA-SW37B-082222	1069482	6.96	817002	10.17	420039	12.17
240-171981-3	MSA-SW37C-082222	1052529	6.96	807561	10.17	423946	12.17
240-171981-4	MSA-SW37D-082222	1072179	6.96	815052	10.17	406007	12.17
240-171981-5	MSA-SW38A-082222	1043535	6.96	792197	10.17	408286	12.17
240-171981-6	MSA-SW38B-082222	1050723	6.96	808538	10.17	418502	12.17
240-171981-7	MSA-SW38C-082222	1051795	6.95	795543	10.17	416304	12.17
240-171981-8	MSA-SW38D-082222	1054783	6.96	818013	10.17	431009	12.17
240-171981-9	MSA-SW40A-082222	1031648	6.96	782921	10.17	409455	12.17
240-171981-10	MSA-SW40B-082222	1039614	6.96	801312	10.17	394707	12.17
240-171981-11	MSA-SW40C-082222	1047102	6.96	802763	10.17	407778	12.17
240-171981-12	MSA-SW40D-082222	1049982	6.96	796242	10.17	415744	12.17
240-171981-13	MSA-SW41A-082222	1055060	6.96	808128	10.17	426682	12.17
240-171981-14	MSA-SW41B-082222	1045814	6.96	797396	10.17	419524	12.17
240-171981-15	MSA-SW41C-082222	1053774	6.96	800491	10.17	425012	12.17
240-171981-16	MSA-SW41D-082222	1059525	6.96	804281	10.17	428012	12.17
240-171981-17	MSA-SW42A-082222	1032171	6.96	795217	10.17	395222	12.17
240-171981-18	MSA-SW42B-082222	1021261	6.96	778535	10.17	400380	12.17
240-171981-19	MSA-SW42C-082222	1033523	6.96	793404	10.17	417321	12.17

FB = Fluorobenzene

CBNZd5 = Chlorobenzene-d5

DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Sample No.: CCVIS 240-540740/3 Date Analyzed: 08/30/2022 14:10

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): 228006.D Heated Purge: (Y/N) N

Calibration ID: 65475

		FB		CBNZd	15	DCBd	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		691024	6.96	556964	10.17	287841	12.17
UPPER LIMIT		1382048	7.46	1113928	10.67	575682	12.67
LOWER LIMIT		345512	6.46	278482	9.67	143921	11.67
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCV 240-540740/4		700105	6.96	537693	10.17	281020	12.17
LCS 240-540740/5		717755	6.95	538931	10.17	297318	12.17
LCS 240-540740/6		758674	6.96	576012	10.17	287673	12.17
MB 240-540740/8		670858	6.96	556544	10.17	274427	12.17
240-171981-25	TB-082222	733884	6.96	548489	10.17	280800	12.17
240-171981-30	MSA-SWEQB-082222	725060	6.96	548030	10.17	272574	12.17
240-171981-20	MSA-SW42D-082222	721141	6.95	561563	10.17	288675	12.17
240-171981-21	MSA-SW43A-082222	707179	6.96	544388	10.17	274851	12.17
240-171981-22	MSA-SW43B-082222	737860	6.96	559445	10.17	289208	12.17
240-171981-23	MSA-SW43C-082222	727046	6.95	553553	10.17	284155	12.17
240-171981-24	MSA-SW43D-082222	725838	6.95	559788	10.17	283659	12.17
240-171981-26	MSA-SW46A-082222	733468	6.96	568431	10.17	293142	12.17
240-171981-27	MSA-SW47A-082222	731473	6.96	562277	10.17	284944	12.17
240-171981-28	MSA-SW48A-082222	722685	6.96	553511	10.17	278879	12.17
240-171981-29	MSA-SW49A-082222	725792	6.96	559301	10.17	287992	12.17

FB = Fluorobenzene

CBNZd5 = Chlorobenzene-d5

DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\sharp}$ Column used to flag values outside QC limits

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 240-522080/3	225035.D
Level 2	IC 240-522080/4	225036.D
Level 3	IC 240-522080/5	225037.D
Level 4	IC 240-522080/6	225038.D
Level 5	IC 240-522080/7	225039.D
Level 6	ICIS 240-522080/8	225040.D
Level 7	IC 240-522080/9	225041.D
Level 8	IC 240-522080/10	225042.D
Level 9	IC 240-522080/11	225043.D

ANALYTE			RRF			CURVE		COEFFICI	ENT #	MIN RRF	%RSD	 MAX	R^2	# MI	IN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	0.	R COD
Dichlorodifluoromethane	0.2715	0.2879 0.2652		0.2782 0.2650	0.2750	Ave		0.273		0.1000	5.6	20.0			
Chloromethane	+++++ 0.2402	0.3508 0.2497	0.2691 0.2465	0.2618 0.2543	0.2552	Lin1	0.086	0.247		0.1000	4.1		0.9990	(0.9900
Vinyl chloride	0.3778 0.2970	0.3822		0.3267 0.2982	0.3216	Ave		0.326		0.1000	10.5	20.0			
Butadiene	0.3641 0.2808	0.3639		0.3166 0.2773	0.3002	Ave		0.314			12.8	20.0			
Bromomethane	+++++ 0.1184	0.3322 0.1158		0.1475 0.1146	0.1392	Lin1	0.244	0.109		0.0500	11.0		0.9980	(0.9900
Chloroethane	+++++ 0.1354	0.2797 0.1224		0.2107 0.1126	0.2029	Qua	0.387	0.136	-0.000510	0.0500	83.8		0.9900	(0.9900
Trichlorofluoromethane	0.4264 0.3894	0.5081	0.4473 0.3833	0.4303 0.3903	0.4337	Ave	,	0.423		0.1000	9.3	20.0			
Dichlorofluoromethane	+++++ 0.4827	0.7893 0.4854		0.5581 0.4782	0.5204	Lin1	0.351	0.472			4.4		1.0000	(0.9900
Ethyl ether	0.2361 0.1885	0.2342		0.2068 0.1932	0.1971	Ave		0.205			9.4	20.0			
1,1,2-Trichloro-1,2,2-trifluoroeth	0.2263 0.2261	0.2544		0.2426 0.2302	0.2376	Ave		0.236		0.0500	6.8	20.0			
Acrolein	0.0677 0.0536	0.0569 0.0561		0.0569 0.0560	0.0551	Ave		0.057			7.2	20.0			
1,1-Dichloroethene	0.2758 0.2240	0.2730 0.2214		0.2415 0.2297	0.2344	Ave		0.241		0.1000	8.9	20.0			

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFIC	IENT	# MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COD
Iodomethane	+++++ 0.0909	0.1202 0.1139	0.0894	0.0761 0.1545	0.0806	Qua	0.078	0.050	0.0016662		9.2		0.9990	0.9900
Acetone	0.4976 0.1230	0.3189 0.1245		0.1422 0.1273	0.1321	Lin1	0.372	0.120		0.0100	5.5		0.9990	0.9900
Carbon disulfide	0.7791 0.6814	0.8179 0.6778		0.7387 0.6917	0.7208	Ave		0.728		0.1000	7.4	20.0		
3-Chloro-1-propene	0.4014 0.3286	0.4232 0.3254		0.3593 0.3356	0.3456	Ave		0.361			10.6	20.0		
Methyl acetate	0.2784 0.2474	0.2708 0.2543		0.2501 0.2654	0.2544	Ave		0.259		0.1000	3.9	20.0		
Methylene Chloride	+++++ 0.2688	0.7211 0.2665		0.3577 0.2644	0.3076	Lin1	0.515	0.255		0.1000	9.9		0.9990	0.9900
2-Methyl-2-propanol	0.0688 0.0625	0.0669 0.0638		0.0638 0.0675	0.0633	Ave		0.064			3.5	20.0		
Methyl tert-butyl ether	0.7472 0.7287	0.7258 0.7323		0.7442 0.7584	0.7382	Ave		0.739		0.1000	1.4	20.0		
trans-1,2-Dichloroethene	0.3415 0.2511	0.3137 0.2476	0.2898 0.2470	0.2634 0.2529	0.2717	Ave		0.275		0.1000	12.1	20.0		
Acrylonitrile	0.1558 0.1432	0.1563 0.1442		0.1505 0.1490	0.1486	Ave		0.148			3.1	20.0		
Hexane	0.2854 0.3128	0.3130 0.3223		0.2960 0.3474	0.3016	Ave		0.312			5.8	20.0		
1,1-Dichloroethane	0.5579 0.4405	0.5226 0.4398		0.4809 0.4501	0.4684	Ave		0.477		0.2000	8.7	20.0		
Vinyl acetate	0.4749 0.4597	0.4596 0.5233		0.4647 0.4743	0.4527	Ave		0.474			4.8	20.0		
2,2-Dichloropropane	+++++ 0.0842	0.1252 0.0794		0.0942 0.0797	0.0882	Lin1	0.053	0.079			6.1		0.9990	0.9900
cis-1,2-Dichloroethene	0.3909 0.2766	0.3434	0.3083 0.2735	0.3087 0.2777	0.2946	Ave		0.304		0.1000	13.1	20.0		
2-Butanone (MEK)	0.0548 0.0520	0.0527 0.0521	0.0512 0.0536	0.0513 0.0548	0.0525	Ave		0.052		0.0100	2.5	20.0		
Chlorobromomethane	0.2371 0.1880	0.2237	0.2236	0.2108	0.2032	Ave		0.201			11.6	20.0		
Tetrahydrofuran	0.1376 0.1179	0.1443 0.1205		0.1236 0.1255	0.1218	Ave		0.126			6.9	20.0		

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD			MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	М2				%RS	OR COD	OR COD
Chloroform	0.5039 0.4476	0.5300 0.4398		0.4954 0.4515	0.4833	Ave		0.479			0.2000	7.2	20	0	
Cyclohexane	0.4862 0.3896	0.4486 0.3878		0.4240 0.4013	0.4090	Ave		0.417			0.1000	8.1	20.	0	
1,1,1-Trichloroethane	0.4256 0.4055	0.4507 0.3994		0.4445 0.4082	0.4266	Ave		0.426			0.1000	6.2	20.	0	
Carbon tetrachloride	0.3582 0.3325	0.3759 0.3283		0.3609 0.3364	0.3513	Ave		0.349			0.1000	5.5	20	0	
1,1-Dichloropropene	0.3140 0.3527	0.3553 0.3482		0.3509 0.3604	0.3535	Ave		0.348				3.9	20.	0	
Benzene	1.1290 1.0085	1.0511 1.0062		1.0405 1.0396	1.0459	Ave		1.043			0.5000	3.6	20	0	
Isobutyl alcohol	0.0167 0.0154	0.0131 0.0159		0.0147 0.0170	0.0149	Ave		0.015				8.8	20.	0	
1,2-Dichloroethane	0.3730 0.3288	0.3621		0.3498 0.3315	0.3476	Ave		0.345			0.1000	5.3	20.	0	
n-Heptane	0.0618 0.0679	0.0774		0.0724 0.0730	0.0680	Ave		0.070				6.1	20	0	
Trichloroethene	0.2373 0.2612	0.2520 0.2569		0.2634	0.2696	Ave		0.259			0.1500	3.8	20	0	
Methylcyclohexane	0.3910 0.4273	0.4143 0.4287		0.4505 0.4502	0.4337	Ave		0.429			0.1000	4.3	20.	0	
1,2-Dichloropropane	0.2888 0.2455	0.2582		0.2555 0.2522	0.2554	Ave		0.256			0.1000	5.2	20.	0	
Dibromomethane	0.1842 0.1557	0.1727 0.1545		0.1747	0.1680	Ave		0.167				7.4	20.	0	
1,4-Dioxane	0.0079	0.0072		0.0071	0.0067	Ave		0.007				5.4	20.	0	
Dichlorobromomethane	0.4519 0.3390	0.4011	0.3778	0.3650 0.3454	0.3642	Ave		0.368			0.1500	10.3	20.	0	
2-Chloroethyl vinyl ether	0.1957 0.1830	0.1902 0.1883	0.1746	0.1822	0.1811	Ave		0.187				4.0	20.	0	
cis-1,3-Dichloropropene	0.4250 0.4180	0.4220	0.4151	0.4239	0.4222	Ave		0.420			0.1500	1.0	20.	0	
4-Methyl-2-pentanone (MIBK)	0.3149 0.3151	0.3140	0.3145	0.3212	0.3220	Ave		0.320			0.0500	2.0	20	0	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD		IAX	R^2		MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			8	RSD	OR COD		OR COD
Toluene	1.7095	1.6082		1.5128	1.4827	7				0.4000	5.7		20.0		_	
Toluene	1.4657	1.4376		1.4890	1.482/	Ave		1.517		0.4000	5.7		20.0			
trans-1,3-Dichloropropene	0.4777	0.4834		0.5022	0.5067	7		4		0.1000	5.0		20.0			
trans-1,3-Dichioropropene	0.4777	0.4834		0.5022	0.3067	Ave		0.507		0.1000	3.0		20.0			
Ethyl methacrylate	0.5298	0.4825		0.4950	0.5021	7		9			2.8		20.0			
Ethyi methacryiate	0.3298	0.4823		0.4930	0.3021	Ave		0.497			2.8		20.0			
1,1,2-Trichloroethane	0.2977	0.2932		0.3070	0.3082	7110		9		0.1000	3.8		20.0	1		
1,1,2-111CHIOTOECHANE	0.3105	0.2332		0.3070	0.3002	Ave		0.306		0.1000	3.0		20.0			
Tetrachloroethene	0.2967	0.3210		0.3291	0.3280	Δττο		0.326		0.1500	3.8		20.0			
Tectaeniolocenene	0.3373	0.3210		0.3391	0.5200	2100		0.326		0.1300	3.0		20.0			
1,3-Dichloropropane	0.5182	0.5135		0.5262	0.5329	Ave		0.534			3.5		20.0			
1,6 Biomiologiopano	0.5373	0.5425		0.5697	0.0023	1110		0.554			0.0					
2-Hexanone	0.3549	0.3183		0.3380	0.3429	Ave		0.340		0.0500	3.7		20.0			
	0.3437	0.3434		0.3566	0.0123	1110		0.340		0.0000			20.0			
Chlorodibromomethane	0.3527	0.3368	0.3326	0.3284	0.3305	Ave		0.336			2.5		20.0			
	0.3314	0.3318	0.3362	0.3484				0.550								
Ethylene Dibromide	0.3026	0.3548	0.3372	0.3290	0.3326	Ave		0.336			4.5		20.0			
_	0.3415	0.3370	0.3420	0.3524				6								
Chlorobenzene	0.9446	0.9306	0.9278	0.9263	0.9090	Ave		0.914		0.3000	2.1		20.0			
	0.8990	0.8893	0.8917	0.9114				4								
Ethylbenzene	0.5104	0.5434	0.5252	0.5200	0.5201	Ave		0.517			2.3		20.0			
	0.5140	0.5038	0.5062	0.5171				8								
1,1,1,2-Tetrachloroethane	0.2913	0.2981		0.3185	0.3212	Ave		0.315			4.4		20.0			
	0.3244	0.3159	0.3265	0.3350				9								
m-Xylene & p-Xylene	0.6400	0.6586		0.6543	0.6579	Ave		0.647			2.7		20.0			
	0.6452	0.6270	0.6252	0.6357				0								
o-Xylene	0.6409	0.6471		0.6312	0.6399	Ave		0.626			2.4		20.0			
	0.6152	0.6093		0.6193				7								
Styrene	1.0984	1.0483	1.0691	1.0765	1.0734	Ave		1.066		0.3000	1.6		20.0			
	1.0649	1.0505		1.0708				2.								
Bromoform	0.2359	0.2206		0.2356	0.2364	Ave		0.237		0.1000	3.8		20.0			
	0.2429	0.2400		0.2539				8								
Isopropylbenzene	1.5693	1.6810		1.6862	1.6710	Ave		1.643		0.1000	2.5		20.0			
	1.6512	1.6095		1.6275				4								
Bromobenzene	0.7372	0.6748	0.6846	0.7033	0.6863	Ave		0.695			2.7		20.0			
	0.6934	0.6835	0.6885	0.7060				3								

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFIC	IENT	#	MIN RRF	%RSD		R^2	I " I	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2				%RSD	OR COD		OR COD
1,1,2,2-Tetrachloroethane	1.0151 0.9393	0.9681 0.9721	•	0.9497 1.0092	0.9477	Ave		0.968			0.3000	3.0	20.0)		
N-Propylbenzene	0.8335 0.8512	0.8560 0.8344		0.8321 0.8738	0.8461	Ave		0.847				1.6	20.0)		
1,2,3-Trichloropropane	0.3025 0.3065	0.2861 0.3081	0.3034 0.3148	0.3110 0.3289	0.3123	Ave		0.308				3.7	20.0)		
trans-1,4-Dichloro-2-butene	0.3788 0.3059	0.3239		0.3111	0.3071	Ave		0.320				7.5	20.0)		
2-Chlorotoluene	0.7024 0.7091	0.7485 0.7047		0.7264 0.7367	0.7166	Ave		0.718				2.2	20.0)		
1,3,5-Trimethylbenzene	2.3876 2.6457	2.6368 2.6331		2.6626 2.7287	2.6068	Ave		2.619				3.6	20.0)		
4-Chlorotoluene	0.6716 0.7319	0.7210 0.7185		0.7378 0.7462	0.7311	Ave		0.723				3.0	20.0)		
tert-Butylbenzene	2.1667 2.2349	2.1970 2.1754		2.2345	2.2343	Ave		2.221				1.8	20.0)		
1,2,4-Trimethylbenzene	2.6660 2.7066	2.6219		2.7004	2.6793	Ave		2.682				1.4	20.0)		
sec-Butylbenzene	3.1672 3.3309	3.1923 3.2997		3.3389 3.4455	3.3581	Ave		3.313				2.6	20.0)		
1,3-Dichlorobenzene	1.2509 1.3517		1.3998	1.3708	1.3823	Ave		1.361			0.6000	3.3	20.0)		
4-Isopropyltoluene	2.6660 2.8461	2.7519 2.8392		2.8532 2.9458	2.8383	Ave		2.824				2.7	20.0)		
1,4-Dichlorobenzene	1.3632 1.3552	1.3507 1.3639	1.3787	1.3561 1.4120	1.3820	Ave		1.371			0.5000	1.4	20.0)		
n-Butylbenzene	2.1616 2.6468	2.4748		2.6003 2.7914	2.6146	Ave		2.570				7.0	20.0)		
1,2-Dichlorobenzene	1.2938 1.2930	1.2990	1.3348	1.2870	1.3209	Ave		1.306			0.4000	1.7	20.0)		
1,2-Dibromo-3-Chloropropane	0.3164		0.3202	0.3016 0.3107	0.3000	Ave		0.306			0.0500	2.9	20.0)		
1,2,4-Trichlorobenzene	0.7857	0.8054	0.8288	0.8383	0.8301	Ave		0.837			0.2000	3.8	20.0)		
Hexachlorobutadiene	0.2771	0.3345	0.3167	0.3244	0.3293	Ave		0.330				7.2	20.0)		

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		AX R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				8	RSD OR COI	OR COD
	LVL 6	LVL 7	LVL 8	LVL 9											
Naphthalene	2.9834 2.9655	2.9528 2.9639	2.9508 3.0323		3.0223	Ave		3.001				2.1		20.0	
1,2,3-Trichlorobenzene	0.7503 0.7955	0.7582 0.8224		0.7942 0.8568	0.8143	Ave		0.804				4.2		20.0	
Dibromofluoromethane (Surr)	++++ 0.2729	0.2976 0.2755			0.2738	Ave		0.271				7.9		20.0	
1,2-Dichloroethane-d4 (Surr)	++++ 0.2918	0.3595 0.2931	0.3175 0.2927	0.2442 0.2903	0.2895	Ave		0.297				10.8		20.0	
Toluene-d8 (Surr)	1.4238 1.3862		1.1990 1.4287		1.3166	Ave		1.330				9.5		20.0	
4-Bromofluorobenzene (Surr)	+++++ 0.5202	0.5370 0.5382			0.4977	Ave		0.504				9.1		20.0	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/07/2022 21:40 Calibration End Date: 04/08/2022 00:50 Calibration ID: 65269

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 240-522080/18	225050.D	
Level 2	IC 240-522080/19	225051.D	
Level 3	IC 240-522080/20	225052.D	
Level 4	IC 240-522080/21	225053.D	
Level 5	IC 240-522080/22	225054.D	
Level 6	IC 240-522080/23	225055.D	
Level 7	IC 240-522080/24	225056.D	
Level 8	IC 240-522080/25	225057.D	
Level 9	IC 240-522080/26	225058.D	

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD		IAX	R^2	 MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			8	RSD	OR COD	OR COD
Acetonitrile	0.0789	0.0721	0.0647	0.0609	0.0573	Ave		0.062			13.3		20.0		
Diisopropyl ether	0.0565	0.2009	0.1960	0.0558	0.2000	Ave		0.201			6.4		20.0		
2-Chloro-1,3-butadiene	0.2019	0.4053	0.4006		0.3704	Ave		0.388			2.9		20.0		
Ethyl-t-butyl ether (ETBE)	0.3788	0.7059	0.6807	0.3936	0.6972	Ave		0.703			6.1		20.0		
Ethyl acetate	0.7119			0.7532	0.2850	Ave		0.295			8.0		20.0		
Propionitrile	0.3014			0.3287	0.0665	Ave		0.068			3.5		20.0		
Methacrylonitrile	0.0667			0.0674	0.1899	Ave		6			2.9		20.0		
Tert-amyl-methyl ether (TAME)	0.1924			0.1977	0.9314	Ave		0.956			5.8		20.0		
n-Butanol	0.9642	1.0183	1.0059	1.0353	0.0132			5			12.4		20.0		
	0.0143	0.0154	0.0156	0.0161				0.013							
Methyl methacrylate	0.2250 0.2367	0.2511	0.2434	0.2326 0.2504	0.2365			0.237			3.8		20.0		
2-Nitropropane	0.1334			0.0965 0.1020	0.0945	Ave		0.105			12.3		20.0		
n-Butyl acetate	0.5744 0.5883			0.5762 0.6134	0.5859	Ave		0.594			2.6		20.0		

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/07/2022 21:40 Calibration End Date: 04/08/2022 00:50 Calibration ID: 65269

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	#	MAX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2					%RSD	OR COD		OR COD
	LVL 6	LVL 7	LVL 8	LVL 9													
1-Chlorohexane	0.5951	0.5053	0.4970	0.4709	0.4326	Ave		0.483				9.8		20.0			
	0.4499	0.4582	0.4642	0.4792				6									
Cyclohexanone	0.0346	0.0327	0.0279	0.0274	0.0263	Ave		0.029				9.3		20.0			
	0.0274	0.0288	0.0287	0.0287				2.									
Pentachloroethane	0.1504	0.0513	0.0609	0.0505	0.0614	Ave		0.058				62.4	*	20.0			
	0.0340	0.0500	0.0257	0.0413				4									
1,2,3-Trimethylbenzene	2.5900	2.5479	2.7562		2.5659	Ave		2.655				2.9		20.0			
	2.6386	2.7400	2.6687	2.7320				4									
Benzyl chloride	1.6332	1.6962	1.6331	1.5966	1.5639	Ave		1.625				2.4		20.0			
	1.6043	1.6715	1.6082					3									
1,3,5-Trichlorobenzene	0.8060	0.8809	0.8902		0.8433	Ave		0.881				4.5		20.0			
	0.8748	0.9296	0.9044	0.9319				3									
2-Methylnaphthalene	1.0989	1.1548	1.2255		1.2641	Ave		1.277				8.6		20.0			
	1.3258	1.4123	1.3746	1.4010				7									

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 240-524416/3	225395.D	
Level 2	IC 240-524416/4	225396.D	
Level 3	IC 240-524416/5	225397.D	İ
Level 4	IC 240-524416/6	225398.D	
Level 5	IC 240-524416/7	225399.D	İ
Level 6	ICIS 240-524416/8	225400.D	İ
Level 7	IC 240-524416/9	225401.D	İ
Level 8	IC 240-524416/10	225402.D	İ
Level 9	IC 240-524416/11	225403.D	İ

ANALYTE			RRF			CURVE		COEFFICI	ENT #	MIN RRF	%RSD	 MAX	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			%RSD	OR COD		OR COD
Dichlorodifluoromethane	0.2507 0.2698	0.3013 0.2709	0.3107 0.2607	0.2867 0.2543	0.2792	Ave		0.276		0.1000	7.4	20.0			
Chloromethane	0.3767 0.2851	0.3616 0.2810		0.3116 0.2755	0.2907	Ave		0.311		0.1000	12.6	20.0			
Vinyl chloride	0.3780 0.3336			0.3644	0.3503	Ave		0.350		0.1000	9.8	20.0			
Butadiene	0.3913 0.3257	0.4112		0.3601 0.2909	0.3262	Ave		0.346			13.7	20.0			
Bromomethane	0.3346 0.1342			0.1644 0.1435	0.1431	Lin1	0.103	0.137		0.0500	5.9		0.9990		0.9900
Chloroethane	+++++ 0.2249			0.2376	0.2270	Qua	-0.00	0.267	-0.002234	0.0500	12.4		0.9960		0.9900
Trichlorofluoromethane	0.4451	0.4817		0.4621 0.3932	0.4357	Ave	,	0.437		0.1000	8.5	20.0			
Dichlorofluoromethane	0.6504 0.5226			0.5661 0.4898	0.5431	Ave		0.558			11.3	20.0			
Ethyl ether	0.2898 0.2241	0.2509		0.2349	0.2355	Ave		0.237			11.1	20.0			
1,1,2-Trichloro-1,2,2-trichfluoroe thane	+++++ 0.2243	0.2353 0.2293		0.2430 0.2197	0.2236	Ave		0.233		0.0500	6.6	20.0			
Acrolein	0.0594 0.0513	0.0552 0.0535		0.0525 0.0517	0.0522	Ave		0.053			4.6	20.0			
1,1-Dichloroethene	0.1970 0.2212	0.2517 0.2257		0.2381 0.2171	0.2295	Ave		0.227		0.1000	7.4	20.0			

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

ANALYTE			RRF			CURVE		COEFFIC	IENT	#	MIN RRF	%RSD			^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RS	SD OR	COD	OR COD
	LVL 6	LVL 7	LVL 8	LVL 9												
Acetone	0.4076	0.2663		0.1412	0.1301	Lin1	0.272	0.125			0.0100	4.4		0.9	990	0.990
	0.1297	0.1324		0.1292			7	б								
Iodomethane	++++	0.2187			0.1876	Ave		0.201				7.5	20	.0		
	0.1985	0.2082		0.2185				7								
Carbon disulfide	0.8024	0.7796		0.7355	0.7034	Ave		0.722			0.1000	7.4	20	.0		
	0.6901	0.6882		0.6611				6								
3-Chloro-1-propene	0.3990	0.3845		0.3596	0.3565	Ave		0.353				7.0	20	.0		
	0.3356	0.3349	0.3345	0.3241				7								
Methyl acetate	0.3492	0.2621	0.2775	0.2663	0.2667	Ave		0.280			0.1000	9.5	20	.0		
	0.2699	0.2779	0.2730	0.2771				0								
Methylene Chloride	++++	0.3043	0.2991	0.2802	0.2688	Ave		0.271			0.1000	7.9	2.0	.0		
_	0.2578	0.2625	0.2535	0.2451				4								
tert-Butyl alcohol	0.0391	0.0376	0.0401	0.0425	0.0437	Ave		0.045				13.6	20	.0		
_	0.0482	0.0512	0.0522	0.0543				5								
Methyl tert-butyl ether	0.7593	0.6828	0.7584	0.7238	0.7210	Ave		0.727			0.1000	3.2	20	.0		
	0.7282	0.7385		0.7182				0.727								
trans-1,2-Dichloroethene	0.2932	0.2744	0.2708	0.2573	0.2527	Ave		0.259			0.1000	6.5	2.0	.0		
,	0.2513	0.2488		0.2426				3								
Acrylonitrile	0.1635	0.1422		0.1524	0.1519	Ave		0.151				3.8	2.0	.0		
	0.1510	0.1533		0.1483				0.131								
Hexane	++++	0.3111		0.3306	0.3112	Ave		0.332				5.4	20	.0		
	0.3270	0.3586		0.3469	0.0112	1110		0.332				0.1				
1,1-Dichloroethane	0.4898	0.4939		0.4815	0.4687	Ave		0.468			0.2000	5.2	20	.0		
1,1 Dichiolocchane	0.4509	0.4539		0.4391	0.4007	1100		0.468			0.2000	3.2		• •		
Vinyl acetate	0.3568	0.3516		0.3476	0.4030	7770		6		-		11.7	20	.0		
Vinyi acetate	0.3338	0.3710		+++++	0.4030	AVE		0.368				11.	20	. 0		
2,2-Dichloropropane	0.0641	0.0599		0.0596	0.0632	7.770		9				6.5	2.0	.0		
2,2-Dichiolopiopane	0.0650	0.0638		0.0590	0.0032	Ave		0.064				0.5	20	. 0		
cis-1,2-Dichloroethene	0.3411	0.2896		0.2878	0.2840	7		4		_	0.1000	8.5	2.0	.0		
cis-i,z-Dichioroethene	0.3411	0.2896		0.2878	0.2840	Ave		0.288			0.1000	0.5	20	. 0		
2 P					0 0500	1		9			0.0100	4 0				
2-Butanone	++++ 0.0528	0.0483		0.0489 0.0534	0.0503	Ave		0.051			0.0100	4.2	20	.0		
		0.0536			0.0150			2.			1	111				
Bromochloromethane	0.2623	0.2239		0.2226	0.2152	Ave		0.216				11.4	20	.0		
	0.2026	0.2025		0.1864	0 10			2.								
Tetrahydrofuran	+++++	0.1606		0.1255	0.1257	Ave		0.130				9.2	2.0	.0		
	0.1265	0.1295	0.1264	0.1283				9								

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

ANALYTE			RRF			CURVE		COEFFIC	IENT	# MIN RE	F %RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COD
Chloroform	0.5483 0.4536	0.5001 0.4526	0.5056	0.4820 0.4325	0.4587	Ave		0.474		0.20	7.9	20.0)	
Cyclohexane	+++++ 0.3796	0.4020 0.3978		0.4290 0.3798	0.3898	Ave		0.400		0.10	00 5.3	20.0)	
1,1,1-Trichloroethane	0.3614 0.3791	0.3959 0.3768		0.3964 0.3686	0.3749	Ave		0.382		0.10	00 4.6	20.0)	
Carbon tetrachloride	0.2492 0.2843	0.3062 0.2855		0.2969 0.2834	0.2793	Ave		0.286		0.10	00 6.4	20.0)	
1,1-Dichloropropene	0.3065 0.3617	0.3434		0.3619 0.3519	0.3567	Ave		0.351			5.5	20.0)	
Benzene	1.1132 1.0255	1.0282 1.0361	1.0461 1.0011	1.0434	1.0250	Ave		1.035		0.50	00 3.2	20.0)	
Isobutyl alcohol	+++++ 0.0113	0.0063 0.0129	0.0070	0.0081	0.0094	Qua	-0.08	0.008	0.0000052		10.4		1.0000	0.9900
1,2-Dichloroethane	0.4639 0.3416	0.3801 0.3464		0.3695 0.3218	0.3565	Ave	.,	0.364		0.10	00 11.6	20.0)	
n-Heptane	+++++ 0.0661	0.0629 0.0705		0.0685 0.0698	0.0635	Ave		0.067			4.4	20.0)	
Trichloroethene	0.2706 0.2605	0.2349		0.2587 0.2563	0.2513	Ave		0.254		0.15	00 3.9	20.0)	
Methylcyclohexane	+++++ 0.4140	0.3968 0.4375		0.4222 0.4274	0.4057	Ave		0.421		0.10	00 3.5	20.0)	
1,2-Dichloropropane	0.2716 0.2527	0.2482 0.2561	0.2597 0.2493	0.2531 0.2486	0.2555	Ave		0.255		0.10	00 2.9	20.0)	
Dibromomethane	0.1546 0.1523	0.1644 0.1551		0.1628 0.1447	0.1538	Ave		0.155			5.4	20.0)	
1,4-Dioxane	+++++ 0.0052	0.0036 0.0055		0.0047 0.0056	0.0049	Lin1	-0.05	0.005			7.9		0.9990	0.9900
Bromodichloromethane	0.3721 0.3307	0.3463 0.3336		0.3359 0.3198	0.3345	Ave		0.339		0.15	00 4.9	20.0)	
2-Chloroethyl vinyl ether	0.1757 0.1926	0.1622 0.2012		0.1745 0.1980	0.1827	Ave		0.184			7.1	20.0)	
cis-1,3-Dichloropropene	0.4067 0.3789	0.3412	0.3702	0.3767 0.3856	0.3739	Ave		0.379		0.15	00 4.9	20.0)	
4-Methyl-2-pentanone	0.3404 0.3386	0.3058		0.3095	0.3223	Ave		0.327		0.05	00 5.7	20.0)	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD			R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			%RS	SD	OR COD		OR COD
Toluene	1.5693 1.4628	1.4169 1.4337		1.4455 1.4238	1.4208	Ave		1.453		0.4000	3.6	20	0.0			
trans-1,3-Dichloropropene	0.4147 0.4447	0.3497 0.4718		0.3920 0.4684	0.4187	Ave		0.424		0.1000	9.8	20	0.0			
Ethyl methacrylate	0.3841 0.4505	0.3262 0.4624		0.3905 0.4697	0.4183	Ave		0.416			11.5	20	0.0			
1,1,2-Trichloroethane	0.3223 0.3141	0.2676 0.3237		0.3011	0.3046	Ave		0.305		0.1000	5.4	20	0.0			
Tetrachloroethene	0.2603 0.3238	0.3007 0.3207		0.3114	0.3074	Ave		0.308		0.1500	6.5	20	0.0			
1,3-Dichloropropane	0.5482 0.5608	0.4964 0.5650		0.5399 0.5471	0.5403	Ave		0.543			3.6	20	0.0			
2-Hexanone	0.3530 0.3544		0.3113	0.3286 0.3555	0.3341	Ave		0.338		0.0500	6.7	20	0.0			
Dibromochloromethane	0.2891 0.2975	0.2842		0.2917	0.2938	Ave		0.296			3.2	20	0.0			
1,2-Dibromoethane	0.3088 0.3294	0.2831		0.3156 0.3318	0.3108	Ave		0.317			5.4	20	0.0			
Chlorobenzene	0.9200 0.8872	0.8666	0.9441	0.8943	0.8639	Ave		0.887		0.3000	3.2	20	0.0			
Ethylbenzene	0.4842 0.5007			0.4889	0.4837	Ave		0.489			1.8	20	0.0			
1,1,1,2-Tetrachloroethane	0.2524 0.2783	0.2323		0.2450	0.2601	Ave		0.263			8.4	20	0.0			
m-Xylene & p-Xylene	0.6070 0.6182	0.5938 0.5882	0.6410	0.6087	0.5853	Ave		0.602			3.1	20	0.0			
o-Xylene	0.6097 0.5951	0.5777		0.5878 0.5741	0.5813	Ave		0.585			2.7	20	0.0			
Styrene	1.0024	0.9053 1.0056	1.0042	0.9799	0.9766	Ave		0.983		0.3000	3.3	20	0.0			
Bromoform	0.1945 0.1992	0.1597	0.1751	0.1772	0.1862	Ave		0.190		0.1000	9.0	20	0.0			
Isopropylbenzene	1.3799	1.4777	1.6470	1.5686	1.5369	Ave		1.533		0.1000	4.8	20	0.0			
Bromobenzene	0.6992	0.5962	0.6835	0.6599	0.6515	Ave		0.666			4.6	20	0.0			

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

ANALYTE			RRF			CURVE		COEFFIC	IENT	#	MIN RRF	%RSD			 MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2				%RSI	OR COD	OR COD
1,1,2,2-Tetrachloroethane	1.0169 0.9596	0.8948		0.9260 0.9675	0.9454	Ave		0.961			0.3000	4.6	20.	0	
n-Propylbenzene	0.7552 0.8225	0.7298 0.8242		0.8028 0.8168	0.7792	Ave		0.799				4.9	20.	0	
1,2,3-Trichloropropane	0.3068 0.3209	0.2458		0.3037 0.3159	0.3100	Ave		0.307				8.0	20.	0	
trans-1,4-Dichloro-2-butene	0.1871 0.2539	0.1776 0.2748		0.2161 0.2782	0.2322	Ave		0.234				16.8	20.	0	
2-Chlorotoluene	0.7214 0.6864	0.6037 0.6843		0.6765 0.6770	0.6673	Ave		0.677				4.8	20.	0	
1,3,5-Trimethylbenzene	2.3399 2.5501	2.2502		2.4909 2.5029	2.4569	Ave		2.456				4.0	20.	0	
4-Chlorotoluene	0.6725 0.7032	0.6225 0.7189		0.6960 0.7011	0.6678	Ave		0.691				5.2	20.	0	
tert-Butylbenzene	1.7968 2.1326	2.0271 2.1495		2.1028 2.1397	2.1047	Ave		2.087				5.8	20.	0	
1,2,4-Trimethylbenzene	2.4653 2.6068	2.2930 2.6055		2.5675 2.5786	2.5723	Ave		2.539				4.1	20.	0	
sec-Butylbenzene	2.5723 3.2624	3.0914 3.3253		3.2676 3.2526	3.1728	Ave		3.174				7.6	20.	0	
1,3-Dichlorobenzene	1.2824 1.3163	1.2359		1.3350 1.3322	1.3153	Ave		1.311			0.6000	2.6	20.	0	
p-Isopropyltoluene	2.1402 2.7375	2.3955		2.6963 2.7486	2.6141	Ave		2.610				8.0	20.	0	
1,4-Dichlorobenzene	1.4984 1.3275	1.2210		1.3399	1.3017	Ave		1.335			0.5000	5.4	20.	0	
n-Butylbenzene	1.9569 2.6168	2.1831 2.6602		2.5558 2.6602	2.5221	Ave		2.484				9.9	20.	0	
1,2-Dichlorobenzene	1.3463 1.2813	1.2232		1.2578	1.2569	Ave		1.272			0.4000	2.8	20.	0	
1,2-Dibromo-3-Chloropropane	0.2370 0.2500		0.2228	0.2216	0.2422	Ave		0.242			0.0500	9.2	20.	0	
1,2,4-Trichlorobenzene	0.7217	0.6883	0.7954	0.7814	0.7752	Ave		0.783			0.2000	6.4	20.	0	
Hexachlorobutadiene	+++++	0.2904	0.3271	0.3071	0.2953	Ave		0.309				4.0	20.	0	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	#	MAX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2					%RSD	OR COD		OR COD
	LVL 6	LVL 7	LVL 8	LVL 9													
Naphthalene	2.7556 2.8839	2.4249 3.0251	2.7692 2.9828	2.7394 2.9422	2.7451	Ave		2.807				6.4		20.0			
1,2,3-Trichlorobenzene	0.7747 0.7583	0.6707 0.8000	0.7725 0.7846	0.7452 0.7945	0.7356	Ave		0.759				5.2		20.0			
Dibromofluoromethane (Surr)	0.3084 0.2734	0.2614 0.2767	0.2644 0.2764	0.2178 0.2728	0.2656	Ave		0.268				8.7		20.0			
1,2-Dichloroethane-d4 (Surr)	0.4914 0.3097	0.3953 0.3145	0.3432 0.3035		0.3062	Lin1	0.078	0.304				8.1			0.9990		0.9900
Toluene-d8 (Surr)	1.3990 1.4303	1.2717 1.4242	1.2054 1.4410	1.0396 1.4390	1.3176	Ave		1.329				10.3		20.0			
4-Bromofluorobenzene (Surr)	0.5933 0.5282	0.4789 0.5264	0.4725 0.5279		0.4813	Ave		0.503				11.0		20.0			

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: ICV 240-522080/28 Calibration Date: 04/08/2022 01:37

Instrument ID: A3UX22 Calib Start Date: 04/07/2022 21:40

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/08/2022 00:50

Lab File ID: 225060.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Acetonitrile	Ave	0.0622	0.0570		0.229	0.250	-8.4	30.0
Diisopropyl ether	Ave	0.2011	0.1997		0.0248	0.0250	-0.7	30.0
2-Chloro-1,3-butadiene	Ave	0.3881	0.3766		0.0243	0.0250	-3.0	30.0
Ethyl-t-butyl ether (ETBE)	Ave	0.7036	0.7117		0.0253	0.0250	1.1	30.0
Ethyl acetate	Ave	0.2958	0.3037		0.0513	0.0500	2.7	30.0
Propionitrile	Ave	0.0686	0.0668		0.244	0.250	-2.6	30.0
Methacrylonitrile	Ave	0.1922	0.1961		0.255	0.250	2.1	30.0
Tert-amyl-methyl ether (TAME)	Ave	0.9565	0.9665		0.0253	0.0250	1.0	30.0
n-Butanol	Ave	0.0137	0.0145		0.661	0.625	5.8	30.0
Ethyl acrylate	Ave	0.3851	0.3893		0.0253	0.0250	1.1	30.0
Methyl methacrylate	Ave	0.2378	0.2398		0.0504	0.0500	0.8	30.0
2-Nitropropane	Ave	0.1057	0.0957		0.0453	0.0500	-9.4	30.0
n-Butyl acetate	Ave	0.5940	0.6061		0.0255	0.0250	2.0	30.0
1-Chlorohexane	Ave	0.4836	0.4740		0.0245	0.0250	-2.0	30.0
Cyclohexanone	Ave	0.0292	0.0327		0.281	0.250	12.3	30.0
Pentachloroethane	Ave	0.0584	0.0234		0.0200	0.0500	-59.9*	30.0
1,2,3-Trimethylbenzene	Ave	2.655	2.851		0.0268	0.0250	7.4	30.0
Benzyl chloride	Ave	1.625	1.520		0.0234	0.0250	-6.5	30.0
1,3,5-Trichlorobenzene	Ave	0.8813	0.9467		0.0269	0.0250	7.4	30.0
2-Methylnaphthalene	Ave	1.278	1.353		0.0529	0.0500	5.9	30.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: ICV 240-524416/14 Calibration Date: 04/28/2022 20:14

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 225406.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2760	0.2814	0.1000	0.0255	0.0250	1.9	30.0
Chloromethane	Ave	0.3111	0.3023	0.1000	0.0243	0.0250	-2.8	30.0
Vinyl chloride	Ave	0.3509	0.3444	0.1000	0.0245	0.0250	-1.9	30.0
Butadiene	Ave	0.3466	0.2713		0.0196	0.0250	-21.7	30.0
Bromomethane	Lin1		0.1663	0.0500	0.0294	0.0250	17.8	30.0
Chloroethane	Qua		0.2063	0.0500	0.0243	0.0250	-2.9	30.0
Trichlorofluoromethane	Ave	0.4379	0.3969	0.1000	0.0227	0.0250	-9.3	30.0
Dichlorofluoromethane	Ave	0.5584	0.5110		0.0229	0.0250	-8.5	30.0
Ethyl ether	Ave	0.2372	0.2067		0.0218	0.0250	-12.8	30.0
1,1,2-Trichloro-1,2,2-trichf luoroethane	Ave	0.2330	0.2021	0.0500	0.0217	0.0250	-13.3	30.0
1,1-Dichloroethene	Ave	0.2272	0.2052	0.1000	0.0226	0.0250	-9.7	30.0
Acrolein	Ave	0.0537	0.0409		0.0951	0.125	-23.9	30.0
Acetone	Lin1		0.1224	0.0100	0.0465	0.0500	-6.9	50.0
Iodomethane	Ave	0.2017	0.2089		0.0259	0.0250	3.6	30.0
Carbon disulfide	Ave	0.7226	0.6027	0.1000	0.0209	0.0250	-16.6	30.0
3-Chloro-1-propene	Ave	0.3537	0.3186		0.0225	0.0250	-9.9	30.0
Methyl acetate	Ave	0.2800	0.2622	0.1000	0.0468	0.0500	-6.3	50.0
Methylene Chloride	Ave	0.2714	0.2489	0.1000	0.0229	0.0250	-8.3	50.0
tert-Butyl alcohol	Ave	0.0455	0.0519		0.285	0.250	14.2	30.0
Methyl tert-butyl ether	Ave	0.7279	0.7002	0.1000	0.0240	0.0250	-3.8	30.0
trans-1,2-Dichloroethene	Ave	0.2593	0.2313	0.1000	0.0223	0.0250	-10.8	30.0
Acrylonitrile	Ave	0.1519	0.1467		0.241	0.250	-3.4	30.0
Hexane	Ave	0.3325	0.2869		0.0216	0.0250	-13.7	30.0
1,1-Dichloroethane	Ave	0.4686	0.4207	0.2000	0.0224	0.0250	-10.2	30.0
Vinyl acetate	Ave	0.3689	0.2640		0.0179	0.0250	-28.4	30.0
2,2-Dichloropropane	Ave	0.0644	0.0571		0.0222	0.0250	-11.4	30.0
cis-1,2-Dichloroethene	Ave	0.2889	0.2664	0.1000	0.0230	0.0250	-7.8	30.0
2-Butanone	Ave	0.0512	0.0498	0.0100	0.0486	0.0500	-2.8	50.0
Bromochloromethane	Ave	0.2162	0.1873		0.0217	0.0250	-13.4	30.0
Tetrahydrofuran	Ave	0.1309	0.1232		0.0471	0.0500	-5.9	30.0
Chloroform	Ave	0.4748	0.4320	0.2000	0.0227	0.0250	-9.0	30.0
Cyclohexane	Ave	0.4000	0.3554	0.1000	0.0222	0.0250	-11.1	30.0
1,1,1-Trichloroethane	Ave	0.3821	0.3543	0.1000	0.0232	0.0250	-7.3	30.0
Carbon tetrachloride	Ave	0.2864	0.2649	0.1000	0.0231	0.0250	-7.5	30.0
1,1-Dichloropropene	Ave	0.3519	0.3310		0.0235	0.0250	-5.9	30.0
Benzene	Ave	1.036	0.9709	0.5000	0.0234	0.0250	-6.3	30.0
Isobutyl alcohol	Qua		0.0123		0.669	0.625	7.1	30.0
1,2-Dichloroethane	Ave	0.3644	0.3314	0.1000	0.0227	0.0250	-9.1	30.0
n-Heptane	Ave	0.0673	0.0605		0.0225	0.0250	-10.1	30.0
Trichloroethene	Ave	0.2548	0.2502	0.1500	0.0246	0.0250	-1.8	30.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: ICV 240-524416/14 Calibration Date: 04/28/2022 20:14

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: $0.18 \, (mm)$ Calib End Date: 0.4/28/2022 19:03

Lab File ID: 225406.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4217	0.3833	0.1000	0.0227	0.0250	-9.1	30.0
1,2-Dichloropropane	Ave	0.2550	0.2452	0.1000	0.0240	0.0250	-3.8	30.0
Dibromomethane	Ave	0.1559	0.1462		0.0234	0.0250	-6.2	30.0
1,4-Dioxane	Lin1		0.0057		0.530	0.500	5.9	50.0
Bromodichloromethane	Ave	0.3392	0.3193	0.1500	0.0235	0.0250	-5.9	30.0
2-Chloroethyl vinyl ether	Ave	0.1846	0.1822		0.0247	0.0250	-1.3	30.0
cis-1,3-Dichloropropene	Ave	0.3798	0.3620	0.1500	0.0238	0.0250	-4.7	50.0
4-Methyl-2-pentanone	Ave	0.3275	0.3209	0.0500	0.0490	0.0500	-2.0	50.0
Toluene	Ave	1.453	1.372	0.4000	0.0236	0.0250	-5.6	30.0
trans-1,3-Dichloropropene	Ave	0.4240	0.4319	0.1000	0.0255	0.0250	1.9	30.0
Ethyl methacrylate	Ave	0.4165	0.4478		0.0269	0.0250	7.5	30.0
1,1,2-Trichloroethane	Ave	0.3056	0.3048	0.1000	0.0249	0.0250	-0.3	30.0
Tetrachloroethene	Ave	0.3088	0.3064	0.1500	0.0248	0.0250	-0.8	30.0
1,3-Dichloropropane	Ave	0.5437	0.5342		0.0246	0.0250	-1.8	30.0
2-Hexanone	Ave	0.3385	0.3423	0.0500	0.0506	0.0500	1.1	50.0
Dibromochloromethane	Ave	0.2969	0.2956		0.0249	0.0250	-0.4	30.0
1,2-Dibromoethane	Ave	0.3178	0.3201		0.0252	0.0250	0.7	30.0
Chlorobenzene	Ave	0.8873	0.8622	0.3000	0.0243	0.0250	-2.8	30.0
Ethylbenzene	Ave	0.4892	0.4786		0.0245	0.0250	-2.2	30.0
1,1,1,2-Tetrachloroethane	Ave	0.2639	0.2676		0.0253	0.0250	1.4	30.0
m-Xylene & p-Xylene	Ave	0.6020	0.5822		0.0242	0.0250	-3.3	30.0
o-Xylene	Ave	0.5852	0.5802		0.0248	0.0250	-0.8	30.0
Styrene	Ave	0.9830	0.9718	0.3000	0.0247	0.0250	-1.1	30.0
Bromoform	Ave	0.1904	0.1938	0.1000	0.0255	0.0250	1.8	30.0
Isopropylbenzene	Ave	1.533	1.517	0.1000	0.0247	0.0250	-1.0	30.0
Bromobenzene	Ave	0.6663	0.6628		0.0249	0.0250	-0.5	30.0
1,1,2,2-Tetrachloroethane	Ave	0.9613	0.9334	0.3000	0.0243	0.0250	-2.9	30.0
n-Propylbenzene	Ave	0.7996	0.8082		0.0253	0.0250	1.1	30.0
1,2,3-Trichloropropane	Ave	0.3079	0.3122		0.0253	0.0250	1.4	30.0
trans-1,4-Dichloro-2-butene	Ave	0.2342	0.2533		0.0270	0.0250	8.2	30.0
2-Chlorotoluene	Ave	0.6772	0.6792		0.0251	0.0250	0.3	30.0
1,3,5-Trimethylbenzene	Ave	2.456	2.514		0.0256	0.0250	2.4	30.0
4-Chlorotoluene	Ave	0.6912	0.6957		0.0252	0.0250	0.7	30.0
tert-Butylbenzene	Ave	2.088	2.126		0.0255	0.0250	1.8	30.0
1,2,4-Trimethylbenzene	Ave	2.540	2.571		0.0253	0.0250	1.2	30.0
sec-Butylbenzene	Ave	3.175	3.225		0.0254	0.0250	1.6	30.0
1,3-Dichlorobenzene	Ave	1.312	1.310	0.6000	0.0250	0.0250	-0.1	30.0
p-Isopropyltoluene	Ave	2.611	2.716		0.0260	0.0250	4.0	30.0
1,4-Dichlorobenzene	Ave	1.336	1.338	0.5000	0.0251	0.0250	0.2	30.0
n-Butylbenzene	Ave	2.485	2.542		0.0256	0.0250	2.3	30.0
1,2-Dichlorobenzene	Ave	1.272	1.282	0.4000	0.0252	0.0250	0.8	30.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: ICV 240-524416/14 Calibration Date: 04/28/2022 20:14

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 225406.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.2424	0.2457	0.0500	0.0253	0.0250	1.3	50.0
1,2,4-Trichlorobenzene	Ave	0.7834	0.7984	0.2000	0.0255	0.0250	1.9	50.0
Hexachlorobutadiene	Ave	0.3098	0.3072		0.0248	0.0250	-0.9	50.0
Naphthalene	Ave	2.808	2.856		0.0254	0.0250	1.7	50.0
1,2,3-Trichlorobenzene	Ave	0.7596	0.7503		0.0247	0.0250	-1.2	30.0
Dibromofluoromethane (Surr)	Ave	0.2685	0.2730		0.0294	0.0289	1.7	30.0
1,2-Dichloroethane-d4 (Surr)	Lin1		0.3064		0.0288	0.0289	-0.2	30.0
Toluene-d8 (Surr)	Ave	1.330	1.399		0.0304	0.0289	5.2	30.0
4-Bromofluorobenzene (Surr)	Ave	0.5036	0.5164		0.0296	0.0289	2.5	30.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540508/3 Calibration Date: 08/29/2022 11:30

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 227976.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2760	0.2962	0.1000	0.0268	0.0250	7.3	20.0
Chloromethane	Ave	0.3111	0.2889	0.1000	0.0232	0.0250	-7.1	20.0
Vinyl chloride	Ave	0.3509	0.3143	0.1000	0.0224	0.0250	-10.4	20.0
Butadiene	Ave	0.3466	0.2783		0.0201	0.0250	-19.7	20.0
Bromomethane	Lin1		0.0837	0.0500	0.0144	0.0250	-42.2*	20.0
Chloroethane	Qua		0.1435	0.0500	0.0155	0.0250	-38.2	20.0
Trichlorofluoromethane	Ave	0.4379	0.3651	0.1000	0.0208	0.0250	-16.6	20.0
Dichlorofluoromethane	Ave	0.5584	0.4368		0.0196	0.0250	(-21.8*)	20.0
Ethyl ether	Ave	0.2372	0.1965		0.0207	0.0250	-17.2	20.0
1,1,2-Trichloro-1,2,2-trichf luoroethane	Ave	0.2330	0.2411	0.0500	0.0259	0.0250	3.5	20.0
1,1-Dichloroethene	Ave	0.2272	0.2238	0.1000	0.0246	0.0250	-1.5	20.0
Acrolein	Ave	0.0537	0.0319		0.0743	0.125	-40.5*	20.0
Acetone	Lin1		0.1327	0.0100	0.0506	0.0500	1.3	50.0
Iodomethane	Ave	0.2017	0.1416		0.0175	0.0250	-29.8*	20.0
Carbon disulfide	Ave	0.7226	0.7116	0.1000	0.0246	0.0250	-1.5	20.0
3-Chloro-1-propene	Ave	0.3537	0.3346		0.0236	0.0250	-5.4	20.0
Methyl acetate	Ave	0.2800	0.2777	0.1000	0.0496	0.0500	-0.8	50.0
Methylene Chloride	Ave	0.2714	0.2711	0.1000	0.0250	0.0250	-0.1	50.0
tert-Butyl alcohol	Ave	0.0455	0.0551		0.303	0.250	21.2*	20.0
Methyl tert-butyl ether	Ave	0.7279	0.7100	0.1000	0.0244	0.0250	-2.5	20.0
trans-1,2-Dichloroethene	Ave	0.2593	0.2618	0.1000	0.0252	0.0250	1.0	20.0
Acrylonitrile	Ave	0.1519	0.1563		0.257	0.250	2.9	20.0
Hexane	Ave	0.3325	0.3482		0.0262	0.0250	4.7	20.0
1,1-Dichloroethane	Ave	0.4686	0.4645	0.2000	0.0248	0.0250	-0.9	20.0
Vinyl acetate	Ave	0.3689	0.4444		0.0301	0.0250	20.5*	20.0
2,2-Dichloropropane	Ave	0.0644	0.0696		0.0270	0.0250	8.1	20.0
cis-1,2-Dichloroethene	Ave	0.2889	0.2821	0.1000	0.0244	0.0250	-2.4	20.0
2-Butanone	Ave	0.0512	0.0549	0.0100	0.0536	0.0500	7.2	50.0
Bromochloromethane	Ave	0.2162	0.2030		0.0235	0.0250	-6.1	20.0
Tetrahydrofuran	Ave	0.1309	0.1326		0.0506	0.0500	1.3	20.0
Chloroform	Ave	0.4748	0.4525	0.2000	0.0238	0.0250	-4.7	20.0
Cyclohexane	Ave	0.4000	0.3929	0.1000	0.0246	0.0250	-1.8	20.0
1,1,1-Trichloroethane	Ave	0.3821	0.3851	0.1000	0.0252	0.0250	0.8	20.0
Carbon tetrachloride	Ave	0.2864	0.3335	0.1000	0.0291	0.0250	16.4	20.0
1,1-Dichloropropene	Ave	0.3519	0.3733		0.0265	0.0250	6.1	20.0
Benzene	Ave	1.036	1.078	0.5000	0.0260	0.0250	4.0	20.0
Isobutyl alcohol	Qua		0.0155		0.799	0.625	27.8*	20.0
1,2-Dichloroethane	Ave	0.3644	0.3414	0.1000	0.0234	0.0250	-6.3	20.0
n-Heptane	Ave	0.0673	0.0607		0.0225	0.0250	-9.8	20.0
Trichloroethene	Ave	0.2548	0.2737	0.1500	0.0269	0.0250	7.4	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540508/3 Calibration Date: 08/29/2022 11:30

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: $0.18 \, (mm)$ Calib End Date: 0.4/28/2022 19:03

Lab File ID: 227976.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4217	0.4048	0.1000	0.0240	0.0250	-4.0	20.0
1,2-Dichloropropane	Ave	0.2550	0.2581	0.1000	0.0253	0.0250	1.2	20.0
Dibromomethane	Ave	0.1559	0.1723		0.0276	0.0250	10.5	20.0
1,4-Dioxane	Lin1		0.0068		0.631	0.500	26.2	50.0
Bromodichloromethane	Ave	0.3392	0.3281	0.1500	0.0242	0.0250	-3.3	20.0
2-Chloroethyl vinyl ether	Ave	0.1846	0.1949		0.0528	0.0500	5.6	20.0
cis-1,3-Dichloropropene	Ave	0.3798	0.3989	0.1500	0.0263	0.0250	5.0	50.0
4-Methyl-2-pentanone	Ave	0.3275	0.3458	0.0500	0.0528	0.0500	5.6	50.0
Toluene	Ave	1.453	1.500	0.4000	0.0258	0.0250	3.2	20.0
trans-1,3-Dichloropropene	Ave	0.4240	0.4701	0.1000	0.0277	0.0250	10.9	20.0
Ethyl methacrylate	Ave	0.4165	0.4473		0.0268	0.0250	7.4	20.0
1,1,2-Trichloroethane	Ave	0.3056	0.3205	0.1000	0.0262	0.0250	4.9	20.0
Tetrachloroethene	Ave	0.3088	0.3718	0.1500	0.0301	0.0250	20.4*	20.0
1,3-Dichloropropane	Ave	0.5437	0.5712		0.0263	0.0250	5.1	20.0
2-Hexanone	Ave	0.3385	0.3601	0.0500	0.0532	0.0500	6.4	50.0
Dibromochloromethane	Ave	0.2969	0.3327		0.0280	0.0250	12.1	20.0
1,2-Dibromoethane	Ave	0.3178	0.3366		0.0265	0.0250	5.9	20.0
Chlorobenzene	Ave	0.8873	0.9439	0.3000	0.0266	0.0250	6.4	20.0
Ethylbenzene	Ave	0.4892	0.4989		0.0255	0.0250	2.0	20.0
1,1,1,2-Tetrachloroethane	Ave	0.2639	0.3231		0.0306	0.0250	22.4*	20.0
m-Xylene & p-Xylene	Ave	0.6020	0.6167		0.0256	0.0250	2.4	20.0
o-Xylene	Ave	0.5852	0.5997		0.0256	0.0250	2.5	20.0
Styrene	Ave	0.9830	1.053	0.3000	0.0268	0.0250	7.2	20.0
Bromoform	Ave	0.1904	0.2631	0.1000	0.0346	0.0250	38.2*	20.0
Isopropylbenzene	Ave	1.533	1.590	0.1000	0.0259	0.0250	3.7	20.0
Bromobenzene	Ave	0.6663	0.7492		0.0281	0.0250	12.4	20.0
1,1,2,2-Tetrachloroethane	Ave	0.9613	1.030	0.3000	0.0268	0.0250	7.1	20.0
n-Propylbenzene	Ave	0.7996	0.8141		0.0255	0.0250	1.8	20.0
1,2,3-Trichloropropane	Ave	0.3079	0.3240		0.0263	0.0250	5.2	20.0
trans-1,4-Dichloro-2-butene	Ave	0.2342	0.2916		0.0311	0.0250	24.5*	20.0
2-Chlorotoluene	Ave	0.6772	0.7326		0.0270	0.0250	8.2	20.0
1,3,5-Trimethylbenzene	Ave	2.456	2.475		0.0252	0.0250	0.7	20.0
4-Chlorotoluene	Ave	0.6912	0.7584		0.0274	0.0250	9.7	20.0
tert-Butylbenzene	Ave	2.088	2.080		0.0249	0.0250	-0.3	20.0
1,2,4-Trimethylbenzene	Ave	2.540	2.545		0.0250	0.0250	0.2	20.0
sec-Butylbenzene	Ave	3.175	3.040		0.0239	0.0250	-4.2	20.0
1,3-Dichlorobenzene	Ave	1.312	1.434	0.6000	0.0273	0.0250	9.3	20.0
p-Isopropyltoluene	Ave	2.611	2.606		0.0249	0.0250	-0.2	20.0
1,4-Dichlorobenzene	Ave	1.336	1.433	0.5000	0.0268	0.0250	7.2	20.0
n-Butylbenzene	Ave	2.485	2.338		0.0235	0.0250	-5.9	20.0
1,2-Dichlorobenzene	Ave	1.272	1.347	0.4000	0.0265	0.0250	5.9	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540508/3 Calibration Date: 08/29/2022 11:30

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 227976.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.2424	0.2906	0.0500	0.0300	0.0250	19.9	50.0
1,2,4-Trichlorobenzene	Ave	0.7834	0.8080	0.2000	0.0258	0.0250	3.1	50.0
Hexachlorobutadiene	Ave	0.3098	0.3046		0.0246	0.0250	-1.7	50.0
Naphthalene	Ave	2.808	2.693		0.0240	0.0250	-4.1	50.0
1,2,3-Trichlorobenzene	Ave	0.7596	0.7681		0.0253	0.0250	1.1	20.0
Dibromofluoromethane (Surr)	Ave	0.2685	0.2804		0.0302	0.0289	4.4	20.0
1,2-Dichloroethane-d4 (Surr)	Lin1		0.2958		0.0278	0.0289	-3.7	20.0
Toluene-d8 (Surr)	Ave	1.330	1.448		0.0315	0.0289	8.9	20.0
4-Bromofluorobenzene (Surr)	Ave	0.5036	0.5341		0.0307	0.0289	6.1	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCV 240-540508/4 Calibration Date: 08/29/2022 11:54

Instrument ID: A3UX22 Calib Start Date: 04/07/2022 21:40

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/08/2022 00:50

Lab File ID: 227977.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Acetonitrile	Ave	0.0622	0.0609		0.245	0.250	-2.1	20.0
Diisopropyl ether	Ave	0.2011	0.2075		0.0258	0.0250	3.2	20.0
2-Chloro-1,3-butadiene	Ave	0.3881	0.3880		0.0250	0.0250	0.0	20.0
Ethyl-t-butyl ether (ETBE)	Ave	0.7036	0.6860		0.0244	0.0250	-2.5	20.0
Ethyl acetate	Ave	0.2958	0.3390		0.0573	0.0500	14.6	20.0
Propionitrile	Ave	0.0686	0.0714		0.260	0.250	4.1	20.0
Methacrylonitrile	Ave	0.1922	0.2195		0.286	0.250	14.2	20.0
Tert-amyl-methyl ether (TAME)	Ave	0.9565	0.8660		0.0226	0.0250	-9.5	20.0
n-Butanol	Ave	0.0137	0.0130		0.593	0.625	-5.1	20.0
Methyl methacrylate	Ave	0.2378	0.2634		0.0554	0.0500	10.8	20.0
2-Nitropropane	Ave	0.1057	0.0990		0.0468	0.0500	-6.4	20.0
n-Butyl acetate	Ave	0.5940	0.5307		0.0223	0.0250	-10.7	20.0
1-Chlorohexane	Ave	0.4836	0.4592		0.0237	0.0250	-5.0	20.0
Cyclohexanone	Ave	0.0292	0.0252		0.216	0.250	-13.7	20.0
Pentachloroethane	Ave	0.0584	0.2693		0.231	0.0500	361.2*	20.0
1,2,3-Trimethylbenzene	Ave	2.655	2.559		0.0241	0.0250	-3.6	20.0
Benzyl chloride	Ave	1.625	1.358		0.0209	0.0250	-16.4	20.0
1,3,5-Trichlorobenzene	Ave	0.8813	0.9382		0.0266	0.0250	6.5	20.0
2-Methylnaphthalene	Ave	1.278	0.9825		0.0385	0.0500	-23.1*	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540740/3 Calibration Date: 08/30/2022 14:10

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 228006.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2760	0.3118	0.1000	0.0282	0.0250	13.0	20.0
Chloromethane	Ave	0.3111	0.2831	0.1000	0.0227	0.0250	-9.0	20.0
Vinyl chloride	Ave	0.3509	0.3085	0.1000	0.0220	0.0250	-12.1	20.0
Butadiene	Ave	0.3466	0.2834		0.0204	0.0250	-18.2	20.0
Bromomethane	Lin1		0.1126	0.0500	0.0197	0.0250	-21.2*	20.0
Chloroethane	Qua		0.1639	0.0500	0.0181	0.0250	-27.6*	20.0
Trichlorofluoromethane	Ave	0.4379	0.3958	0.1000	0.0226	0.0250	-9.6	20.0
Dichlorofluoromethane	Ave	0.5584	0.4663		0.0209	0.0250	-16.5	20.0
Ethyl ether	Ave	0.2372	0.2208		0.0233	0.0250	-6.9	20.0
1,1,2-Trichloro-1,2,2-trichf luoroethane	Ave	0.2330	0.2566	0.0500	0.0275	0.0250	10.1	20.0
1,1-Dichloroethene	Ave	0.2272	0.2411	0.1000	0.0265	0.0250	6.1	20.0
Acrolein	Ave	0.0537	0.0344		0.0800	0.125	-36.0*	20.0
Acetone	Lin1		0.1453	0.0100	0.0557	0.0500	11.3	50.0
Iodomethane	Ave	0.2017	0.1638		0.0203	0.0250	-18.8	20.0
Carbon disulfide	Ave	0.7226	0.7699	0.1000	0.0266	0.0250	6.5	20.0
3-Chloro-1-propene	Ave	0.3537	0.3328		0.0235	0.0250	-5.9	20.0
Methyl acetate	Ave	0.2800	0.2855	0.1000	0.0510	0.0500	2.0	50.0
Methylene Chloride	Ave	0.2714	0.2643	0.1000	0.0243	0.0250	-2.6	50.0
tert-Butyl alcohol	Ave	0.0455	0.0561		0.308	0.250	23.4*	20.0
Methyl tert-butyl ether	Ave	0.7279	0.6877	0.1000	0.0236	0.0250	-5.5	20.0
trans-1,2-Dichloroethene	Ave	0.2593	0.2573	0.1000	0.0248	0.0250	-0.8	20.0
Acrylonitrile	Ave	0.1519	0.1550		0.255	0.250	2.1	20.0
Hexane	Ave	0.3325	0.3314		0.0249	0.0250	-0.3	20.0
1,1-Dichloroethane	Ave	0.4686	0.4354	0.2000	0.0232	0.0250	-7.1	20.0
Vinyl acetate	Ave	0.3689	0.4625		0.0313	0.0250	25.4*	20.0
2,2-Dichloropropane	Ave	0.0644	0.0686		0.0266	0.0250	6.6	20.0
cis-1,2-Dichloroethene	Ave	0.2889	0.2756	0.1000	0.0238	0.0250	-4.6	20.0
2-Butanone	Ave	0.0512	0.0559	0.0100	0.0546	0.0500	9.3	50.0
Bromochloromethane	Ave	0.2162	0.1981		0.0229	0.0250	-8.4	20.0
Tetrahydrofuran	Ave	0.1309	0.1307		0.0499	0.0500	-0.2	20.0
Chloroform	Ave	0.4748	0.4571	0.2000	0.0241	0.0250	-3.7	20.0
Cyclohexane	Ave	0.4000	0.3855	0.1000	0.0241	0.0250	-3.6	20.0
1,1,1-Trichloroethane	Ave	0.3821	0.3986	0.1000	0.0261	0.0250	4.3	20.0
Carbon tetrachloride	Ave	0.2864	0.3426	0.1000	0.0299	0.0250	19.6	20.0
1,1-Dichloropropene	Ave	0.3519	0.3538		0.0251	0.0250	0.5	20.0
Benzene	Ave	1.036	1.035	0.5000	0.0250	0.0250	-0.1	20.0
Isobutyl alcohol	Qua		0.0173		0.866	0.625	38.6*	20.0
1,2-Dichloroethane	Ave	0.3644	0.3412	0.1000	0.0234	0.0250	-6.4	20.0
n-Heptane	Ave	0.0673	0.0606		0.0225	0.0250	-10.0	20.0
Trichloroethene	Ave	0.2548	0.2736	0.1500	0.0268	0.0250	7.4	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540740/3 Calibration Date: 08/30/2022 14:10

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: $0.18 \, (mm)$ Calib End Date: 0.4/28/2022 19:03

Lab File ID: 228006.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4217	0.4001	0.1000	0.0237	0.0250	-5.1	20.0
1,2-Dichloropropane	Ave	0.2550	0.2509	0.1000	0.0246	0.0250	-1.6	20.0
Dibromomethane	Ave	0.1559	0.1761		0.0282	0.0250	13.0	20.0
1,4-Dioxane	Lin1		0.0067		0.620	0.500	24.0	50.0
Bromodichloromethane	Ave	0.3392	0.3466	0.1500	0.0255	0.0250	2.2	20.0
2-Chloroethyl vinyl ether	Ave	0.1846	0.1882		0.0510	0.0500	1.9	20.0
cis-1,3-Dichloropropene	Ave	0.3798	0.3993	0.1500	0.0263	0.0250	5.1	50.0
4-Methyl-2-pentanone	Ave	0.3275	0.3582	0.0500	0.0547	0.0500	9.4	50.0
Toluene	Ave	1.453	1.389	0.4000	0.0239	0.0250	-4.4	20.0
trans-1,3-Dichloropropene	Ave	0.4240	0.4361	0.1000	0.0257	0.0250	2.9	20.0
Ethyl methacrylate	Ave	0.4165	0.4255		0.0255	0.0250	2.2	20.0
1,1,2-Trichloroethane	Ave	0.3056	0.3060	0.1000	0.0250	0.0250	0.1	20.0
Tetrachloroethene	Ave	0.3088	0.3446	0.1500	0.0279	0.0250	11.6	20.0
1,3-Dichloropropane	Ave	0.5437	0.5079		0.0234	0.0250	-6.6	20.0
2-Hexanone	Ave	0.3385	0.3489	0.0500	0.0515	0.0500	3.1	50.0
Dibromochloromethane	Ave	0.2969	0.3360		0.0283	0.0250	13.2	20.0
1,2-Dibromoethane	Ave	0.3178	0.3367		0.0265	0.0250	6.0	20.0
Chlorobenzene	Ave	0.8873	0.9280	0.3000	0.0261	0.0250	4.6	20.0
Ethylbenzene	Ave	0.4892	0.5114		0.0261	0.0250	4.5	20.0
1,1,1,2-Tetrachloroethane	Ave	0.2639	0.3344		0.0317	0.0250	26.7*	20.0
m-Xylene & p-Xylene	Ave	0.6020	0.6165		0.0256	0.0250	2.4	20.0
o-Xylene	Ave	0.5852	0.5534		0.0236	0.0250	-5.4	20.0
Styrene	Ave	0.9830	0.9877	0.3000	0.0251	0.0250	0.5	20.0
Bromoform	Ave	0.1904	0.2531	0.1000	0.0332	0.0250	(32.9*)	20.0
Isopropylbenzene	Ave	1.533	1.467	0.1000	0.0239	0.0250	-4.3	20.0
Bromobenzene	Ave	0.6663	0.7011		0.0263	0.0250	5.2	20.0
1,1,2,2-Tetrachloroethane	Ave	0.9613	0.9835	0.3000	0.0256	0.0250	2.3	20.0
n-Propylbenzene	Ave	0.7996	0.7884		0.0247	0.0250	-1.4	20.0
1,2,3-Trichloropropane	Ave	0.3079	0.3296		0.0268	0.0250	7.0	20.0
trans-1,4-Dichloro-2-butene	Ave	0.2342	0.3019		0.0322	0.0250	28.9*	20.0
2-Chlorotoluene	Ave	0.6772	0.6834		0.0252	0.0250	0.9	20.0
1,3,5-Trimethylbenzene	Ave	2.456	2.384		0.0243	0.0250	-2.9	20.0
4-Chlorotoluene	Ave	0.6912	0.7110		0.0257	0.0250	2.9	20.0
tert-Butylbenzene	Ave	2.088	1.960		0.0235	0.0250	-6.1	20.0
1,2,4-Trimethylbenzene	Ave	2.540	2.424		0.0239	0.0250	-4.6	20.0
sec-Butylbenzene	Ave	3.175	2.936		0.0231	0.0250	-7.5	20.0
1,3-Dichlorobenzene	Ave	1.312	1.380	0.6000	0.0263	0.0250	5.2	20.0
p-Isopropyltoluene	Ave	2.611	2.526		0.0242	0.0250	-3.2	20.0
1,4-Dichlorobenzene	Ave	1.336	1.407	0.5000	0.0263	0.0250	5.3	20.0
n-Butylbenzene	Ave	2.485	2.206		0.0222	0.0250	-11.2	20.0
1,2-Dichlorobenzene	Ave	1.272	1.304	0.4000	0.0256	0.0250	2.5	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540740/3 Calibration Date: 08/30/2022 14:10

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 228006.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.2424	0.2852	0.0500	0.0294	0.0250	17.6	50.0
1,2,4-Trichlorobenzene	Ave	0.7834	0.7405	0.2000	0.0236	0.0250	-5.5	50.0
Hexachlorobutadiene	Ave	0.3098	0.2732		0.0220	0.0250	-11.8	50.0
Naphthalene	Ave	2.808	2.630		0.0234	0.0250	-6.3	50.0
1,2,3-Trichlorobenzene	Ave	0.7596	0.7167		0.0236	0.0250	-5.6	20.0
Dibromofluoromethane (Surr)	Ave	0.2685	0.2913		0.0314	0.0289	8.5	20.0
1,2-Dichloroethane-d4 (Surr)	Lin1		0.3039		0.0286	0.0289	-1.1	20.0
Toluene-d8 (Surr)	Ave	1.330	1.387		0.0302	0.0289	4.3	20.0
4-Bromofluorobenzene (Surr)	Ave	0.5036	0.5024		0.0288	0.0289	-0.2	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCV 240-540740/4 Calibration Date: 08/30/2022 14:34

Instrument ID: A3UX22 Calib Start Date: 04/07/2022 21:40

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/08/2022 00:50

Lab File ID: 228007.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Acetonitrile	Ave	0.0622	0.0613		0.246	0.250	-1.4	20.0
Diisopropyl ether	Ave	0.2011	0.2052		0.0255	0.0250	2.1	20.0
2-Chloro-1,3-butadiene	Ave	0.3881	0.3685		0.0237	0.0250	-5.0	20.0
Ethyl-t-butyl ether (ETBE)	Ave	0.7036	0.6442		0.0229	0.0250	-8.4	20.0
Ethyl acetate	Ave	0.2958	0.3537		0.0598	0.0500	19.6	20.0
Propionitrile	Ave	0.0686	0.0700		0.255	0.250	2.1	20.0
Methacrylonitrile	Ave	0.1922	0.2267		0.295	0.250	18.0	20.0
Tert-amyl-methyl ether (TAME)	Ave	0.9565	0.8601		0.0225	0.0250	-10.1	20.0
n-Butanol	Ave	0.0137	0.0145		0.658	0.625	5.2	20.0
Methyl methacrylate	Ave	0.2378	0.2730		0.0574	0.0500	14.8	20.0
2-Nitropropane	Ave	0.1057	0.1101		0.0521	0.0500	4.1	20.0
n-Butyl acetate	Ave	0.5940	0.5537		0.0233	0.0250	-6.8	20.0
1-Chlorohexane	Ave	0.4836	0.4467		0.0231	0.0250	-7.6	20.0
Cyclohexanone	Ave	0.0292	0.0276		0.236	0.250	-5.5	20.0
Pentachloroethane	Ave	0.0584	0.2785		0.238	0.0500	376.9*	20.0
1,2,3-Trimethylbenzene	Ave	2.655	2.584		0.0243	0.0250	-2.7	20.0
Benzyl chloride	Ave	1.625	1.521		0.0234	0.0250	-6.4	20.0
1,3,5-Trichlorobenzene	Ave	0.8813	0.8484		0.0241	0.0250	-3.7	20.0
2-Methylnaphthalene	Ave	1.278	0.9196		0.0360	0.0500	-28.0*	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 Start Date: 04/07/2022 15:03

Analysis Batch Number: 522080 End Date: 04/08/2022 02:48

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-522080/1		04/07/2022 15:03	1	BFB22244.D	DB-624 0.18 (mm)
IC 240-522080/3		04/07/2022 15:46	1	225035.D	DB-624 0.18(mm)
IC 240-522080/4		04/07/2022 16:09	1	225036.D	DB-624 0.18(mm)
IC 240-522080/5		04/07/2022 16:33	1	225037.D	DB-624 0.18(mm)
IC 240-522080/6		04/07/2022 16:56	1	225038.D	DB-624 0.18 (mm)
IC 240-522080/7		04/07/2022 17:20	1	225039.D	DB-624 0.18(mm)
ICIS 240-522080/8		04/07/2022 17:44	1	225040.D	DB-624 0.18(mm)
IC 240-522080/9		04/07/2022 18:07	1	225041.D	DB-624 0.18(mm)
IC 240-522080/10		04/07/2022 18:31	1	225042.D	DB-624 0.18(mm)
IC 240-522080/11		04/07/2022 18:55	1	225043.D	DB-624 0.18(mm)
ICV 240-522080/13		04/07/2022 19:42	1		DB-624 0.18(mm)
ZZZZZ		04/07/2022 20:06	1		DB-624 0.18(mm)
ZZZZZ		04/07/2022 20:29	1		DB-624 0.18(mm)
ZZZZZ		04/07/2022 20:53	1		DB-624 0.18(mm)
ZZZZZ		04/07/2022 21:17	1		DB-624 0.18(mm)
IC 240-522080/18		04/07/2022 21:40	1	225050.D	DB-624 0.18(mm)
IC 240-522080/19		04/07/2022 22:04	1	225051.D	DB-624 0.18(mm)
IC 240-522080/20		04/07/2022 22:28	1	225052.D	DB-624 0.18(mm)
IC 240-522080/21		04/07/2022 22:52	1	225053.D	DB-624 0.18(mm)
IC 240-522080/22		04/07/2022 23:15	1	225054.D	DB-624 0.18(mm)
IC 240-522080/23		04/07/2022 23:39	1	225055.D	DB-624 0.18(mm)
IC 240-522080/24		04/08/2022 00:02	1	225056.D	DB-624 0.18(mm)
IC 240-522080/25		04/08/2022 00:26	1	225057.D	DB-624 0.18(mm)
IC 240-522080/26		04/08/2022 00:50	1	225058.D	DB-624 0.18(mm)
ICV 240-522080/28		04/08/2022 01:37	1	225060.D	DB-624 0.18(mm)
ZZZZZ		04/08/2022 02:01	1		DB-624 0.18(mm)
ZZZZZ		04/08/2022 02:24	1		DB-624 0.18(mm)
ZZZZZ		04/08/2022 02:48	1		DB-624 0.18 (mm)

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 Start Date: 04/28/2022 15:10

Analysis Batch Number: 524416 End Date: 04/28/2022 22:13

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-524416/1		04/28/2022 15:10	1	BFB22256.D	DB-624 0.18 (mm)
IC 240-524416/3		04/28/2022 15:53	1	225395.D	DB-624 0.18 (mm)
IC 240-524416/4		04/28/2022 16:16	1	225396.D	DB-624 0.18(mm)
IC 240-524416/5		04/28/2022 16:40	1	225397.D	DB-624 0.18(mm)
IC 240-524416/6		04/28/2022 17:04	1	225398.D	DB-624 0.18(mm)
IC 240-524416/7		04/28/2022 17:27	1	225399.D	DB-624 0.18(mm)
ICIS 240-524416/8		04/28/2022 17:51	1	225400.D	DB-624 0.18(mm)
IC 240-524416/9		04/28/2022 18:15	1	225401.D	DB-624 0.18(mm)
IC 240-524416/10		04/28/2022 18:39	1	225402.D	DB-624 0.18(mm)
IC 240-524416/11		04/28/2022 19:03	1	225403.D	DB-624 0.18(mm)
CCV 240-524416/13		04/28/2022 19:50	1		DB-624 0.18(mm)
ICV 240-524416/14		04/28/2022 20:14	1	225406.D	DB-624 0.18(mm)
ZZZZZ		04/28/2022 20:37	1		DB-624 0.18(mm)
ZZZZZ		04/28/2022 21:01	1		DB-624 0.18(mm)
ZZZZZ		04/28/2022 21:25	1		DB-624 0.18(mm)
ZZZZZ		04/28/2022 21:49	1		DB-624 0.18(mm)
ZZZZZ		04/28/2022 22:13	1		DB-624 0.18(mm)

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 Start Date: 08/29/2022 10:47

Analysis Batch Number: 540508 End Date: 08/29/2022 22:10

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-540508/1		08/29/2022 10:47	1	BFB22344.D	DB-624 0.18 (mm)
CCVIS 240-540508/3		08/29/2022 11:30	1	227976.D	DB-624 0.18 (mm)
CCV 240-540508/4		08/29/2022 11:54	1	227977.D	DB-624 0.18 (mm)
LCS 240-540508/5		08/29/2022 12:18	1	227978.D	DB-624 0.18 (mm)
LCS 240-540508/6		08/29/2022 12:41	1	227979.D	DB-624 0.18 (mm)
ZZZZZ		08/29/2022 13:05	1		DB-624 0.18 (mm)
MB 240-540508/8		08/29/2022 13:29	1	227981.D	DB-624 0.18 (mm)
240-171981-1	MSA-SW37A-082222	08/29/2022 13:53	1	227982.D	DB-624 0.18 (mm)
240-171981-2	MSA-SW37B-082222	08/29/2022 14:17	1	227983.D	DB-624 0.18 (mm)
240-171981-3	MSA-SW37C-082222	08/29/2022 14:40	1	227984.D	DB-624 0.18 (mm)
240-171981-4	MSA-SW37D-082222	08/29/2022 15:04	1	227985.D	DB-624 0.18 (mm)
240-171981-5	MSA-SW38A-082222	08/29/2022 15:27	1	227986.D	DB-624 0.18(mm)
240-171981-6	MSA-SW38B-082222	08/29/2022 15:51	1	227987.D	DB-624 0.18(mm)
240-171981-7	MSA-SW38C-082222	08/29/2022 16:15	1	227988.D	DB-624 0.18(mm)
240-171981-8	MSA-SW38D-082222	08/29/2022 16:38	1	227989.D	DB-624 0.18 (mm)
240-171981-9	MSA-SW40A-082222	08/29/2022 17:02	1	227990.D	DB-624 0.18 (mm)
240-171981-10	MSA-SW40B-082222	08/29/2022 17:26	1	227991.D	DB-624 0.18 (mm)
240-171981-11	MSA-SW40C-082222	08/29/2022 17:49	1	227992.D	DB-624 0.18 (mm)
240-171981-12	MSA-SW40D-082222	08/29/2022 18:13	1	227993.D	DB-624 0.18 (mm)
240-171981-13	MSA-SW41A-082222	08/29/2022 18:37	1	227994.D	DB-624 0.18 (mm)
240-171981-14	MSA-SW41B-082222	08/29/2022 19:01	1	227995.D	DB-624 0.18 (mm)
240-171981-15	MSA-SW41C-082222	08/29/2022 19:24	1	227996.D	DB-624 0.18 (mm)
240-171981-16	MSA-SW41D-082222	08/29/2022 19:48	1	227997.D	DB-624 0.18 (mm)
240-171981-17	MSA-SW42A-082222	08/29/2022 20:11	1	227998.D	DB-624 0.18 (mm)
240-171981-18	MSA-SW42B-082222	08/29/2022 20:35	1	227999.D	DB-624 0.18 (mm)
240-171981-19	MSA-SW42C-082222	08/29/2022 20:59	1	228000.D	DB-624 0.18 (mm)
ZZZZZ		08/29/2022 21:22	5		DB-624 0.18 (mm)
ZZZZZ		08/29/2022 21:46	5		DB-624 0.18 (mm)
ZZZZZ		08/29/2022 22:10	5		DB-624 0.18 (mm)

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 Start Date: 08/30/2022 13:27

Analysis Batch Number: 540740 End Date: 08/31/2022 00:51

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-540740/10		08/30/2022 13:27	1	BFB22346.D	DB-624 0.18 (mm)
CCVIS 240-540740/3		08/30/2022 14:10	1	228006.D	DB-624 0.18 (mm)
CCV 240-540740/4		08/30/2022 14:34	1	228007.D	DB-624 0.18 (mm)
LCS 240-540740/5		08/30/2022 14:58	1	228008.D	DB-624 0.18(mm)
LCS 240-540740/6		08/30/2022 15:21	1	228009.D	DB-624 0.18 (mm)
ZZZZZ		08/30/2022 15:45	1		DB-624 0.18 (mm)
MB 240-540740/8		08/30/2022 16:09	1	228011.D	DB-624 0.18(mm)
ZZZZZ		08/30/2022 16:33	1		DB-624 0.18 (mm)
240-171981-25	TB-082222	08/30/2022 16:57	1	228013.D	DB-624 0.18(mm)
240-171981-30	MSA-SWEQB-082222	08/30/2022 17:20	1	228014.D	DB-624 0.18(mm)
240-171981-20	MSA-SW42D-082222	08/30/2022 17:44	1	228015.D	DB-624 0.18(mm)
240-171981-21	MSA-SW43A-082222	08/30/2022 18:08	1	228016.D	DB-624 0.18(mm)
240-171981-22	MSA-SW43B-082222	08/30/2022 18:31	1	228017.D	DB-624 0.18(mm)
240-171981-23	MSA-SW43C-082222	08/30/2022 18:55	1	228018.D	DB-624 0.18(mm)
240-171981-24	MSA-SW43D-082222	08/30/2022 19:18	1	228019.D	DB-624 0.18(mm)
240-171981-26	MSA-SW46A-082222	08/30/2022 19:42	1	228020.D	DB-624 0.18(mm)
240-171981-27	MSA-SW47A-082222	08/30/2022 20:06	1	228021.D	DB-624 0.18(mm)
240-171981-28	MSA-SW48A-082222	08/30/2022 20:29	1	228022.D	DB-624 0.18(mm)
240-171981-29	MSA-SW49A-082222	08/30/2022 20:53	1	228023.D	DB-624 0.18(mm)
ZZZZZ		08/30/2022 21:17	1		DB-624 0.18(mm)
ZZZZZ		08/30/2022 21:41	1		DB-624 0.18 (mm)
ZZZZZ		08/30/2022 22:04	1		DB-624 0.18(mm)
ZZZZZ		08/30/2022 22:28	1		DB-624 0.18(mm)
ZZZZZ		08/30/2022 22:52	50		DB-624 0.18(mm)
ZZZZZ		08/30/2022 23:16	50		DB-624 0.18(mm)
ZZZZZ		08/30/2022 23:40	50		DB-624 0.18(mm)
ZZZZZ		08/31/2022 00:03	400		DB-624 0.18(mm)
ZZZZZ		08/31/2022 00:27	400		DB-624 0.18(mm)
ZZZZZ		08/31/2022 00:51	400		DB-624 0.18 (mm)

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 522080 Batch Start Date: 04/07/22 15:03 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	vm25UX18IS 00004	vm25UX18SS 00005	vm50ss 00470	VMAROLISTDW 00432
BFB 240-522080/1		8260C		5 mL	5 mL				
IC 240-522080/3		8260C		5 mL	5 mL	5.78 uL		0.4 uL	0.4 uL
IC 240-522080/4		8260C		5 mL	5 mL	5.78 uL		0.8 uL	0.8 uL
IC 240-522080/5		8260C		5 mL	5 mL	5.78 uL		2 uL	2 uL
IC 240-522080/6		8260C		5 mL	5 mL	5.78 uL	1.156 uL		5 uL
IC 240-522080/7		8260C		5 mL	5 mL	5.78 uL	2.224 uL		10 uL
ICIS 240-522080/8		8260C		5 mL	5 mL	5.78 uL	5.78 uL		20 uL
IC 240-522080/9		8260C		5 mL	5 mL	5.78 uL	9.248 uL		30 uL
IC 240-522080/10		8260C		5 mL	5 mL	5.78 uL	11.56 uL		40 uL
IC 240-522080/11		8260C		5 mL	5 mL	5.78 uL	15.028 uL		50 uL
IC 240-522080/18		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/19		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/20		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/21		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/22		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/23		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/24		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/25		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/26		8260C		5 mL	5 mL	5.78 uL			
ICV 240-522080/28		8260C		5 mL	5 mL	5.78 uL	5.78 uL		

Lab Sample ID	Client Sample ID	Method Chain	Basis	vmbfb 00028	VMFASA9W 00354	VMRA9W 00430	VMRGAS 00421	VMRPRIMW 00476	
BFB 240-522080/1		8260C		1 uL					

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 1 of 3

Lab Name: Eurofins Canton	Job No.: 240-171981-1
---------------------------	-----------------------

SDG No.: MSA Frog Mortar Creek

Batch Number: 522080 Batch Start Date: 04/07/22 15:03 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Basis	vmbfb 00028	VMFASA9W 00354	VMRA9W 00430	VMRGAS 00421	VMRPRIMW 00476
IC 240-522080/3		8260C					0.4 uL	0.4 uL
IC 240-522080/4		8260C					0.8 uL	0.8 uL
IC 240-522080/5		8260C					2 uL	2 uL
IC 240-522080/6		8260C					5 uL	5 uL
IC 240-522080/7		8260C					10 uL	10 uL
ICIS 240-522080/8		8260C					20 uL	20 uL
IC 240-522080/9		8260C					30 uL	30 uL
IC 240-522080/10		8260C					40 uL	40 uL
IC 240-522080/11		8260C					50 uL	50 uL
IC 240-522080/18		8260C				0.4 uL		
IC 240-522080/19		8260C				0.8 uL		
IC 240-522080/20		8260C				2 uL		
IC 240-522080/21		8260C				5 uL		
IC 240-522080/22		8260C				10 uL		
IC 240-522080/23		8260C				20 uL		
IC 240-522080/24		8260C				30 uL		
IC 240-522080/25		8260C				40 uL		
IC 240-522080/26		8260C				50 uL		
ICV 240-522080/28		8260C			20 uL			

	Batch Notes
f	

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C

Page 2 of 3

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 522080 Batch Start Date: 04/07/22 15:03 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Basis	Basis Description

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 3 of 3

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 524416 Batch Start Date: 04/28/22 15:10 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	vm25UX18IS 00004	vm25UX18SS 00005	vm50ss 00472	VMAROLISTDW 00435
BFB 240-524416/1		8260C		5 mL	5 mL				
IC 240-524416/3		8260C		5 mL	5 mL	5.78 uL		0.4 uL	0.4 uL
IC 240-524416/4		8260C		5 mL	5 mL	5.78 uL		0.8 uL	0.8 uL
IC 240-524416/5		8260C		5 mL	5 mL	5.78 uL		2 uL	2 uL
IC 240-524416/6		8260C		5 mL	5 mL	5.78 uL	1.156 uL		5 uL
IC 240-524416/7		8260C		5 mL	5 mL	5.78 uL	2.224 uL		10 uL
ICIS 240-524416/8		8260C		5 mL	5 mL	5.78 uL	5.78 uL		20 uL
IC 240-524416/9		8260C		5 mL	5 mL	5.78 uL	9.248 uL		30 uL
IC 240-524416/10		8260C		5 mL	5 mL	5.78 uL	11.56 uL		40 uL
IC 240-524416/11		8260C		5 mL	5 mL	5.78 uL	15.028 uL		50 uL
ICV 240-524416/14		8260C		5 mL	5 mL	5.78 uL	5.78 uL		

Lab Sample ID	Client Sample ID	Method Chain	Basis	vmbfb 00028	VMFASAW 00415	VMFASGW 00452	VMFASPW 00441	VMRGAS 00424	VMRPRIMW 00479
BFB 240-524416/1		8260C		1 uL					
IC 240-524416/3		8260C						0.4 uL	0.4 uL
IC 240-524416/4		8260C						0.8 uL	0.8 uL
IC 240-524416/5		8260C						2 uL	2 uL
IC 240-524416/6		8260C						5 uL	5 uL
IC 240-524416/7		8260C						10 uL	10 uL
ICIS 240-524416/8		8260C						20 uL	20 uL
IC 240-524416/9		8260C						30 uL	30 uL
IC 240-524416/10		8260C						40 uL	40 uL
IC 240-524416/11		8260C						50 uL	50 uL
ICV 240-524416/14		8260C			20 uL	20 uL	20 uL		

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 1 of 2

Lab Name: Eurofins Canton	Job No.: <u>240-171981-1</u>	
SDG No.: MSA Frog Mortar Creek		
Batch Number: 524416	Batch Start Date: 04/28/22 15:10	Batch Analyst: Macenczak, Steven
Batch Method: 8260C	Batch End Date:	
	Batch Notes	

Basis

Basis Description

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 2 of 2

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 540508 Batch Start Date: 08/29/22 10:47 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	vm25UX18IS 00005	vm25UX18SS 00006	VMAROLISTDW 00451
BFB 240-540508/1		8260C		5 mL	5 mL				
CCVIS 240-540508/3		8260C		5 mL	5 mL		5.78 uL	5.78 uL	20 uL
CCV 240-540508/4		8260C		5 mL	5 mL		5.78 uL		
LCS 240-540508/5		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
LCS 240-540508/6		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
MB 240-540508/8		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
240-171981-B-1	MSA-SW37A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-2	MSA-SW37B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-3	MSA-SW37C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-4	MSA-SW37D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-5	MSA-SW38A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-6	MSA-SW38B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-7	MSA-SW38C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-C-8	MSA-SW38D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-9	MSA-SW40A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-10	MSA-SW40B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-11	MSA-SW40C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-12	MSA-SW40D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-13	MSA-SW41A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-14	MSA-SW41B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-15	MSA-SW41C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-16	MSA-SW41D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-17	MSA-SW42A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-18	MSA-SW42B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-19	MSA-SW42C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
Lab Sample TD	Client Sample ID	Method Chain	Basis	vmbfb 00030	VMFASA9W 00371	VMFASAW 00431	VMFASGW 00469	VMFASPW 00456	VMRA9W 00448

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 1 of 4

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 540508 Batch Start Date: 08/29/22 10:47 Batch Analyst: Macenczak, Steven

Batch End Date:

Batch Method: 8260C

240-540508/1

Lab Sample ID	Client Sample ID	Method Chain	Basis	vmbfb 00030	VMFASA9W 00371	VMFASAW 00431	VMFASGW 00469	VMFASPW 00456	VMRA9W 00448
BFB		8260C		1 uL					
240-540508/1		0000							
CCVIS 240-540508/3		8260C							
CCV		8260C							20 uL
240-540508/4									
LCS		8260C				20 uL	20 uL	20 uL	
240-540508/5 LCS		8260C			20 uL				
240-540508/6		02000			20 45				
MB 240-540508/8		8260C							
240-171981-B-1	MSA-SW37A-082222	8260C	Т						
240-171981-B-2	MSA-SW37B-082222	8260C	Т						
240-171981-B-3	MSA-SW37C-082222	8260C	Т						
240-171981-B-4	MSA-SW37D-082222	8260C	Т						
240-171981-B-5	MSA-SW38A-082222	8260C	Т						
240-171981-B-6	MSA-SW38B-082222	8260C	Т						
240-171981-B-7	MSA-SW38C-082222	8260C	Т						
240-171981-C-8	MSA-SW38D-082222	8260C	Т						
240-171981-B-9	MSA-SW40A-082222	8260C	Т						
240-171981-B-10	MSA-SW40B-082222	8260C	Т						
240-171981-B-11	MSA-SW40C-082222	8260C	Т						
240-171981-B-12	MSA-SW40D-082222	8260C	Т						
240-171981-B-13	MSA-SW41A-082222	8260C	Т						
240-171981-B-14	MSA-SW41B-082222	8260C	Т						
240-171981-B-15	MSA-SW41C-082222	8260C	Т						
240-171981-B-16	MSA-SW41D-082222	8260C	Т						
240-171981-B-17	MSA-SW42A-082222	8260C	Т						
240-171981-B-18	MSA-SW42B-082222	8260C	Т						
240-171981-B-19	MSA-SW42C-082222	8260C	Т						
			'						
Lab Sample ID	Client Sample ID	Method Chain	Basis	VMRGAS 00439	VMRPRIMW 00495				
BFB	·	8260C							

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 2 of 4

Lab Name: Eurofins Canton	Job No.: 240-171981-1	
SDG No.: MSA Frog Mortar Creek		
Batch Number: 540508	Batch Start Date: 08/29/22 10:47	Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	VMRGAS 00439	VMRPRIMW 00495		
CCVIS 240-540508/3		8260C		20 uL	20 uL		
CCV 240-540508/4		8260C					
LCS 240-540508/5		8260C					
LCS 240-540508/6		8260C					
MB 240-540508/8		8260C					
240-171981-B-1	MSA-SW37A-082222	8260C	Т				
240-171981-B-2	MSA-SW37B-082222	8260C	Т				
240-171981-B-3	MSA-SW37C-082222	8260C	Т				
240-171981-B-4	MSA-SW37D-082222	8260C	Т				
240-171981-B-5	MSA-SW38A-082222	8260C	Т				
240-171981-B-6	MSA-SW38B-082222	8260C	Т				
240-171981-B-7	MSA-SW38C-082222	8260C	Т				
240-171981-C-8	MSA-SW38D-082222	8260C	Т				
240-171981-B-9	MSA-SW40A-082222	8260C	Т				
240-171981-B-10	MSA-SW40B-082222	8260C	Т				
240-171981-B-11	MSA-SW40C-082222	8260C	Т				
240-171981-B-12	MSA-SW40D-082222	8260C	Т				
240-171981-B-13	MSA-SW41A-082222	8260C	Т				
240-171981-B-14	MSA-SW41B-082222	8260C	Т				
240-171981-B-15	MSA-SW41C-082222	8260C	Т				
240-171981-B-16	MSA-SW41D-082222	8260C	Т				
240-171981-B-17	MSA-SW42A-082222	8260C	Т				
240-171981-B-18	MSA-SW42B-082222	8260C	Т				
240-171981-B-19	MSA-SW42C-082222	8260C	Т				

Batch	Notes
pH Indicator ID	HC281827

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 3 of 4

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 540508 Batch Start Date: 08/29/22 10:47 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 4 of 4

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 540740 Batch Start Date: 08/30/22 13:27 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	vm25UX18IS 00005	vm25UX18SS 00006	VMAROLISTDW 00452
CCVIS 240-540740/3		8260C		5 mL	5 mL		5.78 uL	5.78 uL	20 uL
CCV 240-540740/4		8260C		5 mL	5 mL		5.78 uL		
LCS 240-540740/5		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
LCS 240-540740/6		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
MB 240-540740/8		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
BFB 240-540740/10		8260C		5 mL	5 mL				
240-171981-A-25	TB-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-30	MSA-SWEQB-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-20	MSA-SW42D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-21	MSA-SW43A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-22	MSA-SW43B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-C-23	MSA-SW43C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-C-24	MSA-SW43D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-26	MSA-SW46A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-27	MSA-SW47A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-28	MSA-SW48A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-29	MSA-SW49A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	

Lab Sample ID	Client Sample ID	Method Chain	Basis	vmbfb 00030	VMFASA9W 00371	VMFASAW 00431	VMFASGW 00470	VMFASPW 00457	VMRA9W 00448
CCVIS 240-540740/3		8260C							
CCV 240-540740/4		8260C							20 uL
LCS 240-540740/5		8260C				20 uL	20 uL	20 uL	
LCS 240-540740/6		8260C			20 uL				
MB 240-540740/8		8260C							
BFB 240-540740/10		8260C		1 uL					

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 1 of 3

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Batch Number: 540740 Batch Start Date: 08/30/22 13:27 Batch Analyst: Macenczak, Steven Batch Method: 8260C Batch End Date: Lab Sample ID | Client Sample ID | Method Chain | Basis VMFASA9W 00371 VMFASAW 00431 VMFASGW 00470 VMFASPW 00457 VMRA9W 00448 vmbfb 00030 240-171981-A-25 TB-082222 8260C 240-171981-B-30 MSA-SWEQB-082222 8260C Т 240-171981-B-20 MSA-SW42D-082222 8260C Т 240-171981-B-21 MSA-SW43A-082222 8260C 240-171981-B-22 MSA-SW43B-082222 8260C 240-171981-C-23 MSA-SW43C-082222 8260C Т 240-171981-C-24 MSA-SW43D-082222 8260C 240-171981-B-26 MSA-SW46A-082222 8260C 240-171981-B-27 MSA-SW47A-082222 8260C 240-171981-B-28 MSA-SW48A-082222 8260C Т 240-171981-B-29 MSA-SW49A-082222 8260C Lab Sample ID | Client Sample ID | Method Chain | Basis VMRGAS 00439 VMRPRIMW 00495 CCVIS 8260C 20 uL 20 uL 240-540740/3 CCV 82.60C 240-540740/4 LCS 8260C 240-540740/5 8260C LCS 240-540740/6 MB 240-540740/8 8260C BFB 8260C 240-540740/10 240-171981-A-25 TB-082222 8260C Т 240-171981-B-30 MSA-SWEQB-082222 8260C Т 240-171981-B-20 MSA-SW42D-082222 8260C Т

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Т

Т

Т

Τ

Т

Т

240-171981-B-21 MSA-SW43A-082222 8260C

240-171981-B-22 MSA-SW43B-082222 8260C

240-171981-C-23 MSA-SW43C-082222 8260C

240-171981-C-24 MSA-SW43D-082222 8260C

240-171981-B-26 MSA-SW46A-082222 8260C

240-171981-B-27 MSA-SW47A-082222 8260C

8260C Page 2 of 3

Lab Name: Eurofins Canton Job No.: 240-171981-1	ab Name:	Eurofins Canton	Job No.: 240-171981-1	
---	----------	-----------------	-----------------------	--

SDG No.: MSA Frog Mortar Creek

Batch Number: 540740 Batch Start Date: 08/30/22 13:27 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	VMRGAS 00439	VMRPRIMW 00495		
240-171981-B-28	MSA-SW48A-082222	8260C	T				
240-171981-B-29	MSA-SW49A-082222	8260C	Т				

Batch	Notes
pH Indicator ID	HC178690

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 3 of 3

SAMPLE		
LCS		
Benzene		
985970		
Fluorobenzene		
1131958		
28.9	μg/l	
1.036		
1		
5	ml	
5	ml	
=	24.30	μg/l
	LCS Benzene 985970 Fluorobenzene 1131958 28.9 1.036 1 5	LCS Benzene 985970 Fluorobenzene 1131958 28.9 µg/l 1.036 1 5 ml 5 ml

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Canton	Job No.: 240-171981-1					
SDG No.: MSA Frog Mortar Creek						
Client Sample ID:	Lab Sample ID: LCS 240-540508/5					
Matrix: Water	Lab File ID: 227978.D					
Analysis Method: 8260C	Date Collected:					
Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 12:18						
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)					
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH:					
% Moisture: % Solids:	Level: (low/med) Low					
Analysis Batch No.: 540508	Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	47.6		10	5.4
71-43-2	Benzene	24.3		1.0	0.42
108-86-1	Bromobenzene	27.5		1.0	0.50
74-97-5	Bromochloromethane	21.5		1.0	0.54
75-27-4	Bromodichloromethane	23.7		1.0	0.17
75-25-2	Bromoform	31.6		1.0	0.76
74-83-9	Bromomethane	13.6		1.0	0.42
78-93-3	2-Butanone	51.3		10	1.2
75-15-0	Carbon disulfide	22.8		1.0	0.59
56-23-5	Carbon tetrachloride	27.1		1.0	0.26
108-90-7	Chlorobenzene	25.3		1.0	0.38
75-00-3	Chloroethane	13.0		1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	24.3		10	1.5
67-66-3	Chloroform	22.6		1.0	0.47
74-87-3	Chloromethane	20.1		1.0	0.63
95-49-8	2-Chlorotoluene	25.8		1.0	0.57
106-43-4	4-Chlorotoluene	26.7		1.0	0.43
156-59-2	cis-1,2-Dichloroethene	23.2		1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	24.7		1.0	0.61
124-48-1	Dibromochloromethane	27.2		1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	27.6		2.0	0.91
106-93-4	1,2-Dibromoethane	25.6		1.0	0.41
74-95-3	Dibromomethane	27.3		1.0	0.40
95-50-1	1,2-Dichlorobenzene	25.9		1.0	0.48
541-73-1	1,3-Dichlorobenzene	26.1		1.0	0.45
106-46-7	1,4-Dichlorobenzene	26.1		1.0	0.41
75-71-8	Dichlorodifluoromethane	18.9		1.0	0.35
75-34-3	1,1-Dichloroethane	22.9		1.0	0.47
107-06-2	1,2-Dichloroethane	22.0		1.0	0.21
75-35-4	1,1-Dichloroethene	24.3		1.0	0.49
78-87-5	1,2-Dichloropropane	24.1		1.0	0.47
142-28-9	1,3-Dichloropropane	24.9		1.0	0.21
594-20-7	2,2-Dichloropropane	24.2		1.0	0.78
563-58-6	1,1-Dichloropropene	24.7		1.0	0.36

Report Date: 30-Aug-2022 10:04:38 Chrom Revision: 2.3 25-Aug-2022 20:53:54

Eurofins Canton

Target Compound Quantitation Report

Data File: \\chromfs\Canton\ChromData\A3UX22\20220829-121648.b\227978.D

Lims ID: LCS

Client ID:

Sample Type: LCS

Inject. Date: 29-Aug-2022 12:18:00 ALS Bottle#: 0 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 240-0121648-005

Operator ID: 002808 Instrument ID: A3UX22

Method: \\chromfs\Canton\ChromData\A3UX22\20220829-121648.b\8260_22.m

Limit Group: MSV 8260C ICAL

Last Update:30-Aug-2022 10:04:36Calib Date:28-Apr-2022 19:03:07Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Canton\ChromData\A3UX22\20220428-118083.b\225403.D

Column 1: DB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: SE1B Date: 29-Aug-2022 12:48:08

First Level Reviewer: SE1B			D.	ate:		29-Aug-202	22 12:48:08		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
1 Fluorobenzene	96	6.955	6.955	0.000	99	1131958	28.9	28.9	
2 Chlorobenzene-d5	117	10.168	10.168	0.000	87	849189	28.9	28.9	
* 3 1,4-Dichlorobenzene-d4	152	12.173	12.172	0.001	96	437484	28.9	28.9	
\$ 4 Dibromofluoromethane (Surr)	111	6.160	6.160	0.000	93	311062	28.9	29.6	
\$ 51,2-Dichloroethane-d4 (Surr)	65	6.611	6.611	0.000	98	331613	28.9	27.6	
\$ 6 Toluene-d8 (Surr)	98	8.722	8.722	0.000	94	1208227	28.9	30.9	
\$ 7 4-Bromofluorobenzene (Surr)	95	11.224	11.212	0.012	96	436141	28.9	29.5	
9 Dichlorodifluoromethane	85	1.144	1.132	0.012	99	203911	25.0	18.9	
10 Chloromethane	50	1.310	1.310	0.000	99	245051	25.0	20.1	
12 Vinyl chloride	62	1.405	1.405	0.000	98	283153	25.0	20.6	
11 Butadiene	54	1.429	1.429	0.001	89	241122	25.0	17.8	
13 Bromomethane	94	1.701	1.701	0.000	90	77434	25.0	13.6	
15 Chloroethane	64	1.796	1.796	0.000	98	120893	25.0	13.0	M
17 Trichlorofluoromethane	101	2.010	2.010	0.000	98	305466	25.0	17.8	
16 Dichlorofluoromethane	67	2.033	2.033	0.000	97	376385	25.0	17.2	
18 Ethyl ether	59	2.377	2.377	0.000	90	173973	25.0	18.7	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.579	2.579	0.000	94	228569	25.0	25.0	
20 1,1-Dichloroethene	96	2.603	2.603	0.001	98	216009	25.0	24.3	
19 Acrolein	56	2.603	2.603	0.001	73	219115	125.0	104.2	
22 Acetone	43	2.804	2.804	0.000	100	244904	50.0	47.6	
24 Iodomethane	142	2.804	2.804	0.000	68	146711	25.0	18.6	
25 Carbon disulfide	76	2.828	2.828	0.000	99	645224	25.0	22.8	
27 3-Chloro-1-propene	41	3.113	3.112	0.001	91	314105	25.0	22.7	
28 Methyl acetate	43	3.196	3.195	0.001	97	530378	50.0	48.4	
29 Methylene Chloride	84	3.338	3.338	0.000	90	251573	25.0	23.7	
30 2-Methyl-2-propanol	59	3.599	3.599	0.000	97	509760	250.0	286.3	
33 Methyl tert-butyl ether	73	3.646	3.646	0.000	92	666301	25.0	23.4	
32 trans-1,2-Dichloroethene	96	3.658	3.658	0.000	74	237945	25.0	23.4	
31 Acrylonitrile	53	3.848	3.848	0.000	98	1461348	250.0	245.7	
34 Hexane	57	3.966	3.966	0.000	91	312273	25.0	24.0	
35 1,1-Dichloroethane	63	4.453	4.441	0.012	96	420072	25.0	22.9	
36 Vinyl acetate	43	4.595	4.595	0.000	97	348113	25.0	24.1	
•									

Data File: \\chromfs\Car	nton\Cl	nromData	\A3UX22\	20220829	9-1216	48.b\227978.D			
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
42 2,2-Dichloropropane	97	5.378	5.366	0.012	92	61073	25.0	24.2	
41 cis-1,2-Dichloroethene	96	5.449	5.449	0.000	79	262557	25.0	23.2	
40 2-Butanone (MEK)	72	5.544	5.543	0.001	99	102824	50.0	51.3	
47 Tetrahydrofuran	42	5.793	5.792	0.001	86	246305	50.0	48.0	
46 Chlorobromomethane	49	5.793	5.792	0.001	90	182480	25.0	21.5	
48 Chloroform	83	5.935	5.935	0.000	93	420475	25.0	22.6	
50 Cyclohexane	84	6.006	6.006	0.000	89	365751	25.0	23.3	
49 1,1,1-Trichloroethane	97	6.065	6.065	0.000	99	354913	25.0	23.7	
52 Carbon tetrachloride	117	6.219	6.219	0.000	97	303644	25.0	27.1	
51 1,1-Dichloropropene	75	6.291	6.291	0.000	98	339852	25.0	24.7	
54 Benzene	78	6.552	6.551	0.001	95	985970	25.0	24.3	
53 Isobutyl alcohol	41	6.682	6.682	0.000	92	360489	625.0	767.9	
55 1,2-Dichloroethane	62	6.706	6.706	0.000	98	313408	25.0	22.0	
57 n-Heptane	100	6.836	6.836	0.000	90	54488	25.0	20.7	
59 Trichloroethene	130	7.370	7.370	0.000	99	264103	25.0	26.5	
61 Methylcyclohexane	83	7.477	7.476	0.000	89	382078	25.0	23.1	
62 1,2-Dichloropropane	63	7.690	7.690	0.000	96	240970	25.0	24.1	
64 Dibromomethane	174	7.820	7.820	0.000	96	166468	25.0	27.3	
65 1,4-Dioxane	88	7.844	7.844	0.000	93	129465	500.0	609.9	
66 Dichlorobromomethane	83	8.010	8.010	0.000	99	314226	25.0	23.7	
68 2-Chloroethyl vinyl ether	63	8.390	8.390	0.000	92	175583	25.0	24.3	
69 cis-1,3-Dichloropropene	75	8.508	8.508	0.000	96	366906	25.0	24.7	
70 4-Methyl-2-pentanone (MIBK)	43	8.686	8.686	0.000	96	647957	50.0	50.5	
71 Toluene	91	8.793	8.793	0.000	98	1038553	25.0	24.3	
72 trans-1,3-Dichloropropene	75	9.137	9.137	0.000	92	326371	25.0	26.2	
73 Ethyl methacrylate	69	9.184	9.184	0.000	88	318218	25.0	26.0	
74 1,1,2-Trichloroethane	97	9.303	9.303	0.000	93	227552	25.0	25.3	
75 Tetrachloroethene	166	9.315	9.314	0.001	95	258527	25.0	28.5	
76 1,3-Dichloropropane	76	9.469	9.469	0.000	89	398083	25.0	24.9	
77 2-Hexanone	43	9.540	9.540	0.000	96	515931	50.0	51.9	
79 Chlorodibromomethane	129	9.647	9.647	0.000	90	237619	25.0	27.2	
81 Ethylene Dibromide	107	9.753	9.753	0.000	99	239320	25.0	25.6	
83 Chlorobenzene	112	10.192	10.192	0.000	95	660411	25.0	25.3	
85 Ethylbenzene	106	10.263	10.263	0.000	99	353579	25.0	24.6	
84 1,1,1,2-Tetrachloroethane	131	10.287	10.287	0.000	95	225670	25.0	29.1	
86 m-Xylene & p-Xylene	106	10.382	10.382	0.000	100	434238	25.0	24.5	
87 o-Xylene	106	10.738	10.738	0.000	97	421128	25.0	24.5	
88 Styrene	104	10.761	10.761	0.000	94	718278	25.0	24.9	
89 Bromoform	173	10.939	10.939	0.000	97	176970	25.0	31.6	
90 Isopropylbenzene	105	11.046	11.046	0.000	96	1102994	25.0	24.5	
95 Bromobenzene	156	11.331	11.330	0.001	94	277838	25.0	27.5	
93 1,1,2,2-Tetrachloroethane	83	11.378	11.378	0.000	93	382162	25.0	26.3	
98 N-Propylbenzene	120	11.402	11.402	0.000	98	301817	25.0	24.9	
96 1,2,3-Trichloropropane	110	11.425	11.425	0.000	85	120786	25.0	25.9	
97 trans-1,4-Dichloro-2-butene	53	11.437	11.437	0.000	90	106694	25.0	30.1	
100 2-Chlorotoluene	126	11.485	11.485	0.000	96	264246	25.0	25.8	
101 1,3,5-Trimethylbenzene	105	11.556	11.556	0.000	95	911378	25.0	24.5	
102 4-Chlorotoluene	126	11.591	11.591	0.000	97	279778	25.0	26.7	
103 tert-Butylbenzene	119	11.817	11.817	0.000	93	759855	25.0	24.0	
105 1,2,4-Trimethylbenzene	105	11.864	11.864	0.000	97	935231	25.0	24.3	
106 sec-Butylbenzene	105	11.995	11.995	0.000	94	1116428	25.0	23.2	
108 4-Isopropyltoluene	119	12.113	12.113	0.000	97	949417	25.0	24.0	
100 T-130propyrioliderie	1 1 7	12.113	12.113	0.000	/ /	/ 7 / 7 1 /	25.0	۷٦.0	

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540508/3 Calibration Date: 08/29/2022 11:30

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 227976.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2760	0.2962	0.1000	0.0268	0.0250	7.3	20.0
Chloromethane	Ave	0.3111	0.2889	0.1000	0.0232	0.0250	-7.1	20.0
Vinyl chloride	Ave	0.3509	0.3143	0.1000	0.0224	0.0250	-10.4	20.0
Butadiene	Ave	0.3466	0.2783		0.0201	0.0250	-19.7	20.0
Bromomethane	Lin1		0.0837	0.0500	0.0144	0.0250	-42.2*	20.0
Chloroethane	Qua		0.1435	0.0500	0.0155	0.0250	-38.2*	20.0
Trichlorofluoromethane	Ave	0.4379	0.3651	0.1000	0.0208	0.0250	-16.6	20.0
Dichlorofluoromethane	Ave	0.5584	0.4368		0.0196	0.0250	-21.8*	20.0
Ethyl ether	Ave	0.2372	0.1965		0.0207	0.0250	-17.2	20.0
1,1,2-Trichloro-1,2,2-trichf luoroethane	Ave	0.2330	0.2411	0.0500	0.0259	0.0250	3.5	20.0
1,1-Dichloroethene	Ave	0.2272	0.2238	0.1000	0.0246	0.0250	-1.5	20.0
Acrolein	Ave	0.0537	0.0319		0.0743	0.125	-40.5*	20.0
Acetone	Lin1		0.1327	0.0100	0.0506	0.0500	1.3	50.0
Iodomethane	Ave	0.2017	0.1416		0.0175	0.0250	-29.8*	20.0
Carbon disulfide	Ave	0.7226	0.7116	0.1000	0.0246	0.0250	-1.5	20.0
3-Chloro-1-propene	Ave	0.3537	0.3346		0.0236	0.0250	-5.4	20.0
Methyl acetate	Ave	0.2800	0.2777	0.1000	0.0496	0.0500	-0.8	50.0
Methylene Chloride	Ave	0.2714	0.2711	0.1000	0.0250	0.0250	-0.1	50.0
tert-Butyl alcohol	Ave	0.0455	0.0551		0.303	0.250	21.2*	20.0
Methyl tert-butyl ether	Ave	0.7279	0.7100	0.1000	0.0244	0.0250	-2.5	20.0
trans-1,2-Dichloroethene	Ave	0.2593	0.2618	0.1000	0.0252	0.0250	1.0	20.0
Acrylonitrile	Ave	0.1519	0.1563		0.257	0.250	2.9	20.0
Hexane	Ave	0.3325	0.3482		0.0262	0.0250	4.7	20.0
1,1-Dichloroethane	Ave	0.4686	0.4645	0.2000	0.0248	0.0250	-0.9	20.0
Vinyl acetate	Ave	0.3689	0.4444		0.0301	0.0250	20.5*	20.0
2,2-Dichloropropane	Ave	0.0644	0.0696		0.0270	0.0250	8.1	20.0
cis-1,2-Dichloroethene	Ave	0.2889	0.2821	0.1000	0.0244	0.0250	-2.4	20.0
2-Butanone	Ave	0.0512	0.0549	0.0100	0.0536	0.0500	7.2	50.0
Bromochloromethane	Ave	0.2162	0.2030		0.0235	0.0250	-6.1	20.0
Tetrahydrofuran	Ave	0.1309	0.1326		0.0506	0.0500	1.3	20.0
Chloroform	Ave	0.4748	0.4525	0.2000	0.0238	0.0250	-4.7	20.0
Cyclohexane	Ave	0.4000	0.3929	0.1000	0.0246	0.0250	-1.8	20.0
1,1,1-Trichloroethane	Ave	0.3821	0.3851	0.1000	0.0252	0.0250	0.8	20.0
Carbon tetrachloride	Ave	0.2864	0.3335	0.1000	0.0291	0.0250	16.4	20.0
1,1-Dichloropropene	Ave	0.3519	0.3733		0.0265	0.0250	6.1	20.0
Benzene	Ave	1.036	1.078	0.5000	0.0260	0.0250	4.0	20.0
Isobutyl alcohol	Qua		0.0155		0.799	0.625	27.8*	20.0
1,2-Dichloroethane	Ave	0.3644	0.3414	0.1000	0.0234	0.0250	-6.3	20.0
n-Heptane	Ave	0.0673	0.0607		0.0225	0.0250	-9.8	20.0
Trichloroethene	Ave	0.2548	0.2737	0.1500	0.0269	0.0250	7.4	20.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540508/3 Calibration Date: 08/29/2022 11:30

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: $0.18 \, (mm)$ Calib End Date: 0.4/28/2022 19:03

Lab File ID: 227976.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4217	0.4048	0.1000	0.0240	0.0250	-4.0	20.0
1,2-Dichloropropane	Ave	0.2550	0.2581	0.1000	0.0253	0.0250	1.2	20.0
Dibromomethane	Ave	0.1559	0.1723		0.0276	0.0250	10.5	20.0
1,4-Dioxane	Lin1		0.0068		0.631	0.500	26.2	50.0
Bromodichloromethane	Ave	0.3392	0.3281	0.1500	0.0242	0.0250	-3.3	20.0
2-Chloroethyl vinyl ether	Ave	0.1846	0.1949		0.0528	0.0500	5.6	20.0
cis-1,3-Dichloropropene	Ave	0.3798	0.3989	0.1500	0.0263	0.0250	5.0	50.0
4-Methyl-2-pentanone	Ave	0.3275	0.3458	0.0500	0.0528	0.0500	5.6	50.0
Toluene	Ave	1.453	1.500	0.4000	0.0258	0.0250	3.2	20.0
trans-1,3-Dichloropropene	Ave	0.4240	0.4701	0.1000	0.0277	0.0250	10.9	20.0
Ethyl methacrylate	Ave	0.4165	0.4473		0.0268	0.0250	7.4	20.0
1,1,2-Trichloroethane	Ave	0.3056	0.3205	0.1000	0.0262	0.0250	4.9	20.0
Tetrachloroethene	Ave	0.3088	0.3718	0.1500	0.0301	0.0250	20.4*	20.0
1,3-Dichloropropane	Ave	0.5437	0.5712		0.0263	0.0250	5.1	20.0
2-Hexanone	Ave	0.3385	0.3601	0.0500	0.0532	0.0500	6.4	50.0
Dibromochloromethane	Ave	0.2969	0.3327		0.0280	0.0250	12.1	20.0
1,2-Dibromoethane	Ave	0.3178	0.3366		0.0265	0.0250	5.9	20.0
Chlorobenzene	Ave	0.8873	0.9439	0.3000	0.0266	0.0250	6.4	20.0
Ethylbenzene	Ave	0.4892	0.4989		0.0255	0.0250	2.0	20.0
1,1,1,2-Tetrachloroethane	Ave	0.2639	0.3231		0.0306	0.0250	22.4*	20.0
m-Xylene & p-Xylene	Ave	0.6020	0.6167		0.0256	0.0250	2.4	20.0
o-Xylene	Ave	0.5852	0.5997		0.0256	0.0250	2.5	20.0
Styrene	Ave	0.9830	1.053	0.3000	0.0268	0.0250	7.2	20.0
Bromoform	Ave	0.1904	0.2631	0.1000	0.0346	0.0250	38.2*	20.0
Isopropylbenzene	Ave	1.533	1.590	0.1000	0.0259	0.0250	3.7	20.0
Bromobenzene	Ave	0.6663	0.7492		0.0281	0.0250	12.4	20.0
1,1,2,2-Tetrachloroethane	Ave	0.9613	1.030	0.3000	0.0268	0.0250	7.1	20.0
n-Propylbenzene	Ave	0.7996	0.8141		0.0255	0.0250	1.8	20.0
1,2,3-Trichloropropane	Ave	0.3079	0.3240		0.0263	0.0250	5.2	20.0
trans-1,4-Dichloro-2-butene	Ave	0.2342	0.2916		0.0311	0.0250	24.5*	20.0
2-Chlorotoluene	Ave	0.6772	0.7326		0.0270	0.0250	8.2	20.0
1,3,5-Trimethylbenzene	Ave	2.456	2.475		0.0252	0.0250	0.7	20.0
4-Chlorotoluene	Ave	0.6912	0.7584		0.0274	0.0250	9.7	20.0
tert-Butylbenzene	Ave	2.088	2.080		0.0249	0.0250	-0.3	20.0
1,2,4-Trimethylbenzene	Ave	2.540	2.545		0.0250	0.0250	0.2	20.0
sec-Butylbenzene	Ave	3.175	3.040		0.0239	0.0250	-4.2	20.0
1,3-Dichlorobenzene	Ave	1.312	1.434	0.6000	0.0273	0.0250	9.3	20.0
p-Isopropyltoluene	Ave	2.611	2.606		0.0249	0.0250	-0.2	20.0
1,4-Dichlorobenzene	Ave	1.336	1.433	0.5000	0.0268	0.0250	7.2	20.0
n-Butylbenzene	Ave	2.485	2.338		0.0235	0.0250	-5.9	20.0
1,2-Dichlorobenzene	Ave	1.272	1.347	0.4000	0.0265	0.0250	5.9	20.0

Report Date: 30-Aug-2022 10:04:35 Chrom Revision: 2.3 25-Aug-2022 20:53:54

Eurofins Canton

Target Compound Quantitation Report

Data File: \\chromfs\Canton\ChromData\A3UX22\20220829-121648.b\227976.D

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 29-Aug-2022 11:30:49 ALS Bottle#: 0 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 240-0121648-003

Operator ID: 002808 Instrument ID: A3UX22

Sublist: chrom-8260_22*sub1

Limit Group: MSV 8260C ICAL

Last Update:30-Aug-2022 10:04:34Calib Date:28-Apr-2022 19:03:07Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Canton\ChromData\A3UX22\20220428-118083.b\225403.D

Column 1 : DB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1619

First Level Reviewer: SE1B Date: 29-Aug-2022 11:51:34

First Level Reviewer: SE1B			D.	ate:		29-Aug-202	22 11:51:34		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
* 1 Fluorobenzene	96	6.955	6.955	0.000	99	1109816	28.9	28.9	
* 2 Chlorobenzene-d5	117	10.168	10.168	0.000	85	823078	28.9	28.9	
* 3 1,4-Dichlorobenzene-d4	152	12.172	12.172	0.000	97	434851	28.9	28.9	
\$ 4 Dibromofluoromethane (Surr)	111	6.160	6.160	0.000	93	311170	28.9	30.2	
\$ 51,2-Dichloroethane-d4 (Surr)	65	6.611	6.611	0.000	97	328270	28.9	27.8	
\$ 6 Toluene-d8 (Surr)	98	8.722	8.722	0.000	94	1191886	28.9	31.5	
\$ 7 4-Bromofluorobenzene (Surr)	95	11.212	11.212	0.000	91	439642	28.9	30.7	
9 Dichlorodifluoromethane	85	1.132	1.132	0.000	99	284348	25.0	26.8	
10 Chloromethane	50	1.310	1.310	0.000	99	277396	25.0	23.2	
12 Vinyl chloride	62	1.405	1.405	0.000	98	301767	25.0	22.4	
11 Butadiene	54	1.429	1.429	0.000	89	267135	25.0	20.1	
13 Bromomethane	94	1.701	1.701	0.000	89	80314	25.0	14.4	
15 Chloroethane	64	1.796	1.796	0.000	99	137802	25.0	15.5	M
17 Trichlorofluoromethane	101	2.010	2.010	0.000	98	350544	25.0	20.8	
16 Dichlorofluoromethane	67	2.033	2.033	0.000	98	419328	25.0	19.6	
18 Ethyl ether	59	2.377	2.377	0.000	90	188629	25.0	20.7	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.579	2.579	0.000	94	231491	25.0	25.9	
20 1,1-Dichloroethene	96	2.603	2.603	0.000	97	214862	25.0	24.6	
19 Acrolein	56	2.603	2.603	0.000	55	153348	125.0	74.3	
22 Acetone	43	2.804	2.804	0.000	100	254853	50.0	50.6	
24 Iodomethane	142	2.804	2.804	0.000	62	135956	25.0	17.5	
25 Carbon disulfide	76	2.828	2.828	0.000	99	683150	25.0	24.6	
27 3-Chloro-1-propene	41	3.112	3.112	0.000	92	321209	25.0	23.6	
28 Methyl acetate	43	3.195	3.195	0.000	97	533292	50.0	49.6	
29 Methylene Chloride	84	3.338	3.338	0.000	91	260233	25.0	25.0	
30 2-Methyl-2-propanol	59	3.599	3.599	0.000	97	528975	250.0	303.0	
33 Methyl tert-butyl ether	73	3.646	3.646	0.000	99	681633	25.0	24.4	
32 trans-1,2-Dichloroethene	96	3.658	3.658	0.000	99	251382	25.0	25.2	
31 Acrylonitrile	53	3.848	3.848	0.000	98	1500718	250.0	257.3	
34 Hexane	57	3.966	3.966	0.000	91	334287	25.0	26.2	
35 1,1-Dichloroethane	63	4.441	4.441	0.000	96	445933	25.0	24.8	
			-	0.40 (0.4				00/0	4 /0000

Data File: \\chromfs\Car	nton\C	•			7-1216	48.b\227976.D			
	6.	RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
2/ \(\frac{1}{2}\) and a salate	40	4 505	4.505	0.000	0.7	40//0/	25.0	20.4	
36 Vinyl acetate	43	4.595	4.595	0.000	97	426606	25.0	30.1	
42 2,2-Dichloropropane	97	5.366	5.366	0.000	92	66789	25.0	27.0	
41 cis-1,2-Dichloroethene	96	5.449	5.449	0.000	79	270864	25.0	24.4	
40 2-Butanone (MEK)	72	5.543	5.543	0.000	99	105366	50.0	53.6	
47 Tetrahydrofuran	42	5.792	5.792	0.000	86	254642	50.0	50.6	
46 Chlorobromomethane	49	5.792	5.792	0.000	91	194873	25.0	23.5	
48 Chloroform	83	5.935	5.935	0.000	93	434415	25.0	23.8	
50 Cyclohexane	84	6.006	6.006	0.000	89	377250	25.0	24.6	
49 1,1,1-Trichloroethane	97	6.065	6.065	0.000	98	369671	25.0	25.2	
52 Carbon tetrachloride	117	6.219	6.219	0.000	97	320153	25.0	29.1	
51 1,1-Dichloropropene	75	6.291	6.291	0.000	98	358391	25.0	26.5	
54 Benzene	78	6.551	6.551	0.000	95	1034617	25.0	26.0	
53 Isobutyl alcohol	41	6.682	6.682	0.000	93	372684	625.0	798.7	
55 1,2-Dichloroethane	62	6.706	6.706	0.000	97	327767	25.0	23.4	
57 n-Heptane	100	6.836	6.836	0.000	89	58295	25.0	22.5	
59 Trichloroethene	130	7.370	7.370	0.000	99	262802	25.0	26.9	
61 Methylcyclohexane	83	7.476	7.476	0.000	89	388594	25.0	24.0	
62 1,2-Dichloropropane	63	7.690	7.690	0.000	97	247798	25.0	25.3	
64 Dibromomethane	174	7.820	7.820	0.000	97	165437	25.0	27.6	
65 1,4-Dioxane	88	7.844	7.844	0.000	93	131424	500.0	631.1	
66 Dichlorobromomethane	83	8.010	8.010	0.000	100	315017	25.0	24.2	
68 2-Chloroethyl vinyl ether	63	8.390	8.390	0.000	91	374295	50.0	52.8	
69 cis-1,3-Dichloropropene	75	8.508	8.508	0.000	96	383010	25.0	26.3	
70 4-Methyl-2-pentanone (MIBK)		8.686	8.686	0.000	96	664023	50.0	52.8	
71 Toluene	91	8.793	8.793	0.000	98	1067812	25.0	25.8	
72 trans-1,3-Dichloropropene	75	9.137	9.137	0.000	92	334740	25.0	27.7	
73 Ethyl methacrylate	69	9.184	9.184	0.000	88	318470	25.0	26.8	
74 1,1,2-Trichloroethane	97	9.303	9.303	0.000	93	228203	25.0	26.2	
75 Tetrachloroethene	166	9.314	9.314	0.000	96	264739	25.0	30.1	
76 1,3-Dichloropropane	76	9.469	9.469	0.000	89	406714	25.0	26.3	
77 2-Hexanone	43	9.540	9.540	0.000	96	512770	50.0	53.2	
79 Chlorodibromomethane	129	9.647	9.647	0.000	90	236906	25.0	28.0	
81 Ethylene Dibromide	107	9.753	9.753	0.000	99	239636	25.0	26.5	
83 Chlorobenzene	112	10.192	10.192	0.000	95	672091	25.0	26.6	
85 Ethylbenzene	106	10.263	10.263	0.000	99	355223	25.0	25.5	
84 1,1,1,2-Tetrachloroethane	131	10.287	10.287	0.000	95	230075	25.0	30.6	
86 m-Xylene & p-Xylene	106	10.382	10.382	0.000	100	439064	25.0	25.6	
87 o-Xylene	106	10.738	10.738	0.000	97	426984	25.0	25.6	
88 Styrene	104	10.761	10.761	0.000	94	750017	25.0	26.8	
89 Bromoform	173	10.939	10.939	0.000	97	187360	25.0	34.6	
90 Isopropylbenzene	105	11.046	11.046	0.000	96	1132254	25.0	25.9	
95 Bromobenzene	156	11.330	11.330	0.000	94	281841	25.0	28.1	
93 1,1,2,2-Tetrachloroethane	83	11.378	11.378	0.000	93	387273	25.0	26.8	
98 N-Propylbenzene	120	11.402	11.402	0.000	98	306229	25.0	25.5	
96 1,2,3-Trichloropropane	110	11.425	11.425	0.000	86	121862	25.0	26.3	
97 trans-1,4-Dichloro-2-butene	53	11.437	11.437	0.000	94	109687	25.0	31.1	
100 2-Chlorotoluene	126	11.485	11.485	0.000	96	275567	25.0	27.0	
101 1,3,5-Trimethylbenzene	105	11.556	11.556	0.000	95	930924	25.0	25.2	
102 4-Chlorotoluene	126	11.591	11.591	0.000	97	285274	25.0	27.4	
103 tert-Butylbenzene	119	11.817	11.817	0.000	93	782618	25.0	24.9	
105 1,2,4-Trimethylbenzene	105	11.864	11.864	0.000	97	957192	25.0	25.0	
106 sec-Butylbenzene	105	11.995	11.995	0.000	94	1143569	25.0	23.9	
100 Sec-Dutymenzene	105	11.770	11.770	0.000	74	1143309	∠3.0	∠3.9	

ANALYTICAL REPORT

Job Number: 240-171981-1

SDG Number: MSA Frog Mortar Creek

Job Description: MSA Surface Water Sampling

For:
Tetra Tech, Inc.
20251 Century Blvd
Suite 200
Germantown, MD 20874

Attention: Josh Mullis

Roxanne Cisneros

Approved for release. Roxanne Cisneros Senior Project Manager 9/1/2022 11:24 AM

Roxanne Cisneros, Senior Project Manager 180 S. Van Buren Avenue, Barberton, OH, 44203 (615)301-5761 roxanne.cisneros@et.eurofinsus.com 09/01/2022

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager. This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Cc	over Title Page	1
Da	ata Summaries	4
	Definitions	4
	Case Narrative	5
	Detection Summary	7
	Client Sample Results	9
	Default Detection Limits	62
	Surrogate Summary	64
	QC Sample Results	65
	QC Association	73
	Chronicle	74
	Certification Summary	79
	Method Summary	80
	Sample Summary	81
	Manual Integration Summary	82
	Reagent Traceability	87
Or	ganic Sample Data	122
	GC/MS VOA	122
	Method 8260C	122
	Method 8260C QC Summary	123
	Method 8260C Sample Data	141
	Standards Data	261
	Method 8260C ICAL Data	261
	Method 8260C CCAL Data	492
	Raw QC Data	505
	Method 8260C Blank Data	505

Table of Contents

Method 8260C LCS/LCSD Data	511
Method 8260C Run Logs	519
Method 8260C Prep Data	523
Shipping and Receiving Documents	535
Client Chain of Custody	536

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

LCS and/or LCSD is outside acceptance limits, high biased. Indicates the analyte was analyzed for but not detected. U

GC/MS VOA TICs

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	used abbreviations ma	v or may	not be r	present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid **CFU** Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL **MDA** Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent Positive / Present POS

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Job Narrative 240-171981-1

Comments

No additional comments.

Receipt

The samples were received on 8/23/2022 3:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) analyzed in batch 240-540508 was outside the method criteria for Bromomethane and Chloroethane. An MRL standard at or below the reporting limit (RL) was analyzed with the affected samplesMSA-SW37A-082222 (240-171981-1), MSA-SW37B-082222 (240-171981-2), MSA-SW37C-082222 (240-171981-3), MSA-SW37D-082222 (240-171981-4), MSA-SW38A-082222 (240-171981-5), MSA-SW38B-082222 (240-171981-6), MSA-SW38C-082222 (240-171981-7), MSA-SW38D-082222 (240-171981-8), MSA-SW40A-082222 (240-171981-9), MSA-SW40B-082222 (240-171981-10), MSA-SW40C-082222 (240-171981-11), MSA-SW40D-082222 (240-171981-12), MSA-SW41A-082222 (240-171981-13), MSA-SW41B-082222 (240-171981-14), MSA-SW41C-082222 (240-171981-15), MSA-SW41D-082222 (240-171981-16), MSA-SW42A-082222 (240-171981-17), MSA-SW42B-082222 (240-171981-18), MSA-SW42C-082222 (240-171981-19), (CCV 240-540508/4), (CCVIS 240-540508/3), (LCS 240-540508/5), (LCS 240-540508/6), (MB 240-540508/8) and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8260C: The continuing calibration verification (CCV) associated with batch 240-540508 recovered above the upper control limit for Bromoform, 1,1,1,2-Tetrachloroethane, 2-Methyl-2-Propanol, Vinyl Acetate, and Tetrachloroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MSA-SW37A-082222 (240-171981-1), MSA-SW37B-082222 (240-171981-2), MSA-SW37C-082222 (240-171981-3), MSA-SW37D-082222 (240-171981-4), MSA-SW38A-082222 (240-171981-5), MSA-SW38B-082222 (240-171981-6), MSA-SW38C-082222 (240-171981-7), MSA-SW38D-082222 (240-171981-8), MSA-SW40A-082222 (240-171981-9), MSA-SW40B-082222 (240-171981-10), MSA-SW40C-082222 (240-171981-11), MSA-SW40D-082222 (240-171981-12), MSA-SW41A-082222 (240-171981-13), MSA-SW41B-082222 (240-171981-14), MSA-SW41C-082222 (240-171981-15), MSA-SW41D-082222 (240-171981-16), MSA-SW42A-082222 (240-171981-17), MSA-SW42B-082222 (240-171981-18), MSA-SW42C-082222 (240-171981-19), (CCV 240-540508/4), (CCVIS 240-540508/3), (LCS 240-540508/5), (LCS 240-540508/6), (MB 240-540508/8)

Method 8260C: The preservative used in the sample containers provided is not compatible with one of the Method 8260 analytes requested. The following samples were received preserved with hydrochloric acid: MSA-SW37A-082222 (240-171981-1), MSA-SW37B-082222 (240-171981-2), MSA-SW37C-082222 (240-171981-3), MSA-SW37D-082222 (240-171981-4), MSA-SW38A-082222 (240-171981-5), MSA-SW38B-082222 (240-171981-6), MSA-SW38C-082222 (240-171981-7), MSA-SW38D-082222 (240-171981-8), MSA-SW40A-082222 (240-171981-9), MSA-SW40B-082222 (240-171981-10), MSA-SW40C-082222 (240-171981-11), MSA-SW40D-082222 (240-171981-12), MSA-SW41A-082222 (240-171981-13), MSA-SW41B-082222 (240-171981-14), MSA-SW41C-082222 (240-171981-15), MSA-SW41D-082222 (240-171981-16), MSA-SW42A-082222 (240-171981-17), MSA-SW42B-082222 (240-171981-18) and MSA-SW42C-082222 (240-171981-19). The requested target analyte list includes 2-Chloroethyl vinyl ether, an acid-labile compound that degrades in an acidic medium.

Methods 8260C: The continuing calibration verification (CCV) associated with batch 240-540740 recovered above the upper control limit for Bromoform, 1,1,1,2-Tetrachloroethane, Vinyl Acetate, 2-Methyl-2-Propanol and trans-1,4-Dichloro-2-Butene>. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MSA-SW42D-082222 (240-171981-20), MSA-SW43A-082222 (240-171981-21), MSA-SW43B-082222 (240-171981-22), MSA-SW43C-082222 (240-171981-23), MSA-SW43D-082222 (240-171981-24), TB-082222 (240-171981-25), MSA-SW46A-082222 (240-171981-26), MSA-SW47A-082222 (240-171981-27), MSA-SW48A-082222 (240-171981-28), MSA-SW49A-082222 (240-171981-29), MSA-SWEQB-082222 (240-171981-30), (CCV 240-540740/4), (CCVIS 240-540740/3), (LCS 240-540740/5), (LCS 240-540740/8)

Methods 8260C: The continuing calibration verification (CCV) analyzed in batch 240-540740 was outside the method criteria for Chloroethane, Bromomethane, and 2-Methylnaphthalene. An MRL standard at or below the reporting limit (RL) was analyzed with the affected samplesMSA-SW42D-082222 (240-171981-20), MSA-SW43A-082222 (240-171981-21), MSA-SW43B-082222 (240-171981-22), MSA-SW43C-082222 (240-171981-23), MSA-SW43D-082222 (240-171981-24), TB-082222 (240-171981-25), MSA-SW46A-082222 (240-171981-26), MSA-SW47A-082222 (240-171981-27), MSA-SW48A-082222 (240-171981-28), MSA-SW49A-082222 (240-171981-29), MSA-SWEQB-082222 (240-171981-30), (CCV 240-540740/4), (CCVIS 240-540740/3), (LCS 240-540740/5), (LCS 240-540740/6), (MB 240-540740/8), (240-172135-B-3) and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Methods 8260C: The laboratory control sample (LCS) for analytical batch 240-540740 recovered outside control limits for Bromoform and 1,1,1,2-Tetrachloroethane. These analytes were biased high in the LCS and were not detected in the associated samplesMSA-SW42D-082222 (240-171981-20), MSA-SW43A-082222 (240-171981-21), MSA-SW43B-082222 (240-171981-22), MSA-SW43C-082222 (240-171981-23), MSA-SW43D-082222 (240-171981-24), TB-082222 (240-171981-25), MSA-SW46A-082222 (240-171981-26), MSA-SW47A-082222 (240-171981-27), MSA-SW48A-082222 (240-171981-28), MSA-SW49A-082222 (240-171981-29), MSA-SWEQB-082222 (240-171981-30), (LCS 240-540740/5), (LCS 240-540740/6), (MB 240-540740/8); therefore, the data have been reported.

Method 8260C: The preservative used in the sample containers provided is not compatible with one of the Method 8260 analytes requested. The following samples were received preserved with hydrochloric acid: MSA-SW42D-082222 (240-171981-20), MSA-SW43A-082222 (240-171981-21), MSA-SW43B-082222 (240-171981-22), MSA-SW43C-082222 (240-171981-23), MSA-SW43D-082222 (240-171981-24), TB-082222 (240-171981-25), MSA-SW46A-082222 (240-171981-26), MSA-SW47A-082222 (240-171981-27), MSA-SW48A-082222 (240-171981-28), MSA-SW49A-082222 (240-171981-29) and MSA-SWEQB-082222 (240-171981-30). The requested target analyte list includes 2-Chloroethyl vinyl ether, an acid-labile compound that degrades in an acidic medium.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No additional analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

	onon January
Client: Tetra Tech, Inc. Project/Site: MSA Surface Water Sampling	Job ID: 240-171981-1 SDG: MSA Frog Mortar Creek
Client Sample ID: MSA-SW37A-082222	Lab Sample ID: 240-171981-1
No Detections.	
Client Sample ID: MSA-SW37B-082222	Lab Sample ID: 240-171981-2
No Detections.	
Client Sample ID: MSA-SW37C-082222	Lab Sample ID: 240-171981-3
No Detections.	
Client Sample ID: MSA-SW37D-082222	Lab Sample ID: 240-171981-4
No Detections.	
Client Sample ID: MSA-SW38A-082222	Lab Sample ID: 240-171981-5
No Detections.	
Client Sample ID: MSA-SW38B-082222	Lab Sample ID: 240-171981-6
No Detections.	
Client Sample ID: MSA-SW38C-082222	Lab Sample ID: 240-171981-7
No Detections.	
Client Sample ID: MSA-SW38D-082222	Lab Sample ID: 240-171981-8
No Detections.	
Client Sample ID: MSA-SW40A-082222	Lab Sample ID: 240-171981-9
No Detections.	
Client Sample ID: MSA-SW40B-082222	Lab Sample ID: 240-171981-10
No Detections.	
Client Sample ID: MSA-SW40C-082222	Lab Sample ID: 240-171981-11
No Detections.	
Client Sample ID: MSA-SW40D-082222	Lab Sample ID: 240-171981-12
No Detections.	
Client Sample ID: MSA-SW41A-082222	Lab Sample ID: 240-171981-13
No Detections.	
Client Sample ID: MSA-SW41B-082222	Lab Sample ID: 240-171981-14
No Detections.	
Client Sample ID: MSA-SW41C-082222	Lab Sample ID: 240-171981-15
No Detections.	
Client Sample ID: MSA-SW41D-082222	Lab Sample ID: 240-171981-16
No Detections.	

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Tetra Tech, Inc. Project/Site: MSA Surface Water Sampling	Job ID: 240-171981-1 SDG: MSA Frog Mortar Creek
Client Sample ID: MSA-SW42A-082222	Lab Sample ID: 240-171981-17
No Detections.	
Client Sample ID: MSA-SW42B-082222	Lab Sample ID: 240-171981-18
No Detections.	
Client Sample ID: MSA-SW42C-082222	Lab Sample ID: 240-171981-19
No Detections.	
Client Sample ID: MSA-SW42D-082222	Lab Sample ID: 240-171981-20
No Detections.	
Client Sample ID: MSA-SW43A-082222	Lab Sample ID: 240-171981-21
No Detections.	
Client Sample ID: MSA-SW43B-082222	Lab Sample ID: 240-171981-22
No Detections.	
Client Sample ID: MSA-SW43C-082222	Lab Sample ID: 240-171981-23
No Detections.	
Client Sample ID: MSA-SW43D-082222	Lab Sample ID: 240-171981-24
No Detections.	
Client Sample ID: TB-082222	Lab Sample ID: 240-171981-25
No Detections.	
Client Sample ID: MSA-SW46A-082222	Lab Sample ID: 240-171981-26
No Detections.	
Client Sample ID: MSA-SW47A-082222	Lab Sample ID: 240-171981-27
No Detections.	
Client Sample ID: MSA-SW48A-082222	Lab Sample ID: 240-171981-28
No Detections.	
Client Sample ID: MSA-SW49A-082222	Lab Sample ID: 240-171981-29
No Detections.	
Client Sample ID: MSA-SWEQB-082222	Lab Sample ID: 240-171981-30
No Detections.	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1
Project/Site: MSA Surface Water Sampling

SDG: MSA Frog Mortar Creek

Date Collected: 08/22/22 12:40
Date Received: 08/23/22 15:30
Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	5.4	U	10	5.4	ug/L			08/29/22 13:53	
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 13:53	
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 13:53	
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 13:53	
Bromodichloromethane	0.17	U	1.0		ug/L			08/29/22 13:53	
Bromoform	0.76	U	1.0		ug/L			08/29/22 13:53	
Bromomethane	0.42	U	1.0		ug/L			08/29/22 13:53	
2-Butanone	1.2	U	10		ug/L			08/29/22 13:53	
Carbon disulfide	0.59		1.0		ug/L			08/29/22 13:53	
Carbon tetrachloride	0.26		1.0		ug/L			08/29/22 13:53	
Chlorobenzene	0.38		1.0		ug/L			08/29/22 13:53	
Chloroethane	0.83		1.0		ug/L			08/29/22 13:53	
2-Chloroethyl vinyl ether	1.5		10		ug/L			08/29/22 13:53	
Chloroform	0.47		1.0		ug/L			08/29/22 13:53	
Chloromethane	0.47		1.0		ug/L			08/29/22 13:53	
2-Chlorotoluene	0.57		1.0		ug/L			08/29/22 13:53	
4-Chlorotoluene	0.43		1.0		ug/L			08/29/22 13:53	
cis-1,2-Dichloroethene	0.43		1.0		ug/L			08/29/22 13:53	
cis-1,3-Dichloropropene	0.40		1.0		ug/L			08/29/22 13:53	
Dibromochloromethane	0.81				-			08/29/22 13:53	
			1.0 2.0		ug/L				
1,2-Dibromo-3-Chloropropane	0.91				ug/L			08/29/22 13:53	
1,2-Dibromoethane	0.41		1.0		ug/L			08/29/22 13:53	
Dibromomethane	0.40		1.0		ug/L			08/29/22 13:53	
1,2-Dichlorobenzene	0.48		1.0		ug/L			08/29/22 13:53	
1,3-Dichlorobenzene	0.45		1.0		ug/L			08/29/22 13:53	
1,4-Dichlorobenzene	0.41		1.0		ug/L			08/29/22 13:53	
Dichlorodifluoromethane	0.35		1.0		ug/L			08/29/22 13:53	
1,1-Dichloroethane	0.47		1.0		ug/L			08/29/22 13:53	
1,2-Dichloroethane	0.21		1.0		ug/L			08/29/22 13:53	
1,1-Dichloroethene	0.49		1.0		ug/L			08/29/22 13:53	
1,2-Dichloropropane	0.47		1.0		ug/L			08/29/22 13:53	
1,3-Dichloropropane	0.21	U	1.0		ug/L			08/29/22 13:53	
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/29/22 13:53	
1,1-Dichloropropene	0.36	U	1.0	0.36	ug/L			08/29/22 13:53	
Diisopropyl ether	0.17	U	10	0.17	ug/L			08/29/22 13:53	
Ethylbenzene	0.42	U	1.0	0.42	ug/L			08/29/22 13:53	
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40	ug/L			08/29/22 13:53	
Hexachlorobutadiene	0.83	U	1.0	0.83	ug/L			08/29/22 13:53	
2-Hexanone	1.1	U	10	1.1	ug/L			08/29/22 13:53	
Isopropylbenzene	0.49	U	1.0	0.49	ug/L			08/29/22 13:53	
Methylene Chloride	2.6	U	5.0	2.6	ug/L			08/29/22 13:53	
4-Methyl-2-pentanone	0.99	U	10	0.99	ug/L			08/29/22 13:53	
Methyl tert-butyl ether	0.47	U	1.0	0.47	ug/L			08/29/22 13:53	
m-Xylene & p-Xylene	0.42	U	2.0		ug/L			08/29/22 13:53	
Naphthalene	0.80		1.0		ug/L			08/29/22 13:53	
n-Butylbenzene	0.60		1.0		ug/L			08/29/22 13:53	
n-Propylbenzene	0.57		1.0		ug/L			08/29/22 13:53	
o-Xylene	0.42		1.0		ug/L			08/29/22 13:53	
p-Isopropyltoluene	0.42		1.0		ug/L			08/29/22 13:53	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37A-082222

Lab Sample ID: 240-171981-1 Date Collected: 08/22/22 12:40 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MD	Ll	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	0.53	U	1.0	0.5	i3 ι	ug/L			08/29/22 13:53	1
Styrene	0.45	U	1.0	0.4	-5 ι	ug/L			08/29/22 13:53	1
Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.4	3 ι	ug/L			08/29/22 13:53	1
tert-Butyl alcohol	7.2	U	40	7	.2 ι	ug/L			08/29/22 13:53	1
tert-Butylbenzene	0.48	U	1.0	0.4	-8 ι	ug/L			08/29/22 13:53	1
1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.4	3 ι	ug/L			08/29/22 13:53	1
1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.6	ο ι	ug/L			08/29/22 13:53	1
Tetrachloroethene	0.44	U	1.0	0.4	4 ι	ug/L			08/29/22 13:53	1
Toluene	0.44	U	1.0	0.4	4 ι	ug/L			08/29/22 13:53	1
trans-1,2-Dichloroethene	0.51	U	1.0	0.5	i1 ι	ug/L			08/29/22 13:53	1
trans-1,3-Dichloropropene	0.67	U	1.0	0.6	7 ι	ug/L			08/29/22 13:53	1
1,2,3-Trichlorobenzene	0.54	U	1.0	0.5	4 ι	ug/L			08/29/22 13:53	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.7	7 ι	ug/L			08/29/22 13:53	1
1,1,1-Trichloroethane	0.48	U	1.0	0.4	-8 ι	ug/L			08/29/22 13:53	1
Trichloroethene	0.44	U	1.0	0.4	4 ι	ug/L			08/29/22 13:53	1
Trichlorofluoromethane	0.45	U	1.0	0.4	-5 ι	ug/L			08/29/22 13:53	1
1,2,3-Trichloropropane	0.52	U	1.0	0.5	2 ι	ug/L			08/29/22 13:53	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.4	1 ι	ug/L			08/29/22 13:53	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.3	1 ι	ug/L			08/29/22 13:53	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.5	2 ι	ug/L			08/29/22 13:53	1
Vinyl acetate	0.61	U	2.0	0.6	1 ι	ug/L			08/29/22 13:53	1
Vinyl chloride	0.45	U	1.0	0.4	-5 ι	ug/L			08/29/22 13:53	1
Xylenes, Total	0.42	U	2.0	0.4	-2 ι	ug/L			08/29/22 13:53	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	R	T	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L	_			75-45-6	<u> </u>	08/29/22 13:53	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	-	56 - 136						08/29/22 13:53	1
Dibromofluoromethane (Surr)	106		73 - 120						08/29/22 13:53	1
1,2-Dichloroethane-d4 (Surr)	102		62 - 137						08/29/22 13:53	1
Toluene-d8 (Surr)	102		78 - 122						08/29/22 13:53	1

Client Sample ID: MSA-SW37B-082222

Lab Sample ID: 240-171981-2 Date Collected: 08/22/22 12:42 **Matrix: Water** Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 14:17	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 14:17	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 14:17	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 14:17	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 14:17	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 14:17	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 14:17	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 14:17	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 14:17	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 14:17	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 14:17	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37B-082222

Date Collected: 08/22/22 12:42

Date Received: 08/23/22 15:30

Lab Sample ID: 240-171981-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloroethane	0.83	U	1.0	0.83	ug/L		-	08/29/22 14:17	
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 14:17	
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 14:17	
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 14:17	
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 14:17	
4-Chlorotoluene	0.43	U	1.0		ug/L			08/29/22 14:17	
cis-1,2-Dichloroethene	0.46		1.0		ug/L			08/29/22 14:17	
cis-1,3-Dichloropropene	0.61		1.0		ug/L			08/29/22 14:17	
Dibromochloromethane	0.39		1.0		ug/L			08/29/22 14:17	
1,2-Dibromo-3-Chloropropane	0.91		2.0		ug/L			08/29/22 14:17	
1,2-Dibromoethane	0.41		1.0					08/29/22 14:17	
Dibromomethane	0.40		1.0		ug/L			08/29/22 14:17	
1,2-Dichlorobenzene	0.48		1.0		ug/L			08/29/22 14:17	
1,3-Dichlorobenzene	0.45		1.0		ug/L			08/29/22 14:17	
1,4-Dichlorobenzene	0.43		1.0		ug/L			08/29/22 14:17	
Dichlorodifluoromethane	0.41		1.0		ug/L			08/29/22 14:17	
1,1-Dichloroethane	0.47		1.0		ug/L			08/29/22 14:17	
1,2-Dichloroethane	0.47		1.0		-			08/29/22 14:17	
1,2-Dichloroethane	0.49		1.0		ug/L			08/29/22 14:17	
1,2-Dichloropropane	0.49		1.0		ug/L			08/29/22 14:17	
1,3-Dichloropropane	0.47		1.0		-			08/29/22 14:17	
2,2-Dichloropropane	0.21		1.0		ug/L ug/L			08/29/22 14:17	
								08/29/22 14:17	
1,1-Dichloropropene	0.36		1.0		ug/L				
Diisopropyl ether	0.17		10		ug/L			08/29/22 14:17	
Ethylbenzene	0.42		1.0		ug/L			08/29/22 14:17	
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 14:17	
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 14:17	
2-Hexanone	1.1		10	1.1				08/29/22 14:17	
sopropylbenzene	0.49		1.0		ug/L			08/29/22 14:17	
Methylene Chloride	2.6		5.0		ug/L			08/29/22 14:17	
4-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 14:17	
Methyl tert-butyl ether	0.47		1.0		ug/L			08/29/22 14:17	
m-Xylene & p-Xylene	0.42		2.0		ug/L			08/29/22 14:17	
Naphthalene	0.80		1.0	0.80	ug/L			08/29/22 14:17	
n-Butylbenzene	0.60		1.0		ug/L			08/29/22 14:17	
n-Propylbenzene	0.57		1.0		ug/L			08/29/22 14:17	
o-Xylene	0.42		1.0		ug/L			08/29/22 14:17	
o-Isopropyltoluene	0.56		1.0	0.56	ug/L			08/29/22 14:17	
sec-Butylbenzene	0.53		1.0	0.53	ug/L			08/29/22 14:17	
Styrene	0.45	U	1.0	0.45	ug/L			08/29/22 14:17	
Геrt-amyl-methyl ether (ТАМЕ)	0.43	U	5.0	0.43	ug/L			08/29/22 14:17	
ert-Butyl alcohol	7.2		40		ug/L			08/29/22 14:17	
ert-Butylbenzene	0.48	U	1.0	0.48	ug/L			08/29/22 14:17	
1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43	ug/L			08/29/22 14:17	
1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60	ug/L			08/29/22 14:17	
Tetrachloroethene	0.44	U	1.0	0.44	ug/L			08/29/22 14:17	
Toluene	0.44	U	1.0	0.44	ug/L			08/29/22 14:17	
rans-1,2-Dichloroethene	0.51	U	1.0	0.51	ug/L			08/29/22 14:17	
trans-1,3-Dichloropropene	0.67		1.0		ug/L			08/29/22 14:17	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37B-082222

Lab Sample ID: 240-171981-2 Date Collected: 08/22/22 12:42 **Matrix: Water**

Date Received: 08/23/22 15:30

Method: 8260C - Volatile Orga	•	•	•	•		_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	0.54	U	1.0	0.54	ug/L			08/29/22 14:17	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.77	ug/L			08/29/22 14:17	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	ug/L			08/29/22 14:17	1
Trichloroethene	0.44	U	1.0	0.44	ug/L			08/29/22 14:17	1
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/29/22 14:17	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	ug/L			08/29/22 14:17	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/29/22 14:17	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/29/22 14:17	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/29/22 14:17	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/29/22 14:17	1
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/29/22 14:17	1
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/29/22 14:17	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/29/22 14:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		56 - 136					08/29/22 14:17	1
Dibromofluoromethane (Surr)	108		73 - 120					08/29/22 14:17	1
1,2-Dichloroethane-d4 (Surr)	101		62 - 137					08/29/22 14:17	1
Toluene-d8 (Surr)	104		78 - 122					08/29/22 14:17	1

Client Sample ID: MSA-SW37C-082222

Date Collected: 08/22/22 12:44

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 14:40	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 14:40	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 14:40	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 14:40	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 14:40	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 14:40	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 14:40	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 14:40	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 14:40	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 14:40	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 14:40	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 14:40	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 14:40	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 14:40	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 14:40	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 14:40	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 14:40	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/29/22 14:40	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/29/22 14:40	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/29/22 14:40	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/29/22 14:40	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/29/22 14:40	1

Eurofins Canton

Lab Sample ID: 240-171981-3

Matrix: Water

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37C-082222

Lab Sample ID: 240-171981-3 Date Collected: 08/22/22 12:44 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/29/22 14:40	
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/29/22 14:40	
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/29/22 14:40	
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/29/22 14:40	1
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/29/22 14:40	1
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/29/22 14:40	
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/29/22 14:40	1
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/29/22 14:40	1
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/29/22 14:40	1
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/29/22 14:40	1
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/29/22 14:40	1
1,1-Dichloropropene	0.36	U	1.0	0.36	ug/L			08/29/22 14:40	1
Diisopropyl ether	0.17	U	10		ug/L			08/29/22 14:40	1
Ethylbenzene	0.42	U	1.0		ug/L			08/29/22 14:40	1
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 14:40	1
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 14:40	
2-Hexanone	1.1	U	10		ug/L			08/29/22 14:40	
Isopropylbenzene	0.49	U	1.0		ug/L			08/29/22 14:40	
Methylene Chloride	2.6		5.0		ug/L			08/29/22 14:40	
4-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 14:40	
Methyl tert-butyl ether	0.47		1.0		ug/L			08/29/22 14:40	
m-Xylene & p-Xylene	0.42		2.0		ug/L			08/29/22 14:40	
Naphthalene	0.80		1.0		ug/L			08/29/22 14:40	
n-Butylbenzene	0.60		1.0		ug/L			08/29/22 14:40	
n-Propylbenzene	0.57		1.0		ug/L			08/29/22 14:40	,
o-Xylene	0.42		1.0		ug/L			08/29/22 14:40	,
p-Isopropyltoluene	0.56		1.0		ug/L			08/29/22 14:40	
sec-Butylbenzene	0.53		1.0		ug/L			08/29/22 14:40	
Styrene	0.45		1.0		ug/L			08/29/22 14:40	
Tert-amyl-methyl ether (TAME)	0.43		5.0		ug/L			08/29/22 14:40	
tert-Butyl alcohol	7.2		40		ug/L			08/29/22 14:40	,
tert-Butylbenzene	0.48		1.0		ug/L			08/29/22 14:40	,
1,1,1,2-Tetrachloroethane	0.43		1.0		ug/L			08/29/22 14:40	,
1,1,2,2-Tetrachloroethane	0.43		1.0		ug/L			08/29/22 14:40	,
Tetrachloroethene	0.00		1.0		ug/L ug/L			08/29/22 14:40	
Toluene	0.44		1.0						· · · · · · .
					ug/L			08/29/22 14:40	
trans-1,2-Dichloroethene	0.51		1.0		ug/L			08/29/22 14:40	1
trans-1,3-Dichloropropene	0.67		1.0		ug/L			08/29/22 14:40	
1,2,3-Trichlorobenzene	0.54		1.0		ug/L			08/29/22 14:40	1
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/29/22 14:40	1
1,1,1-Trichloroethane	0.48		1.0		ug/L			08/29/22 14:40	
Trichlandfusers at an a	0.44		1.0		ug/L			08/29/22 14:40	1
Trichlorofluoromethane	0.45		1.0		ug/L			08/29/22 14:40	•
1,2,3-Trichloropropane	0.52		1.0		ug/L			08/29/22 14:40	
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41		1.0		ug/L			08/29/22 14:40	1
1,2,3-Trimethylbenzene	0.31		5.0		ug/L			08/29/22 14:40	1
1,2,4-Trimethylbenzene	0.52		1.0		ug/L			08/29/22 14:40	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/29/22 14:40 08/29/22 14:40	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37C-082222

Lab Sample ID: 240-171981-3 Date Collected: 08/22/22 12:44 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL		MDL Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.42	U	2.0		0.42 ug/L			08/29/22 14:40	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/29/22 14:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		56 - 136					08/29/22 14:40	1
Dibromofluoromethane (Surr)	108		73 - 120					08/29/22 14:40	1
1,2-Dichloroethane-d4 (Surr)	103		62 - 137					08/29/22 14:40	1
Toluene-d8 (Surr)	102		78 - 122					08/29/22 14:40	

Client Sample ID: MSA-SW37D-082222

Date Collected: 08/22/22 12:47 Date Received: 08/23/22 15:30 **Matrix: Water**

Lab Sample ID: 240-171981-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 15:04	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 15:04	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 15:04	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 15:04	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 15:04	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 15:04	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 15:04	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 15:04	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 15:04	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 15:04	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 15:04	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 15:04	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 15:04	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 15:04	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 15:04	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 15:04	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 15:04	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/29/22 15:04	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/29/22 15:04	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/29/22 15:04	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/29/22 15:04	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/29/22 15:04	1
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/29/22 15:04	1
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/29/22 15:04	1
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/29/22 15:04	1
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/29/22 15:04	1
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/29/22 15:04	1
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/29/22 15:04	1
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/29/22 15:04	1
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/29/22 15:04	1
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/29/22 15:04	1
1,3-Dichloropropane	0.21	U	1.0		ug/L			08/29/22 15:04	1
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/29/22 15:04	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37D-082222

Lab Sample ID: 240-171981-4 Date Collected: 08/22/22 12:47 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	0.36	U	1.0	0.36	ug/L			08/29/22 15:04	1
Diisopropyl ether	0.17	U	10	0.17	ug/L			08/29/22 15:04	1
Ethylbenzene	0.42	U	1.0	0.42	ug/L			08/29/22 15:04	1
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40	ug/L			08/29/22 15:04	1
Hexachlorobutadiene	0.83	U	1.0	0.83	ug/L			08/29/22 15:04	1
2-Hexanone	1.1	U	10	1.1	ug/L			08/29/22 15:04	1
Isopropylbenzene	0.49	U	1.0	0.49	ug/L			08/29/22 15:04	1
Methylene Chloride	2.6	U	5.0	2.6	ug/L			08/29/22 15:04	1
4-Methyl-2-pentanone	0.99	U	10	0.99	ug/L			08/29/22 15:04	1
Methyl tert-butyl ether	0.47	U	1.0	0.47	ug/L			08/29/22 15:04	1
m-Xylene & p-Xylene	0.42	U	2.0	0.42	ug/L			08/29/22 15:04	1
Naphthalene	0.80	U	1.0	0.80	ug/L			08/29/22 15:04	1
n-Butylbenzene	0.60	U	1.0	0.60	ug/L			08/29/22 15:04	1
n-Propylbenzene	0.57	U	1.0	0.57	ug/L			08/29/22 15:04	1
o-Xylene	0.42	U	1.0	0.42	ug/L			08/29/22 15:04	1
p-Isopropyltoluene	0.56	U	1.0		ug/L			08/29/22 15:04	1
sec-Butylbenzene	0.53	U	1.0		ug/L			08/29/22 15:04	1
Styrene	0.45	U	1.0		ug/L			08/29/22 15:04	1
Tert-amyl-methyl ether (TAME)	0.43	U	5.0		ug/L			08/29/22 15:04	1
tert-Butyl alcohol	7.2	U	40		ug/L			08/29/22 15:04	1
tert-Butylbenzene	0.48	U	1.0		ug/L			08/29/22 15:04	1
1,1,1,2-Tetrachloroethane	0.43	U	1.0		ug/L			08/29/22 15:04	1
1,1,2,2-Tetrachloroethane	0.60	U	1.0		ug/L			08/29/22 15:04	1
Tetrachloroethene	0.44	U	1.0		ug/L			08/29/22 15:04	1
Toluene	0.44	U	1.0		ug/L			08/29/22 15:04	1
trans-1,2-Dichloroethene	0.51	U	1.0		ug/L			08/29/22 15:04	1
trans-1,3-Dichloropropene	0.67	U	1.0		ug/L			08/29/22 15:04	1
1,2,3-Trichlorobenzene	0.54	U	1.0		ug/L			08/29/22 15:04	1
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/29/22 15:04	1
1,1,1-Trichloroethane	0.48	U	1.0		ug/L			08/29/22 15:04	1
Trichloroethene	0.44		1.0		ug/L			08/29/22 15:04	1
Trichlorofluoromethane	0.45		1.0		ug/L			08/29/22 15:04	1
1,2,3-Trichloropropane	0.52		1.0		ug/L			08/29/22 15:04	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41		1.0	0.41				08/29/22 15:04	1
1,2,3-Trimethylbenzene	0.31		5.0		ug/L			08/29/22 15:04	1
1,2,4-Trimethylbenzene	0.52		1.0		ug/L			08/29/22 15:04	1
Vinyl acetate	0.61		2.0		ug/L			08/29/22 15:04	1
Vinyl chloride	0.45		1.0		ug/L			08/29/22 15:04	1
Xylenes, Total	0.42		2.0		ug/L			08/29/22 15:04	1
Aylones, rotal	0.42	Ü	2.0	0.42	ug/L			00/20/22 10:04	
Tentatively Identified Compound	Est. Result		Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/29/22 15:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		56 - 136			-		08/29/22 15:04	1
Dibromofluoromethane (Surr)	108		73 - 120					08/29/22 15:04	1
1,2-Dichloroethane-d4 (Surr)	103		62 - 137					08/29/22 15:04	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38A-082222

Lab Sample ID: 240-171981-5 Date Collected: 08/22/22 11:53 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	5.4	U	10	5.4	ug/L			08/29/22 15:27	
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 15:27	•
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 15:27	
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 15:27	
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 15:27	
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 15:27	
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 15:27	
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 15:27	
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 15:27	
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 15:27	
Chlorobenzene	0.38	U	1.0	0.38	-			08/29/22 15:27	
Chloroethane	0.83	U	1.0	0.83	-			08/29/22 15:27	
2-Chloroethyl vinyl ether	1.5	U	10		ug/L			08/29/22 15:27	
Chloroform	0.47		1.0	0.47	-			08/29/22 15:27	
Chloromethane	0.63		1.0	0.63	•			08/29/22 15:27	
2-Chlorotoluene	0.57		1.0	0.57				08/29/22 15:27	
I-Chlorotoluene	0.43		1.0	0.43	-			08/29/22 15:27	
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	-			08/29/22 15:27	
sis-1,3-Dichloropropene	0.61		1.0	0.61				08/29/22 15:27	
Dibromochloromethane	0.39		1.0	0.39	-			08/29/22 15:27	
I,2-Dibromo-3-Chloropropane	0.91		2.0	0.91	•			08/29/22 15:27	
1,2-Dibromoethane	0.41		1.0	0.41				08/29/22 15:27	
Dibromomethane	0.40		1.0	0.40	-			08/29/22 15:27	
l,2-Dichlorobenzene	0.40		1.0	0.48	-			08/29/22 15:27	
1,3-Dichlorobenzene	0.45		1.0	0.45				08/29/22 15:27	
,4-Dichlorobenzene	0.43		1.0	0.43	-			08/29/22 15:27	
Dichlorodifluoromethane	0.41		1.0		-			08/29/22 15:27	
				0.35					
l,1-Dichloroethane	0.47		1.0	0.47	-			08/29/22 15:27	
l,2-Dichloroethane	0.21		1.0	0.21	ug/L			08/29/22 15:27	
I,1-Dichloroethene	0.49		1.0	0.49				08/29/22 15:27	
l,2-Dichloropropane	0.47		1.0	0.47	-			08/29/22 15:27	
I,3-Dichloropropane	0.21		1.0	0.21	ug/L			08/29/22 15:27	
2,2-Dichloropropane	0.78		1.0	0.78				08/29/22 15:27	
I,1-Dichloropropene	0.36		1.0	0.36	-			08/29/22 15:27	
Diisopropyl ether	0.17		10	0.17				08/29/22 15:27	
Ethylbenzene	0.42		1.0	0.42				08/29/22 15:27	
Ethyl-t-butyl ether (ETBE)	0.40		5.0	0.40				08/29/22 15:27	
Hexachlorobutadiene	0.83		1.0	0.83	-			08/29/22 15:27	
2-Hexanone	1.1		10	1.1	ug/L			08/29/22 15:27	
sopropylbenzene	0.49		1.0	0.49				08/29/22 15:27	
Methylene Chloride	2.6		5.0		ug/L			08/29/22 15:27	
I-Methyl-2-pentanone	0.99		10	0.99	-			08/29/22 15:27	
Methyl tert-butyl ether	0.47		1.0	0.47				08/29/22 15:27	
n-Xylene & p-Xylene	0.42		2.0	0.42	-			08/29/22 15:27	
Naphthalene	0.80	U	1.0	0.80	ug/L			08/29/22 15:27	
n-Butylbenzene	0.60	U	1.0	0.60	ug/L			08/29/22 15:27	
n-Propylbenzene	0.57	U	1.0	0.57	ug/L			08/29/22 15:27	
o-Xylene	0.42	U	1.0	0.42	ug/L			08/29/22 15:27	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38A-082222

Lab Sample ID: 240-171981-5 Date Collected: 08/22/22 11:53 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	0.53	U	1.0	0.53	ug/L			08/29/22 15:27	1
Styrene	0.45	U	1.0	0.45	ug/L			08/29/22 15:27	1
Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43	ug/L			08/29/22 15:27	1
tert-Butyl alcohol	7.2	U	40	7.2	ug/L			08/29/22 15:27	1
tert-Butylbenzene	0.48	U	1.0	0.48	ug/L			08/29/22 15:27	1
1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43	ug/L			08/29/22 15:27	1
1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60	ug/L			08/29/22 15:27	1
Tetrachloroethene	0.44	U	1.0	0.44	ug/L			08/29/22 15:27	1
Toluene	0.44	U	1.0	0.44	ug/L			08/29/22 15:27	1
trans-1,2-Dichloroethene	0.51	U	1.0	0.51	ug/L			08/29/22 15:27	1
trans-1,3-Dichloropropene	0.67	U	1.0	0.67	ug/L			08/29/22 15:27	1
1,2,3-Trichlorobenzene	0.54	U	1.0	0.54	ug/L			08/29/22 15:27	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.77	ug/L			08/29/22 15:27	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	ug/L			08/29/22 15:27	1
Trichloroethene	0.44	U	1.0	0.44	ug/L			08/29/22 15:27	1
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/29/22 15:27	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	ug/L			08/29/22 15:27	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/29/22 15:27	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/29/22 15:27	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/29/22 15:27	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/29/22 15:27	1
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/29/22 15:27	1
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/29/22 15:27	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/29/22 15:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		56 - 136			•		08/29/22 15:27	1
Dibromofluoromethane (Surr)	108		73 - 120					08/29/22 15:27	1
1,2-Dichloroethane-d4 (Surr)	102		62 - 137					08/29/22 15:27	1
Toluene-d8 (Surr)	103		78 - 122					08/29/22 15:27	1

Client Sample ID: MSA-SW38B-082222

Lab Sample ID: 240-171981-6 Date Collected: 08/22/22 11:55 **Matrix: Water** Date Received: 08/23/22 15:30

Method: 8260C - Volatile Organic Compounds by GC/MS **Analyte** Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Acetone 5.4 U 10 5.4 ug/L 08/29/22 15:51 Benzene 0.42 U 1.0 0.42 ug/L 08/29/22 15:51 1 Bromobenzene 0.50 ug/L 0.50 U 1.0 08/29/22 15:51 1 Bromochloromethane 0.54 U 1.0 0.54 ug/L 08/29/22 15:51 1 Bromodichloromethane 0.17 U 1.0 0.17 ug/L 08/29/22 15:51 1 **Bromoform** 0.76 U 1.0 0.76 ug/L 08/29/22 15:51 0.42 U 1.0 Bromomethane 0.42 ug/L 08/29/22 15:51 2-Butanone 10 1.2 U 1.2 ug/L 08/29/22 15:51 Carbon disulfide 0.59 U 1.0 0.59 ug/L 08/29/22 15:51 Carbon tetrachloride 0.26 U 1.0 0.26 ug/L 08/29/22 15:51 1 Chlorobenzene 0.38 U 0.38 ug/L 08/29/22 15:51 1.0 1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38B-082222

Lab Sample ID: 240-171981-6 Date Collected: 08/22/22 11:55 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 15:51	
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 15:51	
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 15:51	
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 15:51	
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 15:51	
1-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 15:51	
cis-1,2-Dichloroethene	0.46	U	1.0		ug/L			08/29/22 15:51	
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/29/22 15:51	
Dibromochloromethane	0.39	U	1.0	0.39	•			08/29/22 15:51	
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	-			08/29/22 15:51	
1,2-Dibromoethane	0.41	U	1.0	0.41				08/29/22 15:51	
Dibromomethane	0.40	U	1.0		ug/L			08/29/22 15:51	
1,2-Dichlorobenzene	0.48	U	1.0		ug/L			08/29/22 15:51	
1.3-Dichlorobenzene	0.45		1.0	0.45				08/29/22 15:51	
1,4-Dichlorobenzene	0.41		1.0		ug/L			08/29/22 15:51	
Dichlorodifluoromethane	0.35		1.0	0.35	-			08/29/22 15:51	
1,1-Dichloroethane	0.47		1.0		ug/L			08/29/22 15:51	
1,2-Dichloroethane	0.21		1.0		ug/L			08/29/22 15:51	
1,1-Dichloroethene	0.49		1.0		ug/L			08/29/22 15:51	
1,2-Dichloropropane	0.47		1.0	0.47				08/29/22 15:51	
1,3-Dichloropropane	0.21		1.0	0.21	-			08/29/22 15:51	
2,2-Dichloropropane	0.78		1.0	0.78	•			08/29/22 15:51	
1,1-Dichloropropene	0.36		1.0		ug/L			08/29/22 15:51	
Diisopropyl ether	0.17		10		ug/L			08/29/22 15:51	
Ethylbenzene	0.17		1.0		ug/L			08/29/22 15:51	
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 15:51	
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 15:51	
2-Hexanone	1.1		10		ug/L			08/29/22 15:51	
sopropylbenzene	0.49		1.0	0.49				08/29/22 15:51	
Methylene Chloride	2.6		5.0		ug/L ug/L			08/29/22 15:51	
4-Methyl-2-pentanone	0.99		10	0.99	-			08/29/22 15:51	
Methyl tert-butyl ether	0.99		1.0	0.99				08/29/22 15:51	
m-Xylene & p-Xylene	0.47		2.0		ug/L ug/L			08/29/22 15:51	
• •	0.42		1.0		ug/L ug/L			08/29/22 15:51	
Naphthalene									
n-Butylbenzene	0.60		1.0		ug/L			08/29/22 15:51	
n-Propylbenzene	0.57		1.0		ug/L			08/29/22 15:51	
o-Xylene	0.42		1.0		ug/L			08/29/22 15:51	
o-Isopropyltoluene	0.56		1.0		ug/L			08/29/22 15:51	
sec-Butylbenzene	0.53		1.0		ug/L			08/29/22 15:51	
Styrene	0.45		1.0		ug/L			08/29/22 15:51	
Tert-amyl-methyl ether (TAME)	0.43		5.0		ug/L			08/29/22 15:51	
ert-Butyl alcohol	7.2		40		ug/L			08/29/22 15:51	
ert-Butylbenzene	0.48		1.0		ug/L			08/29/22 15:51	
1,1,1,2-Tetrachloroethane	0.43		1.0		ug/L			08/29/22 15:51	
1,1,2,2-Tetrachloroethane	0.60		1.0		ug/L			08/29/22 15:51	
Tetrachloroethene	0.44		1.0		ug/L			08/29/22 15:51	
Toluene	0.44		1.0		ug/L			08/29/22 15:51	
rans-1,2-Dichloroethene	0.51	U	1.0	0.51	ug/L			08/29/22 15:51	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38B-082222

Date Collected: 08/22/22 11:55 Date Received: 08/23/22 15:30 Lab Sample ID: 240-171981-6

Lab Sample ID: 240-171981-7

Matrix: Water

Matrix: Water

Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	0.54	U		1.0	0.54	ug/L			08/29/22 15:51	1
1,2,4-Trichlorobenzene	0.77	U		1.0	0.77	ug/L			08/29/22 15:51	1
1,1,1-Trichloroethane	0.48	U		1.0	0.48	ug/L			08/29/22 15:51	1
Trichloroethene	0.44	U		1.0	0.44	ug/L			08/29/22 15:51	1
Trichlorofluoromethane	0.45	U		1.0	0.45	ug/L			08/29/22 15:51	1
1,2,3-Trichloropropane	0.52	U		1.0	0.52	ug/L			08/29/22 15:51	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U		1.0	0.41	ug/L			08/29/22 15:51	1
1,2,3-Trimethylbenzene	0.31	U		5.0	0.31	ug/L			08/29/22 15:51	1
1,2,4-Trimethylbenzene	0.52	U		1.0	0.52	ug/L			08/29/22 15:51	1
Vinyl acetate	0.61	U		2.0	0.61	ug/L			08/29/22 15:51	1
Vinyl chloride	0.45	U		1.0	0.45	ug/L			08/29/22 15:51	1
Xylenes, Total	0.42	U		2.0	0.42	ug/L			08/29/22 15:51	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	ı	D .	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L		_		75-45-6	-	08/29/22 15:51	1
Surrogate	%Recovery	Qualifier	Limit	s				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		56 - 1	36				-	08/29/22 15:51	1
Dibromofluoromethane (Surr)	108		73 - 1	20					08/29/22 15:51	1
1,2-Dichloroethane-d4 (Surr)	103		62 - 1	37					08/29/22 15:51	1
Toluene-d8 (Surr)	102		78 - 1	22					08/29/22 15:51	1

Client Sample ID: MSA-SW38C-082222

Date Collected: 08/22/22 11:58

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 16:15	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 16:15	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 16:15	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 16:15	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 16:15	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 16:15	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 16:15	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 16:15	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 16:15	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 16:15	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 16:15	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 16:15	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 16:15	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 16:15	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 16:15	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 16:15	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 16:15	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/29/22 16:15	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/29/22 16:15	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/29/22 16:15	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/29/22 16:15	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/29/22 16:15	1

Eurofins Canton

Page 19 of 539

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38C-082222

Lab Sample ID: 240-171981-7 Date Collected: 08/22/22 11:58 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/29/22 16:15	1
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/29/22 16:15	1
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/29/22 16:15	1
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/29/22 16:15	1
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/29/22 16:15	1
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/29/22 16:15	1
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/29/22 16:15	1
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/29/22 16:15	1
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/29/22 16:15	1
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/29/22 16:15	1
2,2-Dichloropropane	0.78	U	1.0		ug/L			08/29/22 16:15	1
1,1-Dichloropropene	0.36	U	1.0		ug/L			08/29/22 16:15	1
Diisopropyl ether	0.17	U	10		ug/L			08/29/22 16:15	1
Ethylbenzene	0.42	U	1.0		ug/L			08/29/22 16:15	1
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 16:15	1
Hexachlorobutadiene	0.83	U	1.0		ug/L			08/29/22 16:15	1
2-Hexanone	1.1		10		ug/L			08/29/22 16:15	1
Isopropylbenzene	0.49		1.0		ug/L			08/29/22 16:15	1
Methylene Chloride	2.6		5.0		ug/L			08/29/22 16:15	1
4-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 16:15	1
Methyl tert-butyl ether	0.47		1.0		ug/L			08/29/22 16:15	· · · · · · · · · · · · · · · · · · ·
m-Xylene & p-Xylene	0.42		2.0		ug/L			08/29/22 16:15	1
Naphthalene	0.80		1.0		ug/L			08/29/22 16:15	1
n-Butylbenzene	0.60		1.0		ug/L			08/29/22 16:15	1
n-Propylbenzene	0.57		1.0		ug/L			08/29/22 16:15	1
o-Xylene	0.42		1.0		ug/L			08/29/22 16:15	1
p-Isopropyltoluene	0.56		1.0		ug/L			08/29/22 16:15	
sec-Butylbenzene	0.53		1.0		ug/L			08/29/22 16:15	1
Styrene	0.45		1.0		ug/L			08/29/22 16:15	1
Tert-amyl-methyl ether (TAME)	0.43		5.0		ug/L			08/29/22 16:15	
tert-Butyl alcohol	7.2		40		ug/L			08/29/22 16:15	1
tert-Butylbenzene	0.48		1.0		ug/L			08/29/22 16:15	1
1,1,1,2-Tetrachloroethane	0.43		1.0		ug/L ug/L			08/29/22 16:15	· · · · · · · · · · · · · · · · · · ·
1,1,2,2-Tetrachloroethane	0.43		1.0		_			08/29/22 16:15	1
					ug/L				
Tetrachloroethene	0.44		1.0		ug/L			08/29/22 16:15	1
Toluene	0.44		1.0		ug/L			08/29/22 16:15	1
trans-1,2-Dichloroethene	0.51		1.0		ug/L			08/29/22 16:15	1
trans-1,3-Dichloropropene	0.67		1.0		ug/L			08/29/22 16:15	1
1,2,3-Trichlorobenzene	0.54		1.0		ug/L			08/29/22 16:15	1
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/29/22 16:15	1
1,1,1-Trichloroethane	0.48		1.0		ug/L			08/29/22 16:15	1
Trichloroethene	0.44		1.0		ug/L			08/29/22 16:15	1
Trichlorofluoromethane	0.45		1.0		ug/L			08/29/22 16:15	1
1,2,3-Trichloropropane	0.52		1.0		ug/L			08/29/22 16:15	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41		1.0		ug/L			08/29/22 16:15	1
1,2,3-Trimethylbenzene	0.31		5.0		ug/L			08/29/22 16:15	1
1,2,4-Trimethylbenzene	0.52		1.0		ug/L			08/29/22 16:15	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/29/22 16:15	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38C-082222

Lab Sample ID: 240-171981-7 Date Collected: 08/22/22 11:58

Matrix: Water

Date Received: 08/23/22 15:30

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Cor	itinu	ied)				
Analyte	Result	Qualifier	RL		MDL Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.42	U	2.0		0.42 ug/L			08/29/22 16:15	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/29/22 16:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		56 - 136					08/29/22 16:15	1
Dibromofluoromethane (Surr)	107		73 - 120					08/29/22 16:15	1
1,2-Dichloroethane-d4 (Surr)	102		62 - 137					08/29/22 16:15	1
Toluene-d8 (Surr)	102		78 - 122					08/29/22 16:15	1

Client Sample ID: MSA-SW38D-082222

Lab Sample ID: 240-171981-8

Date Collected: 08/22/22 12:00 Date Received: 08/23/22 15:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 16:38	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 16:38	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 16:38	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 16:38	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 16:38	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 16:38	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 16:38	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 16:38	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 16:38	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 16:38	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 16:38	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 16:38	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 16:38	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 16:38	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 16:38	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 16:38	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 16:38	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/29/22 16:38	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/29/22 16:38	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/29/22 16:38	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/29/22 16:38	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/29/22 16:38	1
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/29/22 16:38	1
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/29/22 16:38	1
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/29/22 16:38	1
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/29/22 16:38	1
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/29/22 16:38	1
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/29/22 16:38	1
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/29/22 16:38	1
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/29/22 16:38	1
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/29/22 16:38	1
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/29/22 16:38	1
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/29/22 16:38	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38D-082222

Lab Sample ID: 240-171981-8 Date Collected: 08/22/22 12:00 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte		Qualifier	RL		Unit	<u>D</u> .	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	0.36	U	1.0	0.36	ug/L			08/29/22 16:38	
Diisopropyl ether	0.17	U	10	0.17	ug/L			08/29/22 16:38	•
Ethylbenzene	0.42	U	1.0	0.42	ug/L			08/29/22 16:38	
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40	ug/L			08/29/22 16:38	
Hexachlorobutadiene	0.83	U	1.0	0.83	ug/L			08/29/22 16:38	
2-Hexanone	1.1	U	10	1.1	ug/L			08/29/22 16:38	
Isopropylbenzene	0.49	U	1.0	0.49	ug/L			08/29/22 16:38	
Methylene Chloride	2.6	U	5.0	2.6	ug/L			08/29/22 16:38	•
4-Methyl-2-pentanone	0.99	U	10	0.99	ug/L			08/29/22 16:38	
Methyl tert-butyl ether	0.47	U	1.0	0.47	ug/L			08/29/22 16:38	
m-Xylene & p-Xylene	0.42	U	2.0		ug/L			08/29/22 16:38	
Naphthalene	0.80	U	1.0		ug/L			08/29/22 16:38	
n-Butylbenzene	0.60	U	1.0		ug/L			08/29/22 16:38	
n-Propylbenzene	0.57	U	1.0		ug/L			08/29/22 16:38	
o-Xylene	0.42		1.0		ug/L			08/29/22 16:38	
p-Isopropyltoluene	0.56		1.0		ug/L			08/29/22 16:38	
sec-Butylbenzene	0.53		1.0		ug/L			08/29/22 16:38	
Styrene	0.45		1.0		ug/L			08/29/22 16:38	
Tert-amyl-methyl ether (TAME)	0.43		5.0		ug/L			08/29/22 16:38	
tert-Butyl alcohol	7.2		40		ug/L			08/29/22 16:38	
tert-Butylbenzene	0.48		1.0		ug/L			08/29/22 16:38	
1,1,1,2-Tetrachloroethane	0.43		1.0		ug/L			08/29/22 16:38	· · · · · · .
1,1,2,1-Tetrachloroethane	0.60		1.0		ug/L ug/L			08/29/22 16:38	
Tetrachloroethene	0.44		1.0		ug/L ug/L			08/29/22 16:38	,
Toluene	0.44		1.0		ug/L ug/L			08/29/22 16:38	
	0.44		1.0		ug/L ug/L			08/29/22 16:38	1
trans-1,2-Dichloroethene	0.51				-				•
trans-1,3-Dichloropropene			1.0		ug/L			08/29/22 16:38	
1,2,3-Trichlorobenzene	0.54		1.0		ug/L			08/29/22 16:38	•
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/29/22 16:38	•
1,1,1-Trichloroethane	0.48		1.0		ug/L			08/29/22 16:38	
Trichloroethene	0.44		1.0		ug/L			08/29/22 16:38	1
Trichlorofluoromethane	0.45		1.0		ug/L			08/29/22 16:38	1
1,2,3-Trichloropropane	0.52		1.0		ug/L			08/29/22 16:38	
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41		1.0		ug/L			08/29/22 16:38	•
1,2,3-Trimethylbenzene	0.31		5.0	0.31	ug/L			08/29/22 16:38	•
1,2,4-Trimethylbenzene	0.52	U	1.0		ug/L			08/29/22 16:38	
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/29/22 16:38	•
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/29/22 16:38	•
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/29/22 16:38	,
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0		ug/L	<u> </u>		75-45-6		08/29/22 16:38	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	96	- Cualifier	56 - 136			-	rrepared	08/29/22 16:38	Dira
Dibromofluoromethane (Surr)	107		73 - 120					08/29/22 16:38	
1,2-Dichloroethane-d4 (Surr)	107		62 - 137					08/29/22 16:38	
Toluene-d8 (Surr)	100		78 - 122					08/29/22 16:38	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1
Project/Site: MSA Surface Water Sampling

SDG: MSA Frog Mortar Creek

Date Collected: 08/22/22 12:11 Date Received: 08/23/22 15:30

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Acetone	5.4	U	10	5.4	ug/L			08/29/22 17:02	
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 17:02	
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 17:02	
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 17:02	
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 17:02	
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 17:02	
Bromomethane	0.42	U	1.0		ug/L			08/29/22 17:02	
2-Butanone	1.2	U	10		ug/L			08/29/22 17:02	
Carbon disulfide	0.59	U	1.0		ug/L			08/29/22 17:02	
Carbon tetrachloride	0.26	U	1.0		ug/L			08/29/22 17:02	
Chlorobenzene	0.38	U	1.0		ug/L			08/29/22 17:02	
Chloroethane	0.83	U	1.0		ug/L			08/29/22 17:02	
2-Chloroethyl vinyl ether	1.5		10		ug/L			08/29/22 17:02	
Chloroform	0.47		1.0		ug/L			08/29/22 17:02	
Chloromethane	0.63		1.0		ug/L			08/29/22 17:02	
2-Chlorotoluene	0.57		1.0		ug/L			08/29/22 17:02	
-Chlorotoluene	0.43		1.0		ug/L			08/29/22 17:02	
sis-1,2-Dichloroethene	0.46		1.0		ug/L			08/29/22 17:02	
sis-1,3-Dichloropropene	0.61		1.0		ug/L			08/29/22 17:02	
Dibromochloromethane	0.39		1.0		ug/L			08/29/22 17:02	
,2-Dibromo-3-Chloropropane	0.91		2.0		ug/L			08/29/22 17:02	
,2-Dibromoethane	0.41		1.0		ug/L			08/29/22 17:02	
Dibromomethane	0.40		1.0		ug/L			08/29/22 17:02	
,2-Dichlorobenzene	0.40		1.0		ug/L ug/L			08/29/22 17:02	
1,3-Dichlorobenzene	0.45		1.0		ug/L			08/29/22 17:02	
,4-Dichlorobenzene	0.43		1.0		ug/L ug/L			08/29/22 17:02	
Dichlorodifluoromethane	0.41		1.0		ug/L ug/L			08/29/22 17:02	
1,1-Dichloroethane	0.47		1.0		ug/L			08/29/22 17:02	
1,2-Dichloroethane	0.21		1.0	0.21	ug/L			08/29/22 17:02	
I,1-Dichloroethene	0.49		1.0		ug/L			08/29/22 17:02	
1,2-Dichloropropane	0.47		1.0		ug/L			08/29/22 17:02	
I,3-Dichloropropane	0.21		1.0	0.21	ug/L			08/29/22 17:02	
2,2-Dichloropropane	0.78		1.0		ug/L			08/29/22 17:02	
I,1-Dichloropropene	0.36		1.0		ug/L			08/29/22 17:02	
Diisopropyl ether	0.17		10	0.17				08/29/22 17:02	
Ethylbenzene	0.42		1.0		ug/L			08/29/22 17:02	
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 17:02	
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 17:02	
2-Hexanone	1.1		10		ug/L			08/29/22 17:02	
sopropylbenzene	0.49		1.0		ug/L			08/29/22 17:02	
Methylene Chloride	2.6		5.0		ug/L			08/29/22 17:02	
-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 17:02	
Methyl tert-butyl ether	0.47		1.0		ug/L			08/29/22 17:02	
n-Xylene & p-Xylene	0.42		2.0		ug/L			08/29/22 17:02	
Naphthalene	0.80		1.0		ug/L			08/29/22 17:02	
n-Butylbenzene	0.60	U	1.0		ug/L			08/29/22 17:02	
n-Propylbenzene	0.57	U	1.0		ug/L			08/29/22 17:02	
o-Xylene	0.42	U	1.0	0.42	ug/L			08/29/22 17:02	

Eurofins Canton

Matrix: Water

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40A-082222

Lab Sample ID: 240-171981-9 Date Collected: 08/22/22 12:11 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDI	. Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	0.53	U	1.0	0.53	ug/L			08/29/22 17:02	1
Styrene	0.45	U	1.0	0.4	ug/L			08/29/22 17:02	1
Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43	3 ug/L			08/29/22 17:02	1
tert-Butyl alcohol	7.2	U	40	7.2	2 ug/L			08/29/22 17:02	1
tert-Butylbenzene	0.48	U	1.0	0.48	3 ug/L			08/29/22 17:02	1
1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43	3 ug/L			08/29/22 17:02	1
1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60	ug/L			08/29/22 17:02	1
Tetrachloroethene	0.44	U	1.0	0.44	l ug/L			08/29/22 17:02	1
Toluene	0.44	U	1.0	0.44	l ug/L			08/29/22 17:02	1
trans-1,2-Dichloroethene	0.51	U	1.0	0.5	l ug/L			08/29/22 17:02	1
trans-1,3-Dichloropropene	0.67	U	1.0	0.6	ug/L			08/29/22 17:02	1
1,2,3-Trichlorobenzene	0.54	U	1.0	0.54	l ug/L			08/29/22 17:02	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.7	ug/L			08/29/22 17:02	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	3 ug/L			08/29/22 17:02	1
Trichloroethene	0.44	U	1.0	0.44	l ug/L			08/29/22 17:02	1
Trichlorofluoromethane	0.45	U	1.0	0.4	ug/L			08/29/22 17:02	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	2 ug/L			08/29/22 17:02	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.4	ug/L			08/29/22 17:02	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.3	l ug/L			08/29/22 17:02	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	2 ug/L			08/29/22 17:02	1
Vinyl acetate	0.61	U	2.0	0.6	ug/L			08/29/22 17:02	1
Vinyl chloride	0.45	U	1.0	0.4	ug/L			08/29/22 17:02	1
Xylenes, Total	0.42	U	2.0	0.42	2 ug/L			08/29/22 17:02	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/29/22 17:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95	-	56 - 136					08/29/22 17:02	1
Dibromofluoromethane (Surr)	104		73 - 120					08/29/22 17:02	1
1,2-Dichloroethane-d4 (Surr)	98		62 - 137					08/29/22 17:02	1
Toluene-d8 (Surr)	101		78 - 122					08/29/22 17:02	1

Client Sample ID: MSA-SW40B-082222

Lab Sample ID: 240-171981-10 Date Collected: 08/22/22 12:14 **Matrix: Water** Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 17:26	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 17:26	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 17:26	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 17:26	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 17:26	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 17:26	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 17:26	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 17:26	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 17:26	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 17:26	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 17:26	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40B-082222

Lab Sample ID: 240-171981-10 Date Collected: 08/22/22 12:14 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 17:26	
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 17:26	
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 17:26	
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 17:26	
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 17:26	
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 17:26	
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/29/22 17:26	
cis-1,3-Dichloropropene	0.61	U	1.0		ug/L			08/29/22 17:26	
Dibromochloromethane	0.39	U	1.0		ug/L			08/29/22 17:26	
1,2-Dibromo-3-Chloropropane	0.91	U	2.0		ug/L			08/29/22 17:26	
1,2-Dibromoethane	0.41	U	1.0		ug/L			08/29/22 17:26	
Dibromomethane	0.40		1.0		ug/L			08/29/22 17:26	
1,2-Dichlorobenzene	0.48		1.0		ug/L			08/29/22 17:26	
1,3-Dichlorobenzene	0.45		1.0		ug/L			08/29/22 17:26	
1,4-Dichlorobenzene	0.41		1.0		ug/L			08/29/22 17:26	
Dichlorodifluoromethane	0.35		1.0		ug/L			08/29/22 17:26	
1,1-Dichloroethane	0.47		1.0		ug/L			08/29/22 17:26	
I.2-Dichloroethane	0.47		1.0		ug/L			08/29/22 17:26	
,1-Dichloroethene	0.49		1.0		ug/L			08/29/22 17:26	
1,2-Dichloropropane	0.43		1.0		ug/L			08/29/22 17:26	
,3-Dichloropropane	0.47		1.0		ug/L ug/L			08/29/22 17:26	
• •	0.21		1.0		ug/L ug/L			08/29/22 17:26	
2,2-Dichloropropane	0.76				ug/L ug/L				
,1-Dichloropropene			1.0		-			08/29/22 17:26	
Diisopropyl ether	0.17		10		ug/L			08/29/22 17:26	
Ethylbenzene	0.42		1.0		ug/L			08/29/22 17:26	
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 17:26	
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 17:26	
2-Hexanone	1.1		10		ug/L			08/29/22 17:26	
sopropylbenzene	0.49		1.0		ug/L			08/29/22 17:26	
Methylene Chloride	2.6		5.0		ug/L			08/29/22 17:26	
1-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 17:26	
Methyl tert-butyl ether	0.47		1.0		ug/L			08/29/22 17:26	
n-Xylene & p-Xylene	0.42		2.0		ug/L			08/29/22 17:26	
Naphthalene	0.80		1.0	0.80				08/29/22 17:26	
n-Butylbenzene	0.60	U	1.0	0.60	ug/L			08/29/22 17:26	
n-Propylbenzene	0.57	U	1.0	0.57	ug/L			08/29/22 17:26	
o-Xylene	0.42	U	1.0	0.42	ug/L			08/29/22 17:26	
o-Isopropyltoluene	0.56	U	1.0	0.56	ug/L			08/29/22 17:26	
ec-Butylbenzene	0.53	U	1.0	0.53	ug/L			08/29/22 17:26	
Styrene	0.45	U	1.0	0.45	ug/L			08/29/22 17:26	
ert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43	ug/L			08/29/22 17:26	
ert-Butyl alcohol	7.2	U	40	7.2	ug/L			08/29/22 17:26	
ert-Butylbenzene	0.48	U	1.0	0.48	ug/L			08/29/22 17:26	
,1,1,2-Tetrachloroethane	0.43		1.0		ug/L			08/29/22 17:26	
, , , , , , , , , , , , , , , , , , ,	0.60		1.0		ug/L			08/29/22 17:26	
Tetrachloroethene	0.44		1.0		ug/L			08/29/22 17:26	
Foluene	0.44		1.0		ug/L			08/29/22 17:26	
rans-1,2-Dichloroethene	0.51		1.0		ug/L			08/29/22 17:26	
rans-1,3-Dichloropropene	0.67		1.0		ug/L			08/29/22 17:26	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40B-082222

Lab Sample ID: 240-171981-10 Date Collected: 08/22/22 12:14 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	. MDI	_ Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	0.54	U	1.0	0.5	ug/L			08/29/22 17:26	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.7	7 ug/L			08/29/22 17:26	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	3 ug/L			08/29/22 17:26	1
Trichloroethene	0.44	U	1.0	0.4	4 ug/L			08/29/22 17:26	1
Trichlorofluoromethane	0.45	U	1.0	0.4	5 ug/L			08/29/22 17:26	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	2 ug/L			08/29/22 17:26	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.4	1 ug/L			08/29/22 17:26	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.3	1 ug/L			08/29/22 17:26	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.5	2 ug/L			08/29/22 17:26	1
Vinyl acetate	0.61	U	2.0	0.6	1 ug/L			08/29/22 17:26	1
Vinyl chloride	0.45	U	1.0	0.4	5 ug/L			08/29/22 17:26	1
Xylenes, Total	0.42	U	2.0	0.42	2 ug/L			08/29/22 17:26	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L	· -		75-45-6		08/29/22 17:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		56 - 136	•				08/29/22 17:26	1
Dibromofluoromethane (Surr)	107		73 - 120					08/29/22 17:26	1
1,2-Dichloroethane-d4 (Surr)	101		62 - 137					08/29/22 17:26	1
Toluene-d8 (Surr)	101		78 - 122					08/29/22 17:26	1

Client Sample ID: MSA-SW40C-082222

Date Collected: 08/22/22 12:17

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 17:49	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 17:49	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 17:49	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 17:49	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 17:49	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 17:49	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 17:49	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 17:49	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 17:49	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 17:49	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 17:49	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 17:49	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 17:49	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 17:49	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 17:49	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 17:49	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 17:49	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/29/22 17:49	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/29/22 17:49	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/29/22 17:49	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/29/22 17:49	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/29/22 17:49	1

Eurofins Canton

Lab Sample ID: 240-171981-11

Matrix: Water

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40C-082222

Lab Sample ID: 240-171981-11 Date Collected: 08/22/22 12:17 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/29/22 17:49	
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/29/22 17:49	
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/29/22 17:49	
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/29/22 17:49	
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/29/22 17:49	
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/29/22 17:49	
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/29/22 17:49	
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/29/22 17:49	
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/29/22 17:49	
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/29/22 17:49	
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/29/22 17:49	
1,1-Dichloropropene	0.36	U	1.0	0.36				08/29/22 17:49	
Diisopropyl ether	0.17	U	10	0.17	_			08/29/22 17:49	
Ethylbenzene	0.42	U	1.0		ug/L			08/29/22 17:49	
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 17:49	
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 17:49	
2-Hexanone	1.1		10		ug/L			08/29/22 17:49	
sopropylbenzene	0.49		1.0		ug/L			08/29/22 17:49	
Methylene Chloride	2.6		5.0		ug/L			08/29/22 17:49	
4-Methyl-2-pentanone	0.99		10	0.99	_			08/29/22 17:49	
Methyl tert-butyl ether	0.47		1.0	0.47				08/29/22 17:49	
m-Xylene & p-Xylene	0.42		2.0	0.42	_			08/29/22 17:49	
Naphthalene	0.80		1.0		ug/L			08/29/22 17:49	
n-Butylbenzene	0.60		1.0		ug/L			08/29/22 17:49	
n-Propylbenzene	0.57		1.0	0.57	_			08/29/22 17:49	
o-Xylene	0.37		1.0	0.42	_			08/29/22 17:49	
	0.42		1.0	0.42				08/29/22 17:49	
o-Isopropyltoluene	0.53				_				
sec-Butylbenzene	0.55		1.0	0.53	_			08/29/22 17:49	
Styrene (TAME)			1.0	0.45				08/29/22 17:49	
Tert-amyl-methyl ether (TAME)	0.43		5.0	0.43	_			08/29/22 17:49	
tert-Butyl alcohol	7.2		40		ug/L			08/29/22 17:49	
ert-Butylbenzene	0.48		1.0	0.48				08/29/22 17:49	
1,1,1,2-Tetrachloroethane	0.43		1.0		ug/L			08/29/22 17:49	
1,1,2,2-Tetrachloroethane	0.60		1.0		ug/L			08/29/22 17:49	
Tetrachloroethene	0.44		1.0	0.44				08/29/22 17:49	
Toluene	0.44		1.0	0.44				08/29/22 17:49	
rans-1,2-Dichloroethene	0.51		1.0		ug/L			08/29/22 17:49	
rans-1,3-Dichloropropene	0.67		1.0		ug/L			08/29/22 17:49	
1,2,3-Trichlorobenzene	0.54		1.0		ug/L			08/29/22 17:49	
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/29/22 17:49	
1,1,1-Trichloroethane	0.48		1.0		ug/L			08/29/22 17:49	
Trichloroethene	0.44		1.0		ug/L			08/29/22 17:49	
Trichlorofluoromethane	0.45	U	1.0		ug/L			08/29/22 17:49	
1,2,3-Trichloropropane	0.52		1.0		ug/L			08/29/22 17:49	
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0		ug/L			08/29/22 17:49	
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/29/22 17:49	
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/29/22 17:49	
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/29/22 17:49	
Vinyl chloride	0.45	U	1.0		ug/L			08/29/22 17:49	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40C-082222

Lab Sample ID: 240-171981-11

Matrix: Water

Date Collected: 08/22/22 12:17 Date Received: 08/23/22 15:30

Method: 8260C - Volatile Org	anic Compo	unas by (3C/MS (Con	tınu	ied)				
Analyte	Result	Qualifier	RL		MDL Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.42	U	2.0		0.42 ug/L			08/29/22 17:49	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/29/22 17:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		56 - 136					08/29/22 17:49	1
Dibromofluoromethane (Surr)	105		73 - 120					08/29/22 17:49	1
			62 - 137					08/29/22 17:49	1
1,2-Dichloroethane-d4 (Surr)	101		02 - 137					00/29/22 17.49	,

Client Sample ID: MSA-SW40D-082222 Lab Sample ID: 240-171981-12

Date Collected: 08/22/22 12:20 Date Received: 08/23/22 15:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 18:13	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 18:13	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 18:13	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 18:13	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 18:13	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 18:13	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 18:13	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 18:13	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 18:13	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 18:13	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 18:13	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 18:13	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 18:13	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 18:13	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 18:13	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 18:13	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 18:13	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/29/22 18:13	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/29/22 18:13	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/29/22 18:13	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/29/22 18:13	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/29/22 18:13	1
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/29/22 18:13	1
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/29/22 18:13	1
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/29/22 18:13	1
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/29/22 18:13	1
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/29/22 18:13	1
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/29/22 18:13	1
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/29/22 18:13	1
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/29/22 18:13	1
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/29/22 18:13	1
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/29/22 18:13	1
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/29/22 18:13	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40D-082222

Date Collected: 08/22/22 12:20 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloropropene	0.36	U	1.0	0.36	ug/L			08/29/22 18:13	
Diisopropyl ether	0.17	U	10	0.17	ug/L			08/29/22 18:13	
Ethylbenzene	0.42	U	1.0	0.42	ug/L			08/29/22 18:13	
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40	ug/L			08/29/22 18:13	
Hexachlorobutadiene	0.83	U	1.0	0.83	ug/L			08/29/22 18:13	
2-Hexanone	1.1	U	10	1.1	ug/L			08/29/22 18:13	
Isopropylbenzene	0.49	U	1.0	0.49	ug/L			08/29/22 18:13	
Methylene Chloride	2.6	U	5.0		ug/L			08/29/22 18:13	
4-Methyl-2-pentanone	0.99	U	10		ug/L			08/29/22 18:13	
Methyl tert-butyl ether	0.47	U	1.0		ug/L			08/29/22 18:13	
m-Xylene & p-Xylene	0.42	U	2.0		ug/L			08/29/22 18:13	
Naphthalene	0.80	U	1.0		ug/L			08/29/22 18:13	
n-Butylbenzene	0.60		1.0		ug/L			08/29/22 18:13	
n-Propylbenzene	0.57		1.0		ug/L			08/29/22 18:13	
o-Xylene	0.42		1.0		ug/L			08/29/22 18:13	
p-Isopropyltoluene	0.56		1.0		ug/L			08/29/22 18:13	
sec-Butylbenzene	0.53		1.0		ug/L			08/29/22 18:13	
Styrene	0.45		1.0		ug/L			08/29/22 18:13	
Tert-amyl-methyl ether (TAME)	0.43		5.0		ug/L			08/29/22 18:13	
tert-Butyl alcohol	7.2		40		ug/L			08/29/22 18:13	
tert-Butylbenzene	0.48		1.0		ug/L			08/29/22 18:13	
1,1,1,2-Tetrachloroethane	0.43		1.0		ug/L			08/29/22 18:13	
1,1,2,2-Tetrachloroethane	0.60		1.0		ug/L			08/29/22 18:13	
Tetrachloroethene	0.44		1.0		ug/L			08/29/22 18:13	
Toluene	0.44		1.0		ug/L			08/29/22 18:13	
trans-1,2-Dichloroethene	0.51		1.0		ug/L			08/29/22 18:13	
·	0.51		1.0		ug/L ug/L			08/29/22 18:13	
trans-1,3-Dichloropropene									
1,2,3-Trichlorobenzene	0.54 0.77		1.0 1.0		ug/L			08/29/22 18:13	
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/29/22 18:13	
1,1,1-Trichloroethane					ug/L			08/29/22 18:13	
Tricklereftvererektere	0.44		1.0		ug/L			08/29/22 18:13	
Trichlorofluoromethane	0.45		1.0		ug/L			08/29/22 18:13	
1,2,3-Trichloropropane	0.52		1.0		ug/L			08/29/22 18:13	
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41		1.0		ug/L			08/29/22 18:13	
1,2,3-Trimethylbenzene	0.31		5.0		ug/L			08/29/22 18:13	
1,2,4-Trimethylbenzene	0.52		1.0		ug/L			08/29/22 18:13	
Vinyl acetate	0.61		2.0		ug/L			08/29/22 18:13	
Vinyl chloride	0.45		1.0		ug/L			08/29/22 18:13	
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/29/22 18:13	
Tentatively Identified Compound	Est. Result		Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fa
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/29/22 18:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	96		56 - 136					08/29/22 18:13	
Dibromofluoromethane (Surr)	103		73 - 120					08/29/22 18:13	
1,2-Dichloroethane-d4 (Surr)	98		62 - 137					08/29/22 18:13	

Lab Sample ID: 240-171981-12

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41A-082222

Lab Sample ID: 240-171981-13 Date Collected: 08/22/22 11:34 **Matrix: Water**

Date Received: 08/23/22 15:30

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
cetone	5.4	U –	10	5.4	ug/L		-	08/29/22 18:37	-
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 18:37	
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 18:37	
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 18:37	
Bromodichloromethane	0.17	U	1.0		ug/L			08/29/22 18:37	
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 18:37	
Bromomethane	0.42	U	1.0	0.42				08/29/22 18:37	
-Butanone	1.2	U	10		ug/L			08/29/22 18:37	
Carbon disulfide	0.59		1.0	0.59	-			08/29/22 18:37	
Carbon tetrachloride	0.26		1.0	0.26				08/29/22 18:37	
Chlorobenzene	0.38		1.0	0.38	-			08/29/22 18:37	
Chloroethane	0.83		1.0		ug/L			08/29/22 18:37	
-Chloroethyl vinyl ether	1.5		10		ug/L			08/29/22 18:37	
Chloroform	0.47		1.0	0.47	-			08/29/22 18:37	
Chloromethane	0.47		1.0	0.63	-			08/29/22 18:37	
-Chlorotoluene	0.57		1.0	0.57				08/29/22 18:37	
-Chlorotoluene	0.43		1.0	0.43	-			08/29/22 18:37	
is-1,2-Dichloroethene	0.46		1.0		ug/L			08/29/22 18:37	
is-1,3-Dichloropropene	0.40		1.0	0.40				08/29/22 18:37	
Dibromochloromethane	0.39		1.0	0.39	-			08/29/22 18:37	
,2-Dibromo-3-Chloropropane	0.39		2.0	0.39	•			08/29/22 18:37	
,2-Dibromoethane	0.41		1.0	0.41				08/29/22 18:37	
رعر,عالم المال المال المال المال المال المال المال المال المال المال المال المال المال المال المال المال المال	0.41		1.0		-				
	0.40		1.0	0.40	•			08/29/22 18:37	
,2-Dichlorobenzene					ug/L			08/29/22 18:37	
,3-Dichlorobenzene	0.45		1.0	0.45	-			08/29/22 18:37	
,4-Dichlorobenzene	0.41		1.0	0.41	-			08/29/22 18:37	
Dichlorodifluoromethane	0.35		1.0	0.35				08/29/22 18:37	
,1-Dichloroethane	0.47		1.0	0.47	-			08/29/22 18:37	
,2-Dichloroethane	0.21		1.0		ug/L			08/29/22 18:37	
,1-Dichloroethene	0.49		1.0	0.49				08/29/22 18:37	
,2-Dichloropropane	0.47		1.0	0.47	-			08/29/22 18:37	
,3-Dichloropropane	0.21		1.0		ug/L			08/29/22 18:37	
,2-Dichloropropane	0.78		1.0		ug/L			08/29/22 18:37	
,1-Dichloropropene	0.36		1.0	0.36	-			08/29/22 18:37	
Diisopropyl ether	0.17		10		ug/L			08/29/22 18:37	
thylbenzene	0.42		1.0		ug/L			08/29/22 18:37	
thyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 18:37	
lexachlorobutadiene	0.83		1.0		ug/L			08/29/22 18:37	
-Hexanone	1.1		10		ug/L			08/29/22 18:37	
sopropylbenzene	0.49		1.0		ug/L			08/29/22 18:37	
lethylene Chloride	2.6		5.0		ug/L			08/29/22 18:37	
-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 18:37	
Nethyl tert-butyl ether	0.47	U	1.0		ug/L			08/29/22 18:37	
n-Xylene & p-Xylene	0.42	U	2.0	0.42	ug/L			08/29/22 18:37	
laphthalene	0.80	U	1.0	0.80	ug/L			08/29/22 18:37	
-Butylbenzene	0.60	U	1.0	0.60	ug/L			08/29/22 18:37	
-Propylbenzene	0.57	U	1.0		ug/L			08/29/22 18:37	
-Xylene	0.42	U	1.0		ug/L			08/29/22 18:37	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41A-082222

Lab Sample ID: 240-171981-13 Date Collected: 08/22/22 11:34 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	0.53	U	1.0	0.53	ug/L			08/29/22 18:37	1
Styrene	0.45	U	1.0	0.45	ug/L			08/29/22 18:37	1
Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43	ug/L			08/29/22 18:37	1
tert-Butyl alcohol	7.2	U	40	7.2	ug/L			08/29/22 18:37	1
tert-Butylbenzene	0.48	U	1.0	0.48	ug/L			08/29/22 18:37	1
1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43	ug/L			08/29/22 18:37	1
1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60	ug/L			08/29/22 18:37	1
Tetrachloroethene	0.44	U	1.0	0.44	ug/L			08/29/22 18:37	1
Toluene	0.44	U	1.0	0.44	ug/L			08/29/22 18:37	1
trans-1,2-Dichloroethene	0.51	U	1.0	0.51	ug/L			08/29/22 18:37	1
trans-1,3-Dichloropropene	0.67	U	1.0	0.67	ug/L			08/29/22 18:37	1
1,2,3-Trichlorobenzene	0.54	U	1.0	0.54	ug/L			08/29/22 18:37	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.77	ug/L			08/29/22 18:37	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	ug/L			08/29/22 18:37	1
Trichloroethene	0.44	U	1.0	0.44	ug/L			08/29/22 18:37	1
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/29/22 18:37	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	ug/L			08/29/22 18:37	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/29/22 18:37	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/29/22 18:37	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/29/22 18:37	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/29/22 18:37	1
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/29/22 18:37	1
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/29/22 18:37	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/29/22 18:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		56 - 136			•		08/29/22 18:37	1
Dibromofluoromethane (Surr)	105		73 - 120					08/29/22 18:37	1
1,2-Dichloroethane-d4 (Surr)	100		62 - 137					08/29/22 18:37	1
Toluene-d8 (Surr)	99		78 - 122					08/29/22 18:37	1

Client Sample ID: MSA-SW41B-082222

Lab Sample ID: 240-171981-14 Date Collected: 08/22/22 11:38 **Matrix: Water** Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 19:01	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 19:01	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 19:01	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 19:01	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 19:01	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 19:01	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 19:01	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 19:01	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 19:01	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 19:01	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 19:01	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41B-082222

Lab Sample ID: 240-171981-14 Date Collected: 08/22/22 11:38 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 19:01	
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 19:01	
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 19:01	
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 19:01	
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 19:01	
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 19:01	
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/29/22 19:01	
cis-1,3-Dichloropropene	0.61	U	1.0		ug/L			08/29/22 19:01	
Dibromochloromethane	0.39	U	1.0		ug/L			08/29/22 19:01	
1,2-Dibromo-3-Chloropropane	0.91	U	2.0		ug/L			08/29/22 19:01	
1,2-Dibromoethane	0.41	U	1.0		ug/L			08/29/22 19:01	
Dibromomethane	0.40		1.0		ug/L			08/29/22 19:01	
1,2-Dichlorobenzene	0.48		1.0		ug/L			08/29/22 19:01	
1,3-Dichlorobenzene	0.45		1.0		ug/L			08/29/22 19:01	
1,4-Dichlorobenzene	0.41		1.0		ug/L			08/29/22 19:01	
Dichlorodifluoromethane	0.35		1.0		ug/L			08/29/22 19:01	
1,1-Dichloroethane	0.47		1.0		ug/L			08/29/22 19:01	
1,2-Dichloroethane	0.21		1.0		ug/L			08/29/22 19:01	
1,1-Dichloroethene	0.49		1.0		ug/L			08/29/22 19:01	
1,2-Dichloropropane	0.43		1.0		ug/L			08/29/22 19:01	
• •	0.47		1.0		ug/L ug/L			08/29/22 19:01	
,3-Dichloropropane	0.21		1.0		ug/L ug/L			08/29/22 19:01	
2,2-Dichloropropane	0.76				ug/L ug/L				
1,1-Dichloropropene			1.0		_			08/29/22 19:01	
Diisopropyl ether	0.17		10		ug/L			08/29/22 19:01	
Ethylbenzene	0.42		1.0		ug/L			08/29/22 19:01	
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 19:01	
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 19:01	
2-Hexanone	1.1		10		ug/L			08/29/22 19:01	
sopropylbenzene	0.49		1.0		ug/L			08/29/22 19:01	
Methylene Chloride	2.6		5.0		ug/L			08/29/22 19:01	
1-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 19:01	
Methyl tert-butyl ether	0.47		1.0		ug/L			08/29/22 19:01	
n-Xylene & p-Xylene	0.42		2.0		ug/L			08/29/22 19:01	
Naphthalene	0.80		1.0		ug/L			08/29/22 19:01	
n-Butylbenzene	0.60	U	1.0		ug/L			08/29/22 19:01	
n-Propylbenzene	0.57	U	1.0		ug/L			08/29/22 19:01	
o-Xylene	0.42	U	1.0	0.42	ug/L			08/29/22 19:01	
o-Isopropyltoluene	0.56	U	1.0	0.56	ug/L			08/29/22 19:01	
sec-Butylbenzene	0.53	U	1.0	0.53	ug/L			08/29/22 19:01	
Styrene	0.45	U	1.0	0.45	ug/L			08/29/22 19:01	
ert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43	ug/L			08/29/22 19:01	
ert-Butyl alcohol	7.2	U	40	7.2	ug/L			08/29/22 19:01	
ert-Butylbenzene	0.48		1.0		ug/L			08/29/22 19:01	
,1,1,2-Tetrachloroethane	0.43		1.0		ug/L			08/29/22 19:01	
, , , , , , , , , , , , , , , , , , ,	0.60		1.0		ug/L			08/29/22 19:01	
Tetrachloroethene	0.44		1.0		ug/L			08/29/22 19:01	
Foluene	0.44		1.0		ug/L			08/29/22 19:01	
rans-1,2-Dichloroethene	0.51		1.0		ug/L			08/29/22 19:01	
rans-1,3-Dichloropropene	0.67		1.0		ug/L			08/29/22 19:01	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41B-082222

Lab Sample ID: 240-171981-14 Date Collected: 08/22/22 11:38 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	. MD	L U	nit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	0.54	U	1.0	0.5	4 u	g/L			08/29/22 19:01	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.7	7 u	g/L			08/29/22 19:01	1
1,1,1-Trichloroethane	0.48	U	1.0	0.4	8 u	g/L			08/29/22 19:01	1
Trichloroethene	0.44	U	1.0	0.4	4 u	g/L			08/29/22 19:01	1
Trichlorofluoromethane	0.45	U	1.0	0.4	5 u	g/L			08/29/22 19:01	1
1,2,3-Trichloropropane	0.52	U	1.0	0.5	2 u	g/L			08/29/22 19:01	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.4	1 u	g/L			08/29/22 19:01	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.3	1 u	g/L			08/29/22 19:01	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.5	2 u	g/L			08/29/22 19:01	1
Vinyl acetate	0.61	U	2.0	0.6	1 u	g/L			08/29/22 19:01	1
Vinyl chloride	0.45	U	1.0	0.4	5 u	g/L			08/29/22 19:01	1
Xylenes, Total	0.42	U	2.0	0.4	2 u	g/L			08/29/22 19:01	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	-	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L	· -			75-45-6		08/29/22 19:01	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		56 - 136	•					08/29/22 19:01	1
Dibromofluoromethane (Surr)	104		73 - 120						08/29/22 19:01	1
1,2-Dichloroethane-d4 (Surr)	98		62 - 137						08/29/22 19:01	1
Toluene-d8 (Surr)	98		78 - 122						08/29/22 19:01	1

Client Sample ID: MSA-SW41C-082222

Lab Sample ID: 240-171981-15 Date Collected: 08/22/22 11:40 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 19:24	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 19:24	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 19:24	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 19:24	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 19:24	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 19:24	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 19:24	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 19:24	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 19:24	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 19:24	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 19:24	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 19:24	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 19:24	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 19:24	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 19:24	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 19:24	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 19:24	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/29/22 19:24	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/29/22 19:24	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/29/22 19:24	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0		ug/L			08/29/22 19:24	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/29/22 19:24	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41C-082222

Date Collected: 08/22/22 11:40 **Matrix: Water** Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/29/22 19:24	
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/29/22 19:24	
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/29/22 19:24	
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/29/22 19:24	
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/29/22 19:24	
1,1-Dichloroethane	0.47	U	1.0		ug/L			08/29/22 19:24	
1,2-Dichloroethane	0.21	U	1.0		ug/L			08/29/22 19:24	
1,1-Dichloroethene	0.49	U	1.0		ug/L			08/29/22 19:24	
1,2-Dichloropropane	0.47	U	1.0		ug/L			08/29/22 19:24	
1,3-Dichloropropane	0.21		1.0		•			08/29/22 19:24	
2,2-Dichloropropane	0.78	U	1.0		ug/L			08/29/22 19:24	
1,1-Dichloropropene	0.36	U	1.0		ug/L			08/29/22 19:24	
Diisopropyl ether	0.17		10		ug/L			08/29/22 19:24	
Ethylbenzene	0.42		1.0		ug/L			08/29/22 19:24	
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 19:24	
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 19:24	
2-Hexanone	1.1		10		ug/L			08/29/22 19:24	
Isopropylbenzene	0.49		1.0		ug/L			08/29/22 19:24	
Methylene Chloride	2.6		5.0		ug/L			08/29/22 19:24	
4-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 19:24	
Methyl tert-butyl ether	0.47		1.0		ug/L			08/29/22 19:24	
m-Xylene & p-Xylene	0.42		2.0		ug/L			08/29/22 19:24	
Naphthalene	0.80		1.0		ug/L			08/29/22 19:24	
n-Butylbenzene	0.60		1.0		ug/L			08/29/22 19:24	
n-Propylbenzene	0.57		1.0		ug/L			08/29/22 19:24	
o-Xylene	0.42		1.0		ug/L			08/29/22 19:24	
p-Isopropyltoluene	0.56		1.0		ug/L			08/29/22 19:24	
sec-Butylbenzene	0.53		1.0		ug/L			08/29/22 19:24	
Styrene	0.45		1.0		ug/L			08/29/22 19:24	
Tert-amyl-methyl ether (TAME)	0.43		5.0		ug/L			08/29/22 19:24	
tert-Butyl alcohol	7.2		40		ug/L			08/29/22 19:24	
tert-Butylbenzene	0.48		1.0		ug/L ug/L			08/29/22 19:24	
1,1,1,2-Tetrachloroethane	0.43		1.0		ug/L ug/L			08/29/22 19:24	
1,1,2,2-Tetrachloroethane	0.43		1.0		ug/L ug/L			08/29/22 19:24	
Tetrachloroethene	0.44		1.0		ug/L ug/L			08/29/22 19:24	
	0.44								
Toluene trans-1,2-Dichloroethene	0.44		1.0 1.0		ug/L ug/L			08/29/22 19:24	
trans-1,3-Dichloropropene	0.67				_			08/29/22 19:24 08/29/22 19:24	
			1.0		ug/L				
1,2,3-Trichlorobenzene	0.54		1.0		ug/L			08/29/22 19:24	
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/29/22 19:24	
1,1,1-Trichloroethane	0.48		1.0		ug/L			08/29/22 19:24	
Trichloroethene	0.44		1.0		ug/L			08/29/22 19:24	
Trichlorofluoromethane	0.45		1.0		ug/L			08/29/22 19:24	
1,2,3-Trichloropropane	0.52		1.0		ug/L			08/29/22 19:24	
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41		1.0		ug/L			08/29/22 19:24	
1,2,3-Trimethylbenzene	0.31		5.0		ug/L			08/29/22 19:24	
1,2,4-Trimethylbenzene	0.52		1.0		ug/L			08/29/22 19:24	
Vinyl acetate Vinyl chloride	0.61 0.45		2.0 1.0		ug/L ug/L			08/29/22 19:24 08/29/22 19:24	

Eurofins Canton 09/01/2022

Lab Sample ID: 240-171981-15

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41C-082222

Lab Sample ID: 240-171981-15

Date Collected: 08/22/22 11:40 Date Received: 08/23/22 15:30

Matrix: Water

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.42	U	2.0		0.42	ug/L			08/29/22 19:24	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L				75-45-6		08/29/22 19:24	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		56 - 136				-		08/29/22 19:24	1
Dibromofluoromethane (Surr)	105		73 - 120						08/29/22 19:24	1
1,2-Dichloroethane-d4 (Surr)	100		62 - 137						08/29/22 19:24	1
Toluene-d8 (Surr)	99		78 - 122						08/29/22 19:24	

Client Sample ID: MSA-SW41D-082222

Lab Sample ID: 240-171981-16

Date Collected: 08/22/22 11:43 Date Received: 08/23/22 15:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 19:48	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 19:48	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 19:48	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 19:48	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 19:48	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 19:48	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 19:48	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 19:48	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 19:48	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 19:48	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 19:48	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 19:48	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 19:48	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 19:48	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 19:48	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 19:48	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 19:48	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/29/22 19:48	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/29/22 19:48	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/29/22 19:48	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/29/22 19:48	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/29/22 19:48	1
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/29/22 19:48	1
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/29/22 19:48	1
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/29/22 19:48	1
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/29/22 19:48	1
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/29/22 19:48	1
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/29/22 19:48	1
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/29/22 19:48	1
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/29/22 19:48	1
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/29/22 19:48	1
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/29/22 19:48	1
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/29/22 19:48	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41D-082222

Lab Sample ID: 240-171981-16 Date Collected: 08/22/22 11:43 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloropropene	0.36	U	1.0	0.36	ug/L		-	08/29/22 19:48	
Diisopropyl ether	0.17	U	10	0.17	ug/L			08/29/22 19:48	
Ethylbenzene	0.42	U	1.0	0.42	ug/L			08/29/22 19:48	
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40	ug/L			08/29/22 19:48	
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 19:48	
2-Hexanone	1.1	U	10		ug/L			08/29/22 19:48	
Isopropylbenzene	0.49	U	1.0		ug/L			08/29/22 19:48	
Methylene Chloride	2.6		5.0		ug/L			08/29/22 19:48	
4-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 19:48	
Methyl tert-butyl ether	0.47		1.0		ug/L			08/29/22 19:48	
m-Xylene & p-Xylene	0.42		2.0		ug/L			08/29/22 19:48	
Naphthalene	0.80		1.0		ug/L			08/29/22 19:48	
n-Butylbenzene	0.60		1.0		ug/L			08/29/22 19:48	
n-Propylbenzene	0.57		1.0		ug/L			08/29/22 19:48	
o-Xylene	0.42		1.0		ug/L			08/29/22 19:48	
p-Isopropyltoluene	0.42		1.0		ug/L			08/29/22 19:48	
	0.50				-				
sec-Butylbenzene			1.0 1.0		ug/L			08/29/22 19:48	
Styrene	0.45				ug/L			08/29/22 19:48	
Tert-amyl-methyl ether (TAME)	0.43		5.0		ug/L			08/29/22 19:48	
tert-Butyl alcohol	7.2		40		ug/L			08/29/22 19:48	
tert-Butylbenzene	0.48		1.0		ug/L			08/29/22 19:48	
1,1,1,2-Tetrachloroethane	0.43		1.0		ug/L			08/29/22 19:48	
1,1,2,2-Tetrachloroethane	0.60		1.0		ug/L			08/29/22 19:48	
Tetrachloroethene	0.44		1.0		ug/L			08/29/22 19:48	
Toluene	0.44		1.0		ug/L			08/29/22 19:48	
trans-1,2-Dichloroethene	0.51		1.0		ug/L			08/29/22 19:48	
trans-1,3-Dichloropropene	0.67	U	1.0		ug/L			08/29/22 19:48	
1,2,3-Trichlorobenzene	0.54	U	1.0		ug/L			08/29/22 19:48	
1,2,4-Trichlorobenzene	0.77	U	1.0	0.77	ug/L			08/29/22 19:48	
1,1,1-Trichloroethane	0.48	U	1.0	0.48	ug/L			08/29/22 19:48	
Trichloroethene	0.44	U	1.0	0.44	ug/L			08/29/22 19:48	
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/29/22 19:48	
1,2,3-Trichloropropane	0.52	U	1.0	0.52	ug/L			08/29/22 19:48	
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/29/22 19:48	
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/29/22 19:48	
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/29/22 19:48	
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/29/22 19:48	
Vinyl chloride	0.45	U	1.0		ug/L			08/29/22 19:48	
Xylenes, Total	0.42	U	2.0		ug/L			08/29/22 19:48	
Tentatively Identified Compound	Est. Result		Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Chlorodifluoromethane TIC	1.0	Ū	ug/L			75-45-6		08/29/22 19:48	
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	93		56 - 136			•		08/29/22 19:48	
Dibromofluoromethane (Surr)	102		73 - 120					08/29/22 19:48	
1,2-Dichloroethane-d4 (Surr)	96		62 - 137					08/29/22 19:48	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42A-082222

Lab Sample ID: 240-171981-17 Date Collected: 08/22/22 12:26 **Matrix: Water**

Date Received: 08/23/22 15:30

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
cetone	5.4	U –	10	5.4	ug/L		-	08/29/22 20:11	
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 20:11	
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 20:11	
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 20:11	
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 20:11	
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 20:11	
Bromomethane	0.42	U	1.0	0.42	.			08/29/22 20:11	
-Butanone	1.2	U	10		ug/L			08/29/22 20:11	
Carbon disulfide	0.59	U	1.0	0.59	-			08/29/22 20:11	
Carbon tetrachloride	0.26		1.0	0.26				08/29/22 20:11	
Chlorobenzene	0.38	U	1.0	0.38	_			08/29/22 20:11	
Chloroethane	0.83	U	1.0		ug/L			08/29/22 20:11	
-Chloroethyl vinyl ether	1.5	U	10		ug/L			08/29/22 20:11	
Chloroform	0.47		1.0	0.47	-			08/29/22 20:11	
Chloromethane	0.63	_	1.0	0.63	-			08/29/22 20:11	
-Chlorotoluene	0.57		1.0	0.57				08/29/22 20:11	
-Chlorotoluene	0.43		1.0	0.43	-			08/29/22 20:11	
is-1.2-Dichloroethene	0.46		1.0		ug/L			08/29/22 20:11	
is-1,3-Dichloropropene	0.61		1.0		ug/L			08/29/22 20:11	
Dibromochloromethane	0.39		1.0	0.39	_			08/29/22 20:11	
,2-Dibromo-3-Chloropropane	0.91		2.0	0.91	-			08/29/22 20:11	
,2-Dibromoethane	0.41		1.0	0.41				08/29/22 20:11	
Dibromomethane	0.41		1.0	0.41	•			08/29/22 20:11	
,2-Dichlorobenzene	0.40		1.0		-			08/29/22 20:11	
,3-Dichlorobenzene	0.46		1.0	0.45	ug/L			08/29/22 20:11	
	0.43				-			08/29/22 20:11	
,4-Dichlorobenzene			1.0	0.41	-				
Dichlorodifluoromethane	0.35		1.0	0.35				08/29/22 20:11	
,1-Dichloroethane	0.47		1.0		ug/L			08/29/22 20:11	
,2-Dichloroethane	0.21		1.0	0.21	-			08/29/22 20:11	
,1-Dichloroethene	0.49		1.0	0.49				08/29/22 20:11	
,2-Dichloropropane	0.47		1.0	0.47	-			08/29/22 20:11	
,3-Dichloropropane	0.21		1.0		ug/L			08/29/22 20:11	
,2-Dichloropropane	0.78		1.0		ug/L			08/29/22 20:11	
,1-Dichloropropene	0.36		1.0	0.36	_			08/29/22 20:11	
Diisopropyl ether	0.17		10		ug/L			08/29/22 20:11	
thylbenzene	0.42		1.0		ug/L			08/29/22 20:11	
thyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 20:11	
lexachlorobutadiene	0.83		1.0		ug/L			08/29/22 20:11	
-Hexanone	1.1		10		ug/L			08/29/22 20:11	
sopropylbenzene	0.49		1.0		ug/L			08/29/22 20:11	
Methylene Chloride	2.6	U	5.0		ug/L			08/29/22 20:11	
-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 20:11	
Nethyl tert-butyl ether	0.47	U	1.0		ug/L			08/29/22 20:11	
n-Xylene & p-Xylene	0.42	U	2.0		ug/L			08/29/22 20:11	
laphthalene	0.80	U	1.0		ug/L			08/29/22 20:11	
-Butylbenzene	0.60	U	1.0	0.60	ug/L			08/29/22 20:11	
-Propylbenzene	0.57	U	1.0		ug/L			08/29/22 20:11	
-Xylene	0.42	U	1.0		ug/L			08/29/22 20:11	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42A-082222

Lab Sample ID: 240-171981-17 Date Collected: 08/22/22 12:26 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	0.53	U	1.0	0.53	ug/L			08/29/22 20:11	1
Styrene	0.45	U	1.0	0.45	ug/L			08/29/22 20:11	1
Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43	3 ug/L			08/29/22 20:11	1
tert-Butyl alcohol	7.2	U	40	7.2	2 ug/L			08/29/22 20:11	1
tert-Butylbenzene	0.48	U	1.0	0.48	3 ug/L			08/29/22 20:11	1
1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43	3 ug/L			08/29/22 20:11	1
1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60	ug/L			08/29/22 20:11	1
Tetrachloroethene	0.44	U	1.0	0.44	l ug/L			08/29/22 20:11	1
Toluene	0.44	U	1.0	0.44	l ug/L			08/29/22 20:11	1
trans-1,2-Dichloroethene	0.51	U	1.0	0.5	ug/L			08/29/22 20:11	1
trans-1,3-Dichloropropene	0.67	U	1.0	0.67	ug/L			08/29/22 20:11	1
1,2,3-Trichlorobenzene	0.54	U	1.0	0.54	l ug/L			08/29/22 20:11	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.77	ug/L			08/29/22 20:11	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	3 ug/L			08/29/22 20:11	1
Trichloroethene	0.44	U	1.0	0.44	l ug/L			08/29/22 20:11	1
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/29/22 20:11	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	2 ug/L			08/29/22 20:11	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.4	ug/L			08/29/22 20:11	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.3	ug/L			08/29/22 20:11	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	2 ug/L			08/29/22 20:11	1
Vinyl acetate	0.61	U	2.0	0.6	ug/L			08/29/22 20:11	1
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/29/22 20:11	1
Xylenes, Total	0.42	U	2.0	0.42	2 ug/L			08/29/22 20:11	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/29/22 20:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		56 - 136					08/29/22 20:11	1
Dibromofluoromethane (Surr)	104		73 - 120					08/29/22 20:11	1
1,2-Dichloroethane-d4 (Surr)	99		62 - 137					08/29/22 20:11	1
Toluene-d8 (Surr)	97		78 - 122					08/29/22 20:11	1

Client Sample ID: MSA-SW42B-082222

Lab Sample ID: 240-171981-18 Date Collected: 08/22/22 12:28 **Matrix: Water** Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/29/22 20:35	1
Benzene	0.42	U	1.0	0.42	ug/L			08/29/22 20:35	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/29/22 20:35	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 20:35	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 20:35	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 20:35	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 20:35	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 20:35	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 20:35	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 20:35	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 20:35	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42B-082222

Lab Sample ID: 240-171981-18 Date Collected: 08/22/22 12:28 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 20:35	
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 20:35	
Chloroform	0.47	U	1.0	0.47	ug/L			08/29/22 20:35	
Chloromethane	0.63	U	1.0	0.63	ug/L			08/29/22 20:35	
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/29/22 20:35	
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/29/22 20:35	
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/29/22 20:35	
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/29/22 20:35	
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/29/22 20:35	
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/29/22 20:35	
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/29/22 20:35	
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/29/22 20:35	
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/29/22 20:35	
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/29/22 20:35	
1,4-Dichlorobenzene	0.41	U	1.0		ug/L			08/29/22 20:35	
Dichlorodifluoromethane	0.35	U	1.0		ug/L			08/29/22 20:35	
1,1-Dichloroethane	0.47	U	1.0		ug/L			08/29/22 20:35	
1,2-Dichloroethane	0.21	U	1.0		ug/L			08/29/22 20:35	
1,1-Dichloroethene	0.49	U	1.0		ug/L			08/29/22 20:35	
1,2-Dichloropropane	0.47	U	1.0		ug/L			08/29/22 20:35	
1,3-Dichloropropane	0.21	U	1.0		ug/L			08/29/22 20:35	
2,2-Dichloropropane	0.78	U	1.0		ug/L			08/29/22 20:35	
1,1-Dichloropropene	0.36		1.0		ug/L			08/29/22 20:35	
Diisopropyl ether	0.17		10		ug/L			08/29/22 20:35	
Ethylbenzene	0.42		1.0		ug/L			08/29/22 20:35	
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 20:35	
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 20:35	
2-Hexanone	1.1		10		ug/L			08/29/22 20:35	
Isopropylbenzene	0.49		1.0		ug/L			08/29/22 20:35	
Methylene Chloride	2.6		5.0		ug/L			08/29/22 20:35	
4-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 20:35	
Methyl tert-butyl ether	0.47		1.0		ug/L			08/29/22 20:35	
m-Xylene & p-Xylene	0.42		2.0		ug/L			08/29/22 20:35	
Naphthalene	0.80		1.0		ug/L			08/29/22 20:35	
n-Butylbenzene	0.60		1.0		ug/L			08/29/22 20:35	
n-Propylbenzene	0.57		1.0		ug/L			08/29/22 20:35	
o-Xylene	0.42		1.0		ug/L			08/29/22 20:35	
p-Isopropyltoluene	0.56		1.0		ug/L			08/29/22 20:35	
sec-Butylbenzene	0.53		1.0		ug/L			08/29/22 20:35	
Styrene	0.45		1.0		ug/L			08/29/22 20:35	
Tert-amyl-methyl ether (TAME)	0.43		5.0		ug/L			08/29/22 20:35	
tert-Butyl alcohol	7.2		40		ug/L			08/29/22 20:35	
tert-Butylbenzene	0.48		1.0		ug/L ug/L			08/29/22 20:35	
1,1,1,2-Tetrachloroethane	0.48		1.0		ug/L ug/L			08/29/22 20:35	
1,1,2,2-Tetrachloroethane	0.43		1.0					08/29/22 20:35	
T, 1,2,2- retrachioroethane Tetrachloroethene	0.60		1.0		ug/L			08/29/22 20:35	
					ug/L				
Toluene	0.44		1.0		ug/L			08/29/22 20:35	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.51 0.67		1.0 1.0		ug/L ug/L			08/29/22 20:35 08/29/22 20:35	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42B-082222

Date Collected: 08/22/22 12:28 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	. М	DL	Unit		D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	0.54	U	1.0	0.	54	ug/L		_		08/29/22 20:35	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.	77	ug/L				08/29/22 20:35	1
1,1,1-Trichloroethane	0.48	U	1.0	0.	48	ug/L				08/29/22 20:35	1
Trichloroethene	0.44	U	1.0	0.	44	ug/L				08/29/22 20:35	1
Trichlorofluoromethane	0.45	U	1.0	0.	45	ug/L				08/29/22 20:35	1
1,2,3-Trichloropropane	0.52	U	1.0	0.	52	ug/L				08/29/22 20:35	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.	41	ug/L				08/29/22 20:35	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.	31	ug/L				08/29/22 20:35	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.	52	ug/L				08/29/22 20:35	1
Vinyl acetate	0.61	U	2.0	0.	61	ug/L				08/29/22 20:35	1
Vinyl chloride	0.45	U	1.0	0.	45	ug/L				08/29/22 20:35	1
Xylenes, Total	0.42	U	2.0	0.	42	ug/L				08/29/22 20:35	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CASI	Vo.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L				75-4	5-6		08/29/22 20:35	1
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		56 - 136	-						08/29/22 20:35	1
Dibromofluoromethane (Surr)	104		73 - 120							08/29/22 20:35	1
1,2-Dichloroethane-d4 (Surr)	97		62 - 137							08/29/22 20:35	1
Toluene-d8 (Surr)	98		78 - 122							08/29/22 20:35	

Client Sample ID: MSA-SW42C-082222

1,2-Dibromo-3-Chloropropane

1,2-Dibromoethane

Date Collected: 08/22/22 12:31 **Matrix: Water** Date Received: 08/23/22 15:30

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL **MDL** Unit D Dil Fac Prepared Analyzed Acetone 5.4 U 10 5.4 ug/L 08/29/22 20:59 Benzene 0.42 U 1.0 0.42 ug/L 08/29/22 20:59 1 0.50 ug/L Bromobenzene 0.50 U 1.0 08/29/22 20:59 1 0.54 ug/L Bromochloromethane 0.54 U 1.0 08/29/22 20:59 0.17 ug/L Bromodichloromethane 0.17 U 1.0 08/29/22 20:59 1 Bromoform 0.76 U 1.0 0.76 ug/L 08/29/22 20:59 Bromomethane 0.42 U 1.0 0.42 ug/L 08/29/22 20:59 1 2-Butanone 1.2 U 10 1.2 ug/L 08/29/22 20:59 1 Carbon disulfide 0.59 U 1.0 0.59 ug/L 08/29/22 20:59 1 Carbon tetrachloride 0.26 U 1.0 0.26 ug/L 08/29/22 20:59 Chlorobenzene 1.0 0.38 ug/L 0.38 U 08/29/22 20:59 1 Chloroethane 0.83 U 1.0 0.83 ug/L 08/29/22 20:59 1 2-Chloroethyl vinyl ether 1.5 U 10 08/29/22 20:59 1.5 ug/L Chloroform 0.47 U 1.0 0.47 ug/L 08/29/22 20:59 1 Chloromethane 0.63 U 1.0 0.63 ug/L 08/29/22 20:59 1 2-Chlorotoluene 0.57 U 1.0 0.57 ug/L 08/29/22 20:59 1 0.43 U 1.0 0.43 ug/L 4-Chlorotoluene 08/29/22 20:59 cis-1,2-Dichloroethene 0.46 U 1.0 0.46 ug/L 08/29/22 20:59 1 cis-1,3-Dichloropropene 0.61 U 1.0 0.61 ug/L 08/29/22 20:59 0.39 U Dibromochloromethane 1.0 0.39 ug/L 08/29/22 20:59 1

Eurofins Canton

1

1

08/29/22 20:59

08/29/22 20:59

Lab Sample ID: 240-171981-18

Lab Sample ID: 240-171981-19

2.0

1.0

0.91 ug/L

0.41 ug/L

0.91 U

0.41 U

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42C-082222

Lab Sample ID: 240-171981-19 Date Collected: 08/22/22 12:31 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/29/22 20:59	
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/29/22 20:59	
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/29/22 20:59	
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/29/22 20:59	
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/29/22 20:59	
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/29/22 20:59	
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/29/22 20:59	
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/29/22 20:59	
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/29/22 20:59	
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/29/22 20:59	
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/29/22 20:59	
1,1-Dichloropropene	0.36	U	1.0		ug/L			08/29/22 20:59	
Diisopropyl ether	0.17	U	10	0.17	-			08/29/22 20:59	
Ethylbenzene	0.42	U	1.0		ug/L			08/29/22 20:59	
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 20:59	
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 20:59	
2-Hexanone	1.1		10		ug/L			08/29/22 20:59	
sopropylbenzene	0.49		1.0		ug/L			08/29/22 20:59	
Methylene Chloride	2.6		5.0		ug/L			08/29/22 20:59	
4-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 20:59	
Methyl tert-butyl ether	0.47		1.0	0.47				08/29/22 20:59	
m-Xylene & p-Xylene	0.42		2.0	0.42	-			08/29/22 20:59	
Naphthalene	0.80		1.0		ug/L			08/29/22 20:59	
n-Butylbenzene	0.60		1.0		ug/L			08/29/22 20:59	
n-Propylbenzene	0.57		1.0	0.57	-			08/29/22 20:59	
o-Xylene	0.37		1.0	0.42	_			08/29/22 20:59	
	0.42		1.0	0.42				08/29/22 20:59	
o-Isopropyltoluene	0.50				_				
sec-Butylbenzene	0.53		1.0	0.53	_			08/29/22 20:59	
Styrene (TAME)			1.0	0.45				08/29/22 20:59	
Tert-amyl-methyl ether (TAME)	0.43		5.0	0.43	-			08/29/22 20:59	
ert-Butyl alcohol	7.2		40		ug/L			08/29/22 20:59	
ert-Butylbenzene	0.48		1.0	0.48				08/29/22 20:59	
1,1,1,2-Tetrachloroethane	0.43		1.0		ug/L			08/29/22 20:59	
1,1,2,2-Tetrachloroethane	0.60		1.0		ug/L			08/29/22 20:59	
Tetrachloroethene	0.44		1.0	0.44				08/29/22 20:59	
Toluene	0.44		1.0	0.44				08/29/22 20:59	
rans-1,2-Dichloroethene	0.51		1.0		ug/L			08/29/22 20:59	
rans-1,3-Dichloropropene	0.67		1.0	0.67				08/29/22 20:59	
1,2,3-Trichlorobenzene	0.54		1.0		ug/L			08/29/22 20:59	
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/29/22 20:59	
1,1,1-Trichloroethane	0.48		1.0		ug/L			08/29/22 20:59	
Trichloroethene	0.44		1.0		ug/L			08/29/22 20:59	
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/29/22 20:59	
1,2,3-Trichloropropane	0.52		1.0		ug/L			08/29/22 20:59	
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/29/22 20:59	
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/29/22 20:59	
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/29/22 20:59	
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/29/22 20:59	
Vinyl chloride	0.45	U	1.0		ug/L			08/29/22 20:59	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42C-082222

Lab Sample ID: 240-171981-19 Date Collected: 08/22/22 12:31 **Matrix: Water**

Date Received: 08/23/22 15:30

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Cor	ntinu	ed)				
Analyte	Result	Qualifier	RL		MDL Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.42	U	2.0		0.42 ug/L			08/29/22 20:59	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/29/22 20:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	-	56 - 136					08/29/22 20:59	1
Dibromofluoromethane (Surr)	103		73 - 120					08/29/22 20:59	1
1,2-Dichloroethane-d4 (Surr)	98		62 - 137					08/29/22 20:59	1
Toluene-d8 (Surr)	96		78 - 122					08/29/22 20:59	1

Client Sample ID: MSA-SW42D-082222

Date Collected: 08/22/22 12:35

Date Received: 08/23/22 15:30

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/30/22 17:44	1
Benzene	0.42	U	1.0	0.42	ug/L			08/30/22 17:44	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/30/22 17:44	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/30/22 17:44	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/30/22 17:44	1
Bromoform	0.76	U *+	1.0	0.76	ug/L			08/30/22 17:44	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/30/22 17:44	1
2-Butanone	1.2	U	10	1.2	ug/L			08/30/22 17:44	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/30/22 17:44	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/30/22 17:44	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/30/22 17:44	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/30/22 17:44	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/30/22 17:44	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/30/22 17:44	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/30/22 17:44	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/30/22 17:44	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/30/22 17:44	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/30/22 17:44	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/30/22 17:44	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/30/22 17:44	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/30/22 17:44	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/30/22 17:44	1
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/30/22 17:44	1
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/30/22 17:44	1
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/30/22 17:44	1
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/30/22 17:44	1
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/30/22 17:44	1
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/30/22 17:44	1
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/30/22 17:44	1
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/30/22 17:44	1
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/30/22 17:44	1
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/30/22 17:44	1
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/30/22 17:44	1

Eurofins Canton

Lab Sample ID: 240-171981-20

Matrix: Water

Page 42 of 539

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42D-082222

Lab Sample ID: 240-171981-20 Date Collected: 08/22/22 12:35 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloropropene	0.36	U	1.0	0.36	ug/L			08/30/22 17:44	
Diisopropyl ether	0.17	U	10	0.17	ug/L			08/30/22 17:44	
Ethylbenzene	0.42	U	1.0	0.42	2 ug/L			08/30/22 17:44	
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40	ug/L			08/30/22 17:44	
Hexachlorobutadiene	0.83	U	1.0	0.83	3 ug/L			08/30/22 17:44	
2-Hexanone	1.1	U	10	1.1	l ug/L			08/30/22 17:44	
Isopropylbenzene	0.49	U	1.0	0.49	ug/L			08/30/22 17:44	
Methylene Chloride	2.6	U	5.0		ug/L			08/30/22 17:44	
4-Methyl-2-pentanone	0.99	U	10		ug/L			08/30/22 17:44	
Methyl tert-butyl ether	0.47	U	1.0		ug/L			08/30/22 17:44	
m-Xylene & p-Xylene	0.42		2.0		2 ug/L			08/30/22 17:44	
Naphthalene	0.80		1.0		ug/L			08/30/22 17:44	
n-Butylbenzene	0.60		1.0		ug/L			08/30/22 17:44	
n-Propylbenzene	0.57		1.0		ug/L			08/30/22 17:44	
o-Xylene	0.42		1.0		ug/L			08/30/22 17:44	
p-Isopropyltoluene	0.56		1.0		ug/L			08/30/22 17:44	
sec-Butylbenzene	0.53		1.0		ug/L ug/L			08/30/22 17:44	
Styrene	0.33		1.0		ug/L ug/L			08/30/22 17:44	
	0.43				_				
Tert-amyl-methyl ether (TAME)			5.0		ug/L			08/30/22 17:44	
tert-Butyl alcohol	7.2 0.48		40		2 ug/L			08/30/22 17:44	
tert-Butylbenzene			1.0		3 ug/L			08/30/22 17:44	
1,1,1,2-Tetrachloroethane		U *+	1.0		3 ug/L			08/30/22 17:44	
1,1,2,2-Tetrachloroethane	0.60		1.0		ug/L			08/30/22 17:44	
Tetrachloroethene	0.44		1.0		l ug/L			08/30/22 17:44	
Toluene	0.44		1.0		l ug/L			08/30/22 17:44	
trans-1,2-Dichloroethene	0.51		1.0		l ug/L			08/30/22 17:44	
trans-1,3-Dichloropropene	0.67		1.0		ug/L			08/30/22 17:44	
1,2,3-Trichlorobenzene	0.54		1.0		l ug/L			08/30/22 17:44	
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/30/22 17:44	
1,1,1-Trichloroethane	0.48	U	1.0		3 ug/L			08/30/22 17:44	
Trichloroethene	0.44	U	1.0	0.44	l ug/L			08/30/22 17:44	
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/30/22 17:44	
1,2,3-Trichloropropane	0.52	U	1.0	0.52	2 ug/L			08/30/22 17:44	
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/30/22 17:44	
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/30/22 17:44	
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	2 ug/L			08/30/22 17:44	
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/30/22 17:44	
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/30/22 17:44	
Xylenes, Total	0.42	U	2.0	0.42	2 ug/L			08/30/22 17:44	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/30/22 17:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	97		56 - 136			-		08/30/22 17:44	
Dibromofluoromethane (Surr)	108		73 - 120					08/30/22 17:44	
1,2-Dichloroethane-d4 (Surr)	99		62 - 137					08/30/22 17:44	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43A-082222

Lab Sample ID: 240-171981-21 Date Collected: 08/22/22 11:12 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cetone	5.4	U –	10	5.4	ug/L		-	08/30/22 18:08	
Benzene	0.42	U	1.0	0.42	ug/L			08/30/22 18:08	
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/30/22 18:08	
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/30/22 18:08	
Bromodichloromethane	0.17	U	1.0	0.17	-			08/30/22 18:08	
Bromoform	0.76	U *+	1.0	0.76	-			08/30/22 18:08	
Bromomethane	0.42	U	1.0	0.42				08/30/22 18:08	
2-Butanone	1.2	U	10		ug/L			08/30/22 18:08	
Carbon disulfide	0.59		1.0	0.59	-			08/30/22 18:08	
Carbon tetrachloride	0.26		1.0	0.26				08/30/22 18:08	
Chlorobenzene	0.38	U	1.0	0.38	-			08/30/22 18:08	
Chloroethane	0.83		1.0	0.83	•			08/30/22 18:08	
2-Chloroethyl vinyl ether	1.5		10		ug/L			08/30/22 18:08	,
Chloroform	0.47		1.0	0.47	-			08/30/22 18:08	
Chloromethane	0.63		1.0	0.63	-			08/30/22 18:08	
2-Chlorotoluene	0.57		1.0	0.57				08/30/22 18:08	
-Chlorotoluene	0.43		1.0	0.43	-			08/30/22 18:08	
sis-1,2-Dichloroethene	0.46		1.0	0.46	_			08/30/22 18:08	
is-1,3-Dichloropropene	0.61		1.0	0.61				08/30/22 18:08	
Dibromochloromethane	0.39		1.0	0.39	-			08/30/22 18:08	
,2-Dibromo-3-Chloropropane	0.91		2.0	0.91	•			08/30/22 18:08	
,2-Dibromoethane	0.41		1.0	0.41				08/30/22 18:08	,
Dibromomethane	0.41		1.0	0.41	-			08/30/22 18:08	
,2-Dichlorobenzene	0.40		1.0		•			08/30/22 18:08	
,3-Dichlorobenzene	0.46		1.0	0.48 0.45				08/30/22 18:08	,
	0.43				-				
,4-Dichlorobenzene			1.0	0.41	_			08/30/22 18:08	•
Dichlorodifluoromethane	0.35		1.0	0.35				08/30/22 18:08	
,1-Dichloroethane	0.47		1.0	0.47	-			08/30/22 18:08	•
,2-Dichloroethane	0.21		1.0	0.21	-			08/30/22 18:08	•
,1-Dichloroethene	0.49		1.0	0.49				08/30/22 18:08	
,2-Dichloropropane	0.47		1.0	0.47	-			08/30/22 18:08	•
,3-Dichloropropane	0.21		1.0	0.21	-			08/30/22 18:08	•
2,2-Dichloropropane	0.78		1.0	0.78				08/30/22 18:08	
,1-Dichloropropene	0.36		1.0	0.36	-			08/30/22 18:08	•
Diisopropyl ether	0.17		10	0.17				08/30/22 18:08	•
Ethylbenzene	0.42		1.0	0.42				08/30/22 18:08	
Ethyl-t-butyl ether (ETBE)	0.40		5.0	0.40				08/30/22 18:08	•
łexachlorobutadiene	0.83		1.0	0.83				08/30/22 18:08	•
-Hexanone	1.1		10		ug/L			08/30/22 18:08	
sopropylbenzene	0.49		1.0		ug/L			08/30/22 18:08	•
Methylene Chloride	2.6	U	5.0	2.6	ug/L			08/30/22 18:08	•
-Methyl-2-pentanone	0.99	U	10		ug/L			08/30/22 18:08	
Methyl tert-butyl ether	0.47	U	1.0	0.47				08/30/22 18:08	
n-Xylene & p-Xylene	0.42	U	2.0	0.42				08/30/22 18:08	
laphthalene	0.80	U	1.0	0.80	ug/L			08/30/22 18:08	
-Butylbenzene	0.60	U	1.0	0.60	ug/L			08/30/22 18:08	
-Propylbenzene	0.57	U	1.0		ug/L			08/30/22 18:08	
p-Xylene	0.42	U	1.0		ug/L			08/30/22 18:08	

Client: Tetra Tech, Inc. Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43A-082222 Lab Sample ID: 240-171981-21

Date Collected: 08/22/22 11:12 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MD	L U	Jnit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	0.53	U	1.0	0.5	3 u	ıg/L			08/30/22 18:08	1
Styrene	0.45	U	1.0	0.4	5 u	ıg/L			08/30/22 18:08	1
Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.4	3 u	ıg/L			08/30/22 18:08	1
tert-Butyl alcohol	7.2	U	40	7.	2 u	ıg/L			08/30/22 18:08	1
tert-Butylbenzene	0.48	U	1.0	0.4	8 u	ıg/L			08/30/22 18:08	1
1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.4	3 u	ıg/L			08/30/22 18:08	1
1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.6	0 u	ıg/L			08/30/22 18:08	1
Tetrachloroethene	0.44	U	1.0	0.4	4 u	ıg/L			08/30/22 18:08	1
Toluene	0.44	U	1.0	0.4	4 u	ıg/L			08/30/22 18:08	1
trans-1,2-Dichloroethene	0.51	U	1.0	0.5	1 u	ıg/L			08/30/22 18:08	1
trans-1,3-Dichloropropene	0.67	U	1.0	0.6	7 u	ıg/L			08/30/22 18:08	1
1,2,3-Trichlorobenzene	0.54	U	1.0	0.5	4 u	ıg/L			08/30/22 18:08	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.7	7 u	ıg/L			08/30/22 18:08	1
1,1,1-Trichloroethane	0.48	U	1.0	0.4	8 u	ıg/L			08/30/22 18:08	1
Trichloroethene	0.44	U	1.0	0.4	4 u	ıg/L			08/30/22 18:08	1
Trichlorofluoromethane	0.45	U	1.0	0.4	5 u	ıg/L			08/30/22 18:08	1
1,2,3-Trichloropropane	0.52	U	1.0	0.5	2 u	ıg/L			08/30/22 18:08	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.4	1 u	ıg/L			08/30/22 18:08	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.3	1 u	ıg/L			08/30/22 18:08	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.5	2 u	ıg/L			08/30/22 18:08	1
Vinyl acetate	0.61	U	2.0	0.6	1 u	ıg/L			08/30/22 18:08	1
Vinyl chloride	0.45	U	1.0	0.4	5 u	ıg/L			08/30/22 18:08	1
Xylenes, Total	0.42	U	2.0	0.4	2 u	ıg/L			08/30/22 18:08	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	R1	г с	AS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L	_			75-45-6		08/30/22 18:08	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		56 - 136				-		08/30/22 18:08	1
Dibromofluoromethane (Surr)	108		73 - 120						08/30/22 18:08	1
1,2-Dichloroethane-d4 (Surr)	99		62 - 137						08/30/22 18:08	1
Toluene-d8 (Surr)	103		78 - 122						08/30/22 18:08	1

Client Sample ID: MSA-SW43B-082222

Lab Sample ID: 240-171981-22 Date Collected: 08/22/22 11:17 **Matrix: Water** Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/30/22 18:31	1
Benzene	0.42	U	1.0	0.42	ug/L			08/30/22 18:31	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/30/22 18:31	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/30/22 18:31	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/30/22 18:31	1
Bromoform	0.76	U *+	1.0	0.76	ug/L			08/30/22 18:31	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/30/22 18:31	1
2-Butanone	1.2	U	10	1.2	ug/L			08/30/22 18:31	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/30/22 18:31	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/30/22 18:31	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/30/22 18:31	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1
Project/Site: MSA Surface Water Sampling

SDG: MSA Frog Mortar Creek

Date Collected: 08/22/22 11:17
Date Received: 08/23/22 15:30

Chloredhane	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloroform 0.47 U 1.0 0.47 ug/L 08/30/22 1 Chloromethane 0.63 U 1.0 0.63 ug/L 08/30/22 1 Chlorotoluene 0.57 U 1.0 0.57 ug/L 08/30/22 1 4-Chlorotoluene 0.43 U 1.0 0.43 ug/L 08/30/22 1 4-Chlorotoluene 0.44 U 1.0 0.46 ug/L 08/30/22 1 cis-1.3-Dichloropropene 0.61 U 1.0 0.61 ug/L 08/30/22 1 cis-1.3-Dichloropropene 0.91 U 2.0 0.91 ug/L 08/30/22 1 1.2-Dibromochloromethane 0.39 U 1.0 0.39 ug/L 08/30/22 1 1.2-Dibromochloromethane 0.41 U 1.0 0.41 ug/L 08/30/22 1 1.2-Dibromochlane 0.41 U 1.0 0.41 ug/L 08/30/22 1 1.2-Dibromochlane 0.40 U 1.0 0.41 ug/L 08/30/22 1 1.2-Dibromochlane 0.44 U 1.0 0.41 ug/L 08/30/22 1 1.3-Dichlorobenzene 0.45 U 1.0 0.48 ug/L 08/30/22 1 1.3-Dichlorobenzene 0.45 U 1.0 0.45 ug/L 08/30/22 1 1.3-Dichlorobenzene 0.45 U 1.0 0.45 ug/L 08/30/22 1 1.3-Dichlorobenzene 0.47 U 1.0 0.47 ug/L 08/30/22 1 1.1-Dichloroethane 0.47 U 1.0 0.47 ug/L 08/30/22 1 1.1-Dichloropethane 0.47 U 1.0 0.47 ug/L 08/30/22 1 1.1-Dichloropethane 0.49 U 1.0 0.49	Chloroethane	0.83	U	1.0	0.83	ug/L		-	08/30/22 18:31	
Chloroethane	2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/30/22 18:31	
2-Chlorotoluene 0.57 U 1.0 0.57 ug/L 08/30/22 1 4-Chlorotoluene 0.43 U 1.0 0.57 ug/L 08/30/22 1 4-Chlorotoluene 0.43 U 1.0 0.43 ug/L 08/30/22 1 cis-1,3-Dichloropropene 0.61 U 1.0 0.61 ug/L 08/30/22 1 cis-1,3-Dichloropropene 0.91 U 2.0 0.91 ug/L 08/30/22 1 1,2-Dibromos-Chloropropene 0.91 U 2.0 0.91 ug/L 08/30/22 1 1,2-Dibromos-Chloropropene 0.91 U 1.0 0.41 ug/L 08/30/22 1 1,2-Dibromoshane 0.41 U 1.0 0.41 ug/L 08/30/22 1 1,2-Dibromoshane 0.42 U 1.0 0.40 ug/L 08/30/22 1 1,2-Dichlorobenzene 0.48 U 1.0 0.40 ug/L 08/30/22 1 1,2-Dichlorobenzene 0.45 U 1.0 0.45 ug/L 08/30/22 1 1,3-Dichlorobenzene 0.45 U 1.0 0.45 ug/L 08/30/22 1 1,3-Dichlorobenzene 0.47 U 1.0 0.41 ug/L 08/30/22 1 1,3-Dichlorobenzene 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,2-Dichloroethane 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloroethane 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloroethane 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloroethane 0.49 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloropropene 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloropropene 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloropropene 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloropropene 0.48 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloropropene 0.48 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloropropene 0.48 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloroprope		0.47	U	1.0	0.47	ug/L			08/30/22 18:31	
4-Chicrotoluene	Chloromethane	0.63	U	1.0	0.63	ug/L			08/30/22 18:31	
4-Chlorotoluene	2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/30/22 18:31	
cis-1,3-Dichloropropene 0.61 U 1.0 0.61 ug/L 08/30/22 1 Dibromochloromethane 0.39 U 1.0 0.39 ug/L 08/30/22 1 1,2-Dibromochloromethane 0.41 U 1.0 0.41 ug/L 08/30/22 1 Dibromoethane 0.40 U 1.0 0.40 ug/L 08/30/22 1 1,2-Dichlorobenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 1,3-Dichlorobenzene 0.45 U 1.0 0.45 ug/L 08/30/22 1 1,3-Dichlorobenzene 0.41 U 1.0 0.45 ug/L 08/30/22 1 Dichlorodribuoromethane 0.35 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloroethane 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloroethane 0.21 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloroptopane 0.21 U 1.0 0.49	4-Chlorotoluene	0.43	U	1.0		-			08/30/22 18:31	
cis-1,3-Dichloropropene 0.61 U 1.0 0.61 ug/L 08/30/22 1 Dibromochloromethane 0.39 U 1.0 0.39 ug/L 08/30/22 1 1,2-Dibromos-Chloropropane 0.91 U 2.0 0.91 ug/L 08/30/22 1 1,2-Dibromoethane 0.41 U 1.0 0.41 ug/L 08/30/22 1 1,2-Dichlorobenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 1,3-Dichlorobenzene 0.45 U 1.0 0.45 ug/L 08/30/22 1 1,3-Dichlorobenzene 0.41 U 1.0 0.45 ug/L 08/30/22 1 Dichlorodribuoromethane 0.35 U 1.0 0.35 ug/L 08/30/22 1 1,1-Dichloroethane 0.21 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloroethane 0.21 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloropropane 0.21 U 1.0 0.49	cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/30/22 18:31	
Dibromochloromethane	cis-1,3-Dichloropropene	0.61	U	1.0					08/30/22 18:31	
1,2-Dibromo-s-Chloropropane	Dibromochloromethane			1.0		-			08/30/22 18:31	
1,2-Dibromoethane 0.41 U 1.0 0.41 ug/L 08/30/22 1 Dibromoethane 0.40 U 1.0 0.40 ug/L 08/30/22 1 1,2-Dichlorobenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 1,3-Dichlorobenzene 0.41 U 1.0 0.41 ug/L 08/30/22 1 1,4-Dichlorodemene 0.41 U 1.0 0.41 ug/L 08/30/22 1 1,1-Dichlorodemene 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichlorogromene 0.21 U 1.0 0.21 ug/L 08/30/22 1 1,2-Dichloropropane 0.21 U 1.0 0.47 ug/L 08/30/22 1 1,2-Dichloropropane 0.21 U 1.0 0.47 ug/L 08/30/22 1 1,3-Dichloropropane 0.21 U 1.0 0.47 ug/L 08/30/22 1 1,2-Dichloropropane 0.21 U 1.0 0.47 ug/L 08/30/22 1 1,3-Dichloropropane 0.21 U 1.0 <t< td=""><td>1,2-Dibromo-3-Chloropropane</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>08/30/22 18:31</td><td></td></t<>	1,2-Dibromo-3-Chloropropane					•			08/30/22 18:31	
Dibromethane	1,2-Dibromoethane			1.0	0.41	ug/L			08/30/22 18:31	
1,2-Dichlorobenzene						J			08/30/22 18:31	
1,3-Dichlorobenzene 0.45 U 1.0 0.45 ug/L 08/30/22 1 1,4-Dichlorodenzene 0.41 U 1.0 0.41 ug/L 08/30/22 1 1,4-Dichlorodifluoromethane 0.35 U 1.0 0.35 ug/L 08/30/22 1 1,1-Dichlorodifluoromethane 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,2-Dichloroethane 0.49 U 1.0 0.47 ug/L 08/30/22 1 1,2-Dichloroethane 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,2-Dichloropropane 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,3-Dichloropropane 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,3-Dichloropropane 0.78 U 1.0 0.47 ug/L 08/30/22 1 1,3-Dichloropropane 0.78 U 1.0 0.78 ug/L 08/30/22 1 1,3-Dichloropropane 0.78 U 1.0 0.78 ug/L 08/30/22 1 1,3-Dichloropropane 0.78 U 1.0 0.78 ug/L 08/30/22 1 1,3-Dichloropropane 0.78 U 1.0 0.78 ug/L 08/30/22 1 1,1-Dichloropropane 0.36 U 1.0 0.36 ug/L 08/30/22 1 Diisopropyl ether 0.17 U 1.0 0.36 ug/L 08/30/22 1 Diisopropyl ether 0.17 U 1.0 0.47 ug/L 08/30/22 1 Ethyl-butyl ether (ETBE) 0.40 U 5.0 0.40 ug/L 08/30/22 1 Hexachlorobutadiene 0.83 U 1.0 0.49 ug/L 08/30/22 1 Hexachlorobutadiene 0.83 U 1.0 0.49 ug/L 08/30/22 1 Sopropylbenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Sopropylbenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Hethylen Chloride 2.6 U 5.0 2.6 ug/L 08/30/22 1 Hethylen Chloride 2.6 U 5.0 2.6 ug/L 08/30/22 1 Hethylen Chloride 0.60 U 1.0 0.49 ug/L 08/30/22 1 Hethylpen Chloride 0.60 U 1.0 0.49 ug/L 08/30/22 1 Hethylpen Chloride 0.60 U 1.0 0.49 ug/L 08/30/22 1 Hethylpen Chloride 0.60 U 1.0 0.40 ug/L 08/30/22 1 Hethylpen Chloride 0.60 U 1.0 0.60 ug/L 08/30/22 1 Hethylpen Chloride 0.60 U 1.0 0.60 ug/L 08/30/22 1 Hethylpen Chloride 0.60 U 1.0 0.60 ug/L 08/30/22 1 Hethylpen 0.60 U 1.0 0.60 ug/L 08/30/22 1 Hethylpenzene 0.50 U 1.0 0.55 ug/L 08/30/22 1 Hethylpenzene 0.50 U 1.0 0.60 ug/L 08/30/22 1 Hethylpenzene 0.50 U 1.0 0.60 ug/L 08/30/22 1 Tert-smyl-methyl ether (TAME) 0.43 U 5.0 0.43 ug/L 08/30/22 1 Tert-smyl-methyl ether (TAME) 0.43 U 5.0 0.43 ug/L 08/30/22 1 Tert-smyl-methyl ether (TAME) 0.43 U 5.0 0.43 ug/L 08/30/22 1 Tert-strachloroethane 0.43 U 5.0 0.43 ug/L 08/30/22 1 Tert-strachloroethane 0.43 U 5.0 0.43 ug/L 0.43 ug/L 08/30/22 1	1,2-Dichlorobenzene	0.48	U			•			08/30/22 18:31	
1,4-Dichlorobenzene 0.41 U 1.0 0.41 ug/L 08/30/22 1 Dichlorodifluoromethane 0.35 U 1.0 0.35 ug/L 08/30/22 1 1,1-Dichloroethane 0.27 U 1.0 0.47 ug/L 08/30/22 1 1,1-Dichloroethane 0.21 U 1.0 0.49 ug/L 08/30/22 1 1,1-Dichloropropane 0.47 U 1.0 0.49 ug/L 08/30/22 1 1,2-Dichloropropane 0.47 U 1.0 0.47 ug/L 08/30/22 1 2,2-Dichloropropane 0.78 U 1.0 0.78 ug/L 08/30/22 1 2,2-Dichloropropane 0.78 U 1.0 0.78 ug/L 08/30/22 1 1,1-Dichloropropane 0.36 U 1.0 0.78 ug/L 08/30/22 1 2,2-Dichloropropane 0.78 U 1.0 0.78 ug/L 08/30/22 1 1,1-Dichloropropane 0.36 U 1.0 0.36 ug/L 08/30/22 1 1,1-Dichloropropane 0.36 U 1.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>08/30/22 18:31</td> <td></td>									08/30/22 18:31	
Dichlorodifiluoromethane	•					_			08/30/22 18:31	
1,1-Dichloroethane	,					•			08/30/22 18:31	
1,2-Dichloroethane 0.21 U 1.0 0.21 ug/L 08/30/22 1 1,1-Dichloroethene 0.49 U 1.0 0.49 ug/L 08/30/22 1 1,2-Dichloropropane 0.47 U 1.0 0.47 ug/L 08/30/22 1 1,3-Dichloropropane 0.21 U 1.0 0.21 ug/L 08/30/22 1 2,2-Dichloropropane 0.78 U 1.0 0.78 ug/L 08/30/22 1 1,1-Dichloropropane 0.36 U 1.0 0.36 ug/L 08/30/22 1 1,1-Dichloropropane 0.36 U 1.0 0.36 ug/L 08/30/22 1 1,1-Dichloropropane 0.36 U 1.0 0.36 ug/L 08/30/22 1 1,1-Dichloropropane 0.36 U 1.0 0.42 ug/L 08/30/22 1 1,1-Dichloropropane 0.36 U 1.0 0.42 ug/L 08/30/22 1 1,1-Dichloropropane 0.42 U 1.0 0.42 ug/L 08/30/22 1 1,1-Dichloropropane 0.42 U 1.0									08/30/22 18:31	
1,1-Dichloroethene	•					-			08/30/22 18:31	
1,2-Dichloropropane	•					-			08/30/22 18:31	
1,3-Dichloropropane 0.21 U 1.0 0.21 ug/L 08/30/22 1 02,2-Dichloropropane 0.78 U 1.0 0.78 ug/L 08/30/22 1 08/30/22 1 1,1-Dichloropropane 0.36 U 1.0 0.36 ug/L 08/30/22 1 08/30/22									08/30/22 18:31	
2,2-Dichloropropane	, I I					-			08/30/22 18:31	
1,1-Dichloropropene	• •					-			08/30/22 18:31	
Disopropyl ether 0.17 U 10 0.17 ug/L 08/30/22 1 Ethylbenzene 0.42 U 1.0 0.42 ug/L 08/30/22 1 Ethyl-butyl ether (ETBE) 0.40 U 5.0 0.40 ug/L 08/30/22 1 Hexachlorobutadiene 0.83 U 1.0 0.83 ug/L 08/30/22 1 Ethyl-butyl ether (ETBE) 0.40 U 5.0 0.40 ug/L 08/30/22 1 Ethyl-butyl ether (ETBE) 0.40 U 5.0 0.40 ug/L 08/30/22 1 Ethyl-butyl ether 0.83 U 1.0 0.83 ug/L 08/30/22 1 Ethyl-butyl ether 0.83 U 1.0 0.83 ug/L 08/30/22 1 Ethyl-butyl ether 0.49 U 1.0 0.49 ug/L 08/30/22 1 Ethyl-butyl ether 0.49 U 5.0 2.6 ug/L 08/30/22 1 Ethyl-butyl ether 0.47 U 1.0 0.99 ug/L 08/30/22 1 Ethyl-butyl ether 0.47 U 1.0 0.47 ug/L 08/30/22 1 Ethyl-butyl ether 0.80 U 1.0 0.80 ug/L 08/30/22 1 Ethyl-butyl ether 0.80 U 1.0 0.80 ug/L 08/30/22 1 Ethyl-butylenzene 0.57 U 1.0 0.57 ug/L 08/30/22 1 Ethyl-butylenzene 0.56 U 1.0 0.56 ug/L 08/30/22 1 Ethyl-butylenzene 0.55 U 1.0 0.55 ug/L 08/30/22 1 Ethyl-butylenzene 0.55 U 1.0 0.56 ug/L 08/30/22 1 Ethyl-butylenzene 0.55 U 1.0 0.56 ug/L 08/30/22 1 Ethyl-butylenzene 0.55 U 1.0 0.56 ug/L 08/30/22 1 Ethyl-butylenzene 0.55 U 1.0 0.56 ug/L 08/30/22 1 Ethyl-butylenzene 0.55 U 1.0 0.56 ug/L 08/30/22 1 Ethyl-butylenzene 0.55 U 1.0 0.56 ug/L 08/30/22 1 Ethyl-butylenzene 0.56 U 1.0 0.56 ug/L 08/30/22 1 Ethyl-butylenzene 0.43 U 1.0 0.45 ug/L 08/30/22 1 Ethyl-butylenzene 0.48 U 1.0 0.45 ug/L 08/30/22 1 Ethyl-butylenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Ethyl-butylenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Ethyl-butylenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Ethyl-butylenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Ethyl-butylenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Ethyl-butylenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Ethyl-butylenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Ethyl-butylenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Ethyl-butylenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Ethyl-butylenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Ethyl-butylenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Ethyl-butylenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Ethyl-butylenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Eth									08/30/22 18:31	
Ethylbenzene 0.42 U 1.0 0.42 ug/L 08/30/22 1 Ethyl-t-butyl ether (ETBE) 0.40 U 5.0 0.40 ug/L 08/30/22 1 08/30/	• •					_			08/30/22 18:31	
Ethyl-t-butyl ether (ETBE) 0.40 U 5.0 0.40 ug/L 08/30/22 1 Hexachlorobutadiene 0.83 U 1.0 0.83 ug/L 08/30/22 1 2-Hexanone 1.1 U 10 10 1.1 ug/L 08/30/22 1 Isopropylbenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 Methylene Chloride 2.6 U 5.0 2.6 ug/L 08/30/22 1 4-Methyl-2-pentanone 0.99 U 10 0.99 ug/L 08/30/22 1 Methyl tert-butyl ether 0.47 U 1.0 0.47 ug/L 08/30/22 1 m-Xylene & p-Xylene 0.42 U 2.0 0.42 ug/L 08/30/22 1 Naphthalene 0.80 U 1.0 0.80 ug/L 08/30/22 1 n-Butylbenzene 0.60 U 1.0 0.60 ug/L 08/30/22 1 n-Propylbenzene 0.57 U 1.0 0.57 ug/L 08/30/22 1 n-Propylbenzene 0.50 U 1.0 0.50 ug/L 08/30/22 1 n-Propylbenzene 0.50 U 1.0 0.50 ug/L 08/30/22 1 Dexylene 0.42 U 1.0 0.55 ug/L 08/30/22 1 Desc-Butylbenzene 0.55 U 1.0 0.55 ug/L 08/30/22 1 Desc-Butylbenzene 0.50 U 1.0 0.50 ug/L 08/30/22 1 Desc-Butylbenzene 0.55 U 1.0 0.55 ug/L 08/30/22 1 Desc-Butylbenzene 0.55 U 1.0 0.55 ug/L 08/30/22 1 Desc-Butylbenzene 0.55 U 1.0 0.55 ug/L 08/30/22 1 Desc-Butylbenzene 0.57 U 1.0 0.55 ug/L 08/30/22 1 Desc-Butylbenzene 0.59 U 1.0 0.59 ug/L 08/30/22 1 Desc-Butylbenzene 0.59 U 1.0 0.59 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.45 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.49 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.49 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.49 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.49 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.49 ug/L 08/30/22 1 Desc-Butylbenzene 0.48 U 1.0 0.49 ug/L 08/30/22 1 Desc-Butylbenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1						_			08/30/22 18:31	
Hexachlorobutadiene 0.83 U 1.0 0.83 ug/L 08/30/22 1 2-Hexanone 1.1 U 10 10 1.1 ug/L 08/30/22 1 2-Hexanone 1.1 U 10 10 1.1 ug/L 08/30/22 1 2-Hexanone 0.49 U 1.0 0.49 ug/L 08/30/22 1 2-Hexanone 0.49 U 1.0 0.49 ug/L 08/30/22 1 2-Hexanone 0.99 U 1.0 0.99 ug/L 08/30/22 1 2-Hexanone 0.99 U 1.0 0.99 ug/L 08/30/22 1 08/30/22									08/30/22 18:31	
2-Hexanone 1.1 U 10 10 1.1 ug/L 08/30/22 1 sopropylbenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 sopropylbenzene 0.49 U 1.0 0.49 ug/L 08/30/22 1 4-Methyl-2-pentanone 0.99 U 10 0.99 ug/L 08/30/22 1 4-Methyl-2-pentanone 0.99 U 10 0.99 ug/L 08/30/22 1						_			08/30/22 18:31	
Sopropylbenzene 0.49 U 1.0 0.49 Ug/L 08/30/22 1						_			08/30/22 18:31	
Methylene Chloride 2.6 U 5.0 2.6 ug/L 08/30/22 1 4-Methyl-2-pentanone 0.99 U 10 0.99 ug/L 08/30/22 1 08/30/20 1 08/20 1 08/20 1 08/20 1 08/20 1 08/20 1 08									08/30/22 18:31	
4-Methyl-2-pentanone 0.99 U 10 0.99 ug/L 08/30/22 1 Methyl tert-butyl ether 0.47 U 1.0 0.47 ug/L 08/30/22 1 m-Xylene & p-Xylene 0.42 U 2.0 0.42 ug/L 08/30/22 1 Naphthalene 0.80 U 1.0 0.80 ug/L 08/30/22 1 n-Butylbenzene 0.60 U 1.0 0.60 ug/L 08/30/22 1 n-Propylbenzene 0.57 U 1.0 0.57 ug/L 08/30/22 1 n-Propylbenzene 0.42 U 1.0 0.57 ug/L 08/30/22 1 n-Propyltoluene 0.56 U 1.0 0.56 ug/L 08/30/22 1 p-Isopropyltoluene 0.56 U 1.0 0.56 ug/L 08/30/22 1 Sec-Butylbenzene 0.53 U 1.0 0.53 ug/L 08/30/22 1 Styrene 0.45 U 1.0 0.53 ug/L 08/30/22 1 Tert-amyl-methyl ether (TAME) 0.43 U 5.0 0.43 ug/L 08/30/22 1 tert-Butyl alcohol 7.2 U 40 7.2 ug/L 08/30/22 1 tert-Butyl benzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 1,1,2,2-Tetrachloroethane 0.43 U*+ 1.0 0.43 ug/L 08/30/22 1 1,1,2,2-Tetrachloroethane 0.60 U 1.0 0.60 ug/L 08/30/22 1						-			08/30/22 18:31	
Methyl tert-butyl ether 0.47 U 1.0 0.47 ug/L 08/30/22 ft m-Xylene & p-Xylene 0.42 U 2.0 0.42 ug/L 08/30/22 ft Naphthalene 0.80 U 1.0 0.80 ug/L 08/30/22 ft n-Butylbenzene 0.60 U 1.0 0.60 ug/L 08/30/22 ft n-Propylbenzene 0.57 U 1.0 0.57 ug/L 08/30/22 ft o-Xylene 0.42 U 1.0 0.42 ug/L 08/30/22 ft p-Isopropyltoluene 0.56 U 1.0 0.56 ug/L 08/30/22 ft sec-Butylbenzene 0.53 U 1.0 0.53 ug/L 08/30/22 ft Styrene 0.45 U 1.0 0.45 ug/L 08/30/22 ft Tert-amyl-methyl ether (TAME) 0.43 U 5.0 0.43 ug/L 08/30/22 ft tert-Butyl alcohol 7.2 U 40 7.2 ug/L 08/30/22 ft tert-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 ft 1,1,1,2-Tetrachloroethane 0.43 U*+ 1.0 0.43 ug/L 08/30/22 ft 1,1,2,2-Tetrachloroethane 0.60 U 1.0 0.60 ug/L 08/30/22 ft <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	-					-				
m-Xylene & p-Xylene						V				
Naphthalene 0.80 U 1.0 0.80 ug/L 08/30/22 nm-Butylbenzene n-Butylbenzene 0.60 U 1.0 0.60 ug/L 08/30/22 nm-Butylbenzene n-Propylbenzene 0.57 U 1.0 0.57 ug/L 08/30/22 nm-Butylbenzene o-Xylene 0.42 U 1.0 0.42 ug/L 08/30/22 nm-Butylbenzene o-Isopropyltoluene 0.56 U 1.0 0.56 ug/L 08/30/22 nm-Butylbenzene Sec-Butylbenzene 0.53 U 1.0 0.53 ug/L 08/30/22 nm-Butylbenzene Styrene 0.45 U 1.0 0.45 ug/L 08/30/22 nm-Butylbenzene Tert-amyl-methyl ether (TAME) 0.43 U 5.0 0.43 ug/L 08/30/22 nm-Butylbenzene tert-Butyl alcohol 7.2 U 40 7.2 ug/L 08/30/22 nm-Butylbenzene 1,1,1,2-Tetrachloroethane 0.43 U*+ 1.0 0.43 ug/L 08/30/22 nm-Butylbenzene 1,1,1,2-Tetrachloroethane 0.60 U 1.0 0.60 ug/L 08/30/22 nm-Butylbenzene						-				
n-Butylbenzene 0.60 U 1.0 0.60 ug/L 08/30/22 1 0-Propylbenzene 0.57 U 1.0 0.57 ug/L 08/30/22 1 0-Xylene 0.42 U 1.0 0.42 ug/L 08/30/22 1 0-Xylene 0.56 U 1.0 0.56 ug/L 08/30/22 1 0-Styrene 0.53 U 1.0 0.56 ug/L 08/30/22 1 0-Styrene 0.45 U 1.0 0.53 ug/L 08/30/22 1 0-Styrene 0.45 U 1.0 0.53 ug/L 08/30/22 1 0-Styrene 0.45 U 1.0 0.45 ug/L 08/30/22 1 0-Styrene 0.45 U 1.0 0.45 ug/L 08/30/22 1 0-Styrene 0.48 U 1.0 0.49 ug/L 08/30/22 1 0-Styrene 0.48 U 1.0 0.48 ug/L 08/30/22 1 0-Styrene 0.48 U 1.0 0.48 ug/L 08/30/22 1 0-Styrene 0.48 U 1.0 0.48 ug/L 08/30/22 1 0-Styrene 0.48 U 1.0 0.48 ug/L 08/30/22 1 0-Styrene 0.48 U 1.0 0.48 ug/L 08/30/22 1 0-Styrene 0.48 U 1.0 0.48 ug/L 08/30/22 1 0-Styrene 0.48 U 1.0 0.48 ug/L 08/30/22 1 0-Styrene 0.48 U 1.0 0.48 ug/L 08/30/22 1 0-Styrene 0.48 U 1.0 0.49 ug/L 08/30/22 1 0-Styrene 0.49 U 1.0 0.60 ug/L 08/30/22 1 0-Styrene 0.49 U 1.0						_				
n-Propylbenzene 0.57 U 1.0 0.57 ug/L 08/30/22 1 05-Xylene 0.42 U 1.0 0.42 ug/L 08/30/22 1 05-Xylene 0.56 U 1.0 0.56 ug/L 08/30/22 1 05-Isopropyltoluene 0.56 U 1.0 0.56 ug/L 08/30/22 1 05-Isopropyltoluene 0.53 U 1.0 0.53 ug/L 08/30/22 1 05-Isopropyltoluene 0.53 U 1.0 0.53 ug/L 08/30/22 1 05-Isopropyltoluene 0.45 U 1.0 0.45 ug/L 08/30/22 1 05-Isopropyltoluene 0.45 U 1.0 0.45 ug/L 08/30/22 1 05-Isopropyltoluene 0.43 U 5.0 0.43 ug/L 08/30/22 1 05-Isopropyltoluene 0.48 U 1.0 0.48 ug/L 08/30/22 1 05-Isopropyltoluene 0.48 U 1.0 0.48 ug/L 08/30/22 1 05-Isopropyltoluene 0.48 U 1.0 0.48 ug/L 08/30/22 1 05-Isopropyltoluene 0.49 U 1.0 0.49 ug/L 08/30/22 1 05-Isopropyltoluene 0.49 U 1.0 0.60 ug/L 08/30/22 1 05-Isopropyltoluene 0.60 U 1.0 0.60 ug/L 08/30/22 1 05-Isopropyltoluene 0.60 U 1.0 0.60 ug/L 08/30/22 1						⁻ . <u>.</u>				
0-Xylene 0.42 U 1.0 0.42 ug/L 08/30/22 1 09-Isopropyltoluene 0.56 U 1.0 0.56 ug/L 08/30/22 1 09-Isopropyltoluene 0.53 U 1.0 0.53 ug/L 08/30/22 1 08/30/22	•					-				
p-Isopropyltoluene 0.56 U 1.0 0.56 ug/L 08/30/22 1	• •									
sec-Butylbenzene 0.53 U 1.0 0.53 ug/L 08/30/22 1 Styrene 0.45 U 1.0 0.45 ug/L 08/30/22 1 Tert-amyl-methyl ether (TAME) 0.43 U 5.0 0.43 ug/L 08/30/22 1 tert-Butyl alcohol 7.2 U 40 7.2 ug/L 08/30/22 1 tert-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 1,1,1,2-Tetrachloroethane 0.43 U*+ 1.0 0.43 ug/L 08/30/22 1 1,1,2,2-Tetrachloroethane 0.60 U 1.0 0.60 ug/L 08/30/22 1										
Styrene 0.45 U 1.0 0.45 ug/L 08/30/22 ft Tert-amyl-methyl ether (TAME) 0.43 U 5.0 0.43 ug/L 08/30/22 ft tert-Butyl alcohol 7.2 U 40 7.2 ug/L 08/30/22 ft tert-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 ft 1,1,1,2-Tetrachloroethane 0.43 U*+ 1.0 0.43 ug/L 08/30/22 ft 1,1,2,2-Tetrachloroethane 0.60 U 1.0 0.60 ug/L 08/30/22 ft										
Tert-amyl-methyl ether (TAME) 0.43 U 5.0 0.43 ug/L 08/30/22 1 tert-Butyl alcohol 7.2 U 40 7.2 ug/L 08/30/22 1 tert-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 1,1,1,2-Tetrachloroethane 0.43 U*+ 1.0 0.43 ug/L 08/30/22 1 1,1,2,2-Tetrachloroethane 0.60 U 1.0 0.60 ug/L 08/30/22 1						_				
tert-Butyl alcohol 7.2 U 40 7.2 ug/L 08/30/22 f tert-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 f 1,1,1,2-Tetrachloroethane 0.43 U*+ 1.0 0.43 ug/L 08/30/22 f 1,1,2,2-Tetrachloroethane 0.60 U 1.0 0.60 ug/L 08/30/22 f										
ert-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 1 1,1,1,2-Tetrachloroethane 0.43 U*+ 1.0 0.43 ug/L 08/30/22 1 1,1,2,2-Tetrachloroethane 0.60 U 1.0 0.60 ug/L 08/30/22 1						_				
1,1,1,2-Tetrachloroethane 0.43 U*+ 1.0 0.43 ug/L 08/30/22 1 1,1,2,2-Tetrachloroethane 0.60 U 1.0 0.60 ug/L 08/30/22 1	•					_				
1,1,2,2-Tetrachloroethane 0.60 U 1.0 0.60 ug/L 08/30/22 1									08/30/22 18:31	
						_			08/30/22 18:31	
letrachioroetnene 0.44 U 1.0 0.44 ug/L 08/30/22 1	· · ·					_			08/30/22 18:31	
T 1									08/30/22 18:31	
· · · · · · · · · · · · · · · · · · ·						_			08/30/22 18:31	
·	•					_			08/30/22 18:31 08/30/22 18:31	

Eurofins Canton

Matrix: Water

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43B-082222

Lab Sample ID: 240-171981-22 Date Collected: 08/22/22 11:17 **Matrix: Water**

Date Received: 08/23/22 15:30

Method: 8260C - Volatile Orga		•	•						
Analyte	Result	Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	0.54	U	1.0	0.54	ug/L			08/30/22 18:31	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.77	ug/L			08/30/22 18:31	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	ug/L			08/30/22 18:31	1
Trichloroethene	0.44	U	1.0	0.44	ug/L			08/30/22 18:31	1
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/30/22 18:31	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	ug/L			08/30/22 18:31	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/30/22 18:31	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/30/22 18:31	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/30/22 18:31	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/30/22 18:31	1
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/30/22 18:31	1
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/30/22 18:31	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/30/22 18:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		56 - 136					08/30/22 18:31	1
Dibromofluoromethane (Surr)	106		73 - 120					08/30/22 18:31	1
1,2-Dichloroethane-d4 (Surr)	97		62 - 137					08/30/22 18:31	1
Toluene-d8 (Surr)	100		78 - 122					08/30/22 18:31	1

Client Sample ID: MSA-SW43C-082222

Date Collected: 08/22/22 11:19

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/30/22 18:55	1
Benzene	0.42	U	1.0	0.42	ug/L			08/30/22 18:55	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/30/22 18:55	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/30/22 18:55	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/30/22 18:55	1
Bromoform	0.76	U *+	1.0	0.76	ug/L			08/30/22 18:55	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/30/22 18:55	1
2-Butanone	1.2	U	10	1.2	ug/L			08/30/22 18:55	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/30/22 18:55	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/30/22 18:55	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/30/22 18:55	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/30/22 18:55	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/30/22 18:55	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/30/22 18:55	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/30/22 18:55	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/30/22 18:55	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/30/22 18:55	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/30/22 18:55	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/30/22 18:55	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/30/22 18:55	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/30/22 18:55	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/30/22 18:55	1

Eurofins Canton

Lab Sample ID: 240-171981-23

Matrix: Water

Client: Tetra Tech, Inc.

Job ID: 240-171981-1
Project/Site: MSA Surface Water Sampling

SDG: MSA Frog Mortar Creek

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/30/22 18:55	
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/30/22 18:55	1
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/30/22 18:55	1
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/30/22 18:55	1
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/30/22 18:55	1
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/30/22 18:55	1
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/30/22 18:55	1
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/30/22 18:55	1
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/30/22 18:55	1
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/30/22 18:55	1
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/30/22 18:55	1
1,1-Dichloropropene	0.36	U	1.0	0.36				08/30/22 18:55	1
Diisopropyl ether	0.17	U	10	0.17	_			08/30/22 18:55	1
Ethylbenzene	0.42	U	1.0	0.42	_			08/30/22 18:55	1
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40				08/30/22 18:55	1
Hexachlorobutadiene	0.83	U	1.0	0.83	-			08/30/22 18:55	1
2-Hexanone	1.1	U	10		ug/L			08/30/22 18:55	1
Isopropylbenzene	0.49	U	1.0	0.49				08/30/22 18:55	1
Methylene Chloride	2.6	U	5.0		ug/L			08/30/22 18:55	1
4-Methyl-2-pentanone	0.99		10	0.99	-			08/30/22 18:55	1
Methyl tert-butyl ether	0.47		1.0	0.47				08/30/22 18:55	1
m-Xylene & p-Xylene	0.42		2.0	0.42	_			08/30/22 18:55	1
Naphthalene	0.80		1.0		ug/L			08/30/22 18:55	1
n-Butylbenzene	0.60		1.0	0.60				08/30/22 18:55	1
n-Propylbenzene	0.57		1.0	0.57	_			08/30/22 18:55	1
o-Xylene	0.42		1.0	0.42	-			08/30/22 18:55	1
p-Isopropyltoluene	0.56		1.0	0.56				08/30/22 18:55	1
sec-Butylbenzene	0.53		1.0	0.53	_			08/30/22 18:55	1
Styrene	0.45		1.0	0.45	_			08/30/22 18:55	1
Tert-amyl-methyl ether (TAME)	0.43		5.0	0.43				08/30/22 18:55	1
tert-Butyl alcohol	7.2		40		ug/L			08/30/22 18:55	1
tert-Butylbenzene	0.48		1.0	0.48	-			08/30/22 18:55	1
1,1,1,2-Tetrachloroethane	0.43		1.0	0.43				08/30/22 18:55	1
1,1,2,2-Tetrachloroethane	0.60		1.0	0.60	_			08/30/22 18:55	1
Tetrachloroethene	0.44		1.0	0.44	_			08/30/22 18:55	1
Toluene	0.44		1.0	0.44				08/30/22 18:55	1
trans-1,2-Dichloroethene	0.51		1.0	0.51				08/30/22 18:55	1
trans-1,3-Dichloropropene	0.67		1.0		ug/L			08/30/22 18:55	1
1,2,3-Trichlorobenzene	0.54		1.0		ug/L			08/30/22 18:55	1
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/30/22 18:55	1
1,1,1-Trichloroethane	0.48		1.0	0.48	_			08/30/22 18:55	1
Trichloroethene	0.44		1.0	0.44				08/30/22 18:55	1
Trichlorofluoromethane	0.45		1.0		ug/L			08/30/22 18:55	1
1,2,3-Trichloropropane	0.52		1.0	0.52	_			08/30/22 18:55	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41		1.0	0.41				08/30/22 18:55	
1,2,3-Trimethylbenzene	0.41		5.0		ug/L			08/30/22 18:55	1
1,2,4-Trimethylbenzene	0.52		1.0	0.52	_			08/30/22 18:55	1
Vinyl acetate	0.61		2.0	0.61				08/30/22 18:55	1
Vinyl acetate Vinyl chloride	0.45		1.0	0.45				08/30/22 18:55	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43C-082222

Lab Sample ID: 240-171981-23 **Matrix: Water**

Date Collected: 08/22/22 11:19 Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL		MDL Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.42	U	2.0		0.42 ug/L			08/30/22 18:55	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/30/22 18:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		56 - 136					08/30/22 18:55	1
Dibromofluoromethane (Surr)	108		73 - 120					08/30/22 18:55	1
1,2-Dichloroethane-d4 (Surr)	99		62 - 137					08/30/22 18:55	1

Client Sample ID: MSA-SW43D-082222

Lab Sample ID: 240-171981-24 Date Collected: 08/22/22 11:25 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/30/22 19:18	1
Benzene	0.42	U	1.0	0.42	ug/L			08/30/22 19:18	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/30/22 19:18	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/30/22 19:18	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/30/22 19:18	1
Bromoform	0.76	U *+	1.0	0.76	ug/L			08/30/22 19:18	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/30/22 19:18	1
2-Butanone	1.2	U	10	1.2	ug/L			08/30/22 19:18	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/30/22 19:18	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/30/22 19:18	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/30/22 19:18	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/30/22 19:18	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/30/22 19:18	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/30/22 19:18	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/30/22 19:18	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/30/22 19:18	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/30/22 19:18	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/30/22 19:18	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/30/22 19:18	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/30/22 19:18	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/30/22 19:18	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/30/22 19:18	1
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/30/22 19:18	1
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/30/22 19:18	1
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/30/22 19:18	1
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/30/22 19:18	1
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/30/22 19:18	1
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/30/22 19:18	1
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/30/22 19:18	1
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/30/22 19:18	1
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/30/22 19:18	1
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/30/22 19:18	1
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/30/22 19:18	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43D-082222

Lab Sample ID: 240-171981-24 Date Collected: 08/22/22 11:25 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte		Qualifier	RL	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	0.36	U	1.0	0.36	ug/L			08/30/22 19:18	
Diisopropyl ether	0.17	U	10	0.17	ug/L			08/30/22 19:18	1
Ethylbenzene	0.42	U	1.0		ug/L			08/30/22 19:18	
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40	ug/L			08/30/22 19:18	1
Hexachlorobutadiene	0.83	U	1.0	0.83	ug/L			08/30/22 19:18	1
2-Hexanone	1.1	U	10	1.1	ug/L			08/30/22 19:18	1
Isopropylbenzene	0.49	U	1.0	0.49	ug/L			08/30/22 19:18	1
Methylene Chloride	2.6	U	5.0	2.6	ug/L			08/30/22 19:18	1
4-Methyl-2-pentanone	0.99	U	10	0.99	ug/L			08/30/22 19:18	1
Methyl tert-butyl ether	0.47	U	1.0	0.47	ug/L			08/30/22 19:18	1
m-Xylene & p-Xylene	0.42	U	2.0		ug/L			08/30/22 19:18	1
Naphthalene	0.80	U	1.0		ug/L			08/30/22 19:18	1
n-Butylbenzene	0.60	U	1.0		ug/L			08/30/22 19:18	1
n-Propylbenzene	0.57	U	1.0		ug/L			08/30/22 19:18	1
o-Xylene	0.42		1.0		ug/L			08/30/22 19:18	
p-Isopropyltoluene	0.56		1.0		ug/L			08/30/22 19:18	1
sec-Butylbenzene	0.53		1.0		ug/L			08/30/22 19:18	1
Styrene	0.45		1.0		ug/L			08/30/22 19:18	1
Tert-amyl-methyl ether (TAME)	0.43		5.0		ug/L			08/30/22 19:18	1
tert-Butyl alcohol	7.2		40		ug/L			08/30/22 19:18	1
tert-Butylbenzene	0.48		1.0		ug/L			08/30/22 19:18	,
1,1,1,2-Tetrachloroethane		U *+	1.0		ug/L ug/L			08/30/22 19:18	
1,1,2,1-Tetrachloroethane	0.60		1.0		ug/L ug/L			08/30/22 19:18	1
Tetrachloroethene	0.44		1.0		ug/L ug/L			08/30/22 19:18	1
Toluene	0.44		1.0		ug/L ug/L			08/30/22 19:18	
	0.44		1.0		ug/L ug/L			08/30/22 19:18	
trans-1,2-Dichloroethene	0.51				-				1
trans-1,3-Dichloropropene			1.0		ug/L			08/30/22 19:18	1
1,2,3-Trichlorobenzene	0.54		1.0		ug/L			08/30/22 19:18	1
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/30/22 19:18	1
1,1,1-Trichloroethane	0.48		1.0		ug/L			08/30/22 19:18	1
Trichloroethene	0.44		1.0		ug/L			08/30/22 19:18	1
Trichlorofluoromethane	0.45		1.0		ug/L			08/30/22 19:18	1
1,2,3-Trichloropropane	0.52		1.0		ug/L			08/30/22 19:18	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41		1.0		ug/L			08/30/22 19:18	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/30/22 19:18	1
1,2,4-Trimethylbenzene	0.52	U	1.0		ug/L			08/30/22 19:18	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/30/22 19:18	1
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/30/22 19:18	1
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/30/22 19:18	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0		ug/L			75-45-6	- 1	08/30/22 19:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		<u>56 - 136</u>			-		08/30/22 19:18	- Diri at
Dibromofluoromethane (Surr)	107		73 - 120					08/30/22 19:18	
1,2-Dichloroethane-d4 (Surr)	100		62 - 137					08/30/22 19:18	1
Toluene-d8 (Surr)	100		78 ₋ 122					08/30/22 19:18	· · · · · · · · · · · · · · · · · · ·

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: TB-082222

Date Collected: 08/22/22 00:00 Date Received: 08/23/22 15:30 Lab Sample ID: 240-171981-25

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	5.4	U	10	5.4	ug/L			08/30/22 16:57	
Benzene	0.42	U	1.0	0.42	ug/L			08/30/22 16:57	
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/30/22 16:57	
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/30/22 16:57	
Bromodichloromethane	0.17	U	1.0		ug/L			08/30/22 16:57	
Bromoform	0.76	U *+	1.0		ug/L			08/30/22 16:57	
Bromomethane	0.42	U	1.0		ug/L			08/30/22 16:57	
2-Butanone	1.2	U	10		ug/L			08/30/22 16:57	
Carbon disulfide	0.59		1.0		ug/L			08/30/22 16:57	
Carbon tetrachloride	0.26		1.0		ug/L			08/30/22 16:57	
Chlorobenzene	0.38		1.0		ug/L			08/30/22 16:57	
Chloroethane	0.83		1.0		ug/L			08/30/22 16:57	
2-Chloroethyl vinyl ether	1.5		10		ug/L			08/30/22 16:57	
Chloroform	0.47		1.0		ug/L			08/30/22 16:57	
Chloromethane	0.63		1.0		ug/L			08/30/22 16:57	
2-Chlorotoluene	0.57		1.0		ug/L			08/30/22 16:57	
4-Chlorotoluene	0.43		1.0		ug/L			08/30/22 16:57	
cis-1,2-Dichloroethene	0.45		1.0		ug/L			08/30/22 16:57	
cis-1,3-Dichloropropene	0.40		1.0		ug/L ug/L			08/30/22 16:57	
Dibromochloromethane	0.39		1.0		_			08/30/22 16:57	
			2.0		ug/L				
1,2-Dibromo-3-Chloropropane	0.91				ug/L			08/30/22 16:57	
1,2-Dibromoethane	0.41		1.0		ug/L			08/30/22 16:57	
Dibromomethane	0.40		1.0		ug/L			08/30/22 16:57	
1,2-Dichlorobenzene	0.48		1.0		ug/L			08/30/22 16:57	
1,3-Dichlorobenzene	0.45		1.0		ug/L			08/30/22 16:57	
1,4-Dichlorobenzene	0.41		1.0		ug/L			08/30/22 16:57	
Dichlorodifluoromethane	0.35		1.0		ug/L			08/30/22 16:57	
1,1-Dichloroethane	0.47		1.0		ug/L			08/30/22 16:57	
1,2-Dichloroethane	0.21		1.0		ug/L			08/30/22 16:57	
1,1-Dichloroethene	0.49		1.0		ug/L			08/30/22 16:57	
1,2-Dichloropropane	0.47		1.0		ug/L			08/30/22 16:57	
1,3-Dichloropropane	0.21		1.0		ug/L			08/30/22 16:57	
2,2-Dichloropropane	0.78	U	1.0		ug/L			08/30/22 16:57	
1,1-Dichloropropene	0.36	U	1.0	0.36	ug/L			08/30/22 16:57	
Diisopropyl ether	0.17	U	10	0.17	ug/L			08/30/22 16:57	
Ethylbenzene	0.42	U	1.0	0.42	ug/L			08/30/22 16:57	
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40	ug/L			08/30/22 16:57	
Hexachlorobutadiene	0.83	U	1.0	0.83	ug/L			08/30/22 16:57	
2-Hexanone	1.1	U	10	1.1	ug/L			08/30/22 16:57	
Isopropylbenzene	0.49	U	1.0	0.49	ug/L			08/30/22 16:57	
Methylene Chloride	2.6	U	5.0	2.6	ug/L			08/30/22 16:57	
4-Methyl-2-pentanone	0.99	U	10	0.99	ug/L			08/30/22 16:57	
Methyl tert-butyl ether	0.47		1.0		ug/L			08/30/22 16:57	
m-Xylene & p-Xylene	0.42	U	2.0		ug/L			08/30/22 16:57	
Naphthalene	0.80		1.0		ug/L			08/30/22 16:57	
n-Butylbenzene	0.60		1.0		ug/L			08/30/22 16:57	
n-Propylbenzene	0.57		1.0		ug/L			08/30/22 16:57	
o-Xylene	0.42		1.0		ug/L			08/30/22 16:57	
p-Isopropyltoluene	0.56		1.0		ug/L			08/30/22 16:57	

Eurofins Canton

Page 51 of 539

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: TB-082222

Date Received: 08/23/22 15:30

Lab Sample ID: 240-171981-25 Date Collected: 08/22/22 00:00

Matrix: Water

Method: 8260C - Volatile	Organic Compounds b	y GC/MS (Continued)
--------------------------	---------------------	---------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	0.53	U	1.0	0.53	ug/L			08/30/22 16:57	1
Styrene	0.45	U	1.0	0.45	ug/L			08/30/22 16:57	1
Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43	ug/L			08/30/22 16:57	1
tert-Butyl alcohol	7.2	U	40	7.2	ug/L			08/30/22 16:57	1
tert-Butylbenzene	0.48	U	1.0	0.48	ug/L			08/30/22 16:57	1
1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43	ug/L			08/30/22 16:57	1
1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60	ug/L			08/30/22 16:57	1
Tetrachloroethene	0.44	U	1.0	0.44	ug/L			08/30/22 16:57	1
Toluene	0.44	U	1.0	0.44	ug/L			08/30/22 16:57	1
trans-1,2-Dichloroethene	0.51	U	1.0	0.51	ug/L			08/30/22 16:57	1
trans-1,3-Dichloropropene	0.67	U	1.0	0.67	ug/L			08/30/22 16:57	1
1,2,3-Trichlorobenzene	0.54	U	1.0	0.54	ug/L			08/30/22 16:57	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.77	ug/L			08/30/22 16:57	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	ug/L			08/30/22 16:57	1
Trichloroethene	0.44	U	1.0	0.44	ug/L			08/30/22 16:57	1
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/30/22 16:57	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	ug/L			08/30/22 16:57	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/30/22 16:57	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/30/22 16:57	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/30/22 16:57	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/30/22 16:57	1
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/30/22 16:57	1
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/30/22 16:57	1

Tentatively Identified Compound	Est. Result Qualit	fier Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0 U	ua/L			75-45-6		08/30/22 16:57	

Surrogate	%Recovery (Qualifier L	.imits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	5	6 - 136		08/30/22 16:57	1
Dibromofluoromethane (Surr)	106	7	3 - 120		08/30/22 16:57	1
1,2-Dichloroethane-d4 (Surr)	94	6	S2 - 137		08/30/22 16:57	1
Toluene-d8 (Surr)	104	7	78 - 122		08/30/22 16:57	1

Client Sample ID: MSA-SW46A-082222

Lab Sample ID: 240-171981-26 Date Collected: 08/22/22 12:22 **Matrix: Water** Date Received: 08/23/22 15:30

Method: 8260C - Volatile Organic Compounds by GC/MS

Metriod: 6260C - Volatile C	rganic Compo	unus by GC/	IVIO						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/30/22 19:42	1
Benzene	0.42	U	1.0	0.42	ug/L			08/30/22 19:42	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/30/22 19:42	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/30/22 19:42	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/30/22 19:42	1
Bromoform	0.76	U *+	1.0	0.76	ug/L			08/30/22 19:42	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/30/22 19:42	1
2-Butanone	1.2	U	10	1.2	ug/L			08/30/22 19:42	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/30/22 19:42	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/30/22 19:42	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/30/22 19:42	1

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW46A-082222

Date Collected: 08/22/22 12:22 **Matrix: Water**

Date Received: 08/23/22 15:30 Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) **Analyte** Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 0.83 U Chloroethane 1.0 0.83 ug/L 08/30/22 19:42 2-Chloroethyl vinyl ether 1.5 U 10 1.5 ug/L 08/30/22 19:42 1 0.47 U 1.0 08/30/22 19:42 Chloroform 0.47 ug/L 1 Chloromethane 0.63 U 1.0 0.63 ug/L 08/30/22 19:42 1 2-Chlorotoluene 0.57 U 1.0 0.57 08/30/22 19:42 1 ug/L 0.43 U 08/30/22 19:42 4-Chlorotoluene 1.0 0.43 ug/L 1 0.46 U 1.0 0.46 ug/L 08/30/22 19:42 1 cis-1,2-Dichloroethene cis-1.3-Dichloropropene 0.61 U 1.0 0.61 ug/L 08/30/22 19:42 1 Dibromochloromethane 0.39 U 1.0 0.39 ug/L 08/30/22 19:42 1 1,2-Dibromo-3-Chloropropane 08/30/22 19:42 0.91 U 2.0 0.91 ug/L 1 08/30/22 19:42 1,2-Dibromoethane 0.41 U 1.0 0.41 ug/L 1 Dibromomethane 0.40 U 1.0 08/30/22 19:42 0.40 ug/L 1 1,2-Dichlorobenzene 0.48 U 1.0 0.48 ug/L 08/30/22 19:42 1 1.3-Dichlorobenzene 0.45 U 10 0.45 ug/L 08/30/22 19:42 1 1.4-Dichlorobenzene 0.41 U 1.0 0.41 ug/L 08/30/22 19:42 0.35 U 1.0 08/30/22 19:42 Dichlorodifluoromethane 0.35 ug/L 1 0.47 U 08/30/22 19:42 1,1-Dichloroethane 1.0 0.47 ug/L 1 1,2-Dichloroethane 0.21 U 1.0 0.21 ug/L 08/30/22 19:42 1 1,1-Dichloroethene 0.49 U 1.0 0.49 ug/L 08/30/22 19:42 1 0.47 U 08/30/22 19:42 1,2-Dichloropropane 1.0 0.47 ug/L 1 0.21 ug/L 08/30/22 19:42 1,3-Dichloropropane 0.21 U 1.0 1 2,2-Dichloropropane 0.78 U 1.0 0.78 ug/L 08/30/22 19:42 1 0.36 U 1.0 08/30/22 19:42 1,1-Dichloropropene 0.36 ug/L 1 Diisopropyl ether 0.17 U 10 0.17 ug/L 08/30/22 19:42 1 0.42 ug/L 08/30/22 19:42 Ethylbenzene 0.42 U 1.0 1 0.40 ug/L Ethyl-t-butyl ether (ETBE) 0.40 U 5.0 08/30/22 19:42 1 Hexachlorobutadiene 0.83 U 08/30/22 19:42 1.0 0.83 ug/L 1 2-Hexanone 1.1 U 10 1.1 ug/L 08/30/22 19:42 1 Isopropylbenzene 0.49 U 1.0 0.49 ug/L 08/30/22 19:42 1 Methylene Chloride 2.6 U 5.0 2.6 ug/L 08/30/22 19:42 1 4-Methyl-2-pentanone 0.99 U 10 0.99 ug/L 08/30/22 19:42 1 U 1.0 0.47 08/30/22 19:42 1 Methyl tert-butyl ether 0.47 ug/L m-Xylene & p-Xylene 0.42 U 2.0 0.42 ug/L 08/30/22 19:42 1 Naphthalene 0.80 U 1.0 0.80 08/30/22 19:42 1 ug/L n-Butylbenzene 0.60 U 1.0 0.60 ug/L 08/30/22 19:42 1 0.57 U n-Propylbenzene 1.0 0.57 ug/L 08/30/22 19:42 1 o-Xylene 0.42 U 1.0 0.42 ug/L 08/30/22 19:42 1 p-Isopropyltoluene 0.56 U 1.0 0.56 ug/L 08/30/22 19:42 1 sec-Butylbenzene 0.53 U 1.0 0.53 ug/L 08/30/22 19:42 1 Styrene 0.45 U 1.0 0.45 ug/L 08/30/22 19:42 1 Tert-amyl-methyl ether (TAME) 0.43 U 5.0 0.43 ug/L 08/30/22 19:42 1 tert-Butyl alcohol 7.2 U 40 7.2 ug/L 08/30/22 19:42 1 tert-Butylbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 19:42 1 0.43 U *+ 1,1,1,2-Tetrachloroethane 1.0 0.43 ug/L 08/30/22 19:42 0.60 ug/L 1,1,2,2-Tetrachloroethane 0.60 U 1.0 08/30/22 19:42 1 Tetrachloroethene 0.44 U 1.0 0.44 ug/L 08/30/22 19:42 1 0.44 ug/L Toluene 0.44 U 1.0 08/30/22 19:42 1 trans-1,2-Dichloroethene 0.51 U 1.0 0.51 ug/L 08/30/22 19:42 1 trans-1,3-Dichloropropene 0.67 U 1.0 0.67 ug/L 08/30/22 19:42 1

Eurofins Canton

Lab Sample ID: 240-171981-26

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW46A-082222

Lab Sample ID: 240-171981-26 Date Collected: 08/22/22 12:22 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	0.54	U	1.0)	0.54	ug/L			08/30/22 19:42	1
1,2,4-Trichlorobenzene	0.77	U	1.0)	0.77	ug/L			08/30/22 19:42	1
1,1,1-Trichloroethane	0.48	U	1.0)	0.48	ug/L			08/30/22 19:42	1
Trichloroethene	0.44	U	1.0)	0.44	ug/L			08/30/22 19:42	1
Trichlorofluoromethane	0.45	U	1.0)	0.45	ug/L			08/30/22 19:42	1
1,2,3-Trichloropropane	0.52	U	1.0)	0.52	ug/L			08/30/22 19:42	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0)	0.41	ug/L			08/30/22 19:42	1
1,2,3-Trimethylbenzene	0.31	U	5.0)	0.31	ug/L			08/30/22 19:42	1
1,2,4-Trimethylbenzene	0.52	U	1.0)	0.52	ug/L			08/30/22 19:42	1
Vinyl acetate	0.61	U	2.0)	0.61	ug/L			08/30/22 19:42	1
Vinyl chloride	0.45	U	1.0)	0.45	ug/L			08/30/22 19:42	1
Xylenes, Total	0.42	U	2.0)	0.42	ug/L			08/30/22 19:42	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L				75-45-6		08/30/22 19:42	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		56 - 136	•					08/30/22 19:42	
Dibromofluoromethane (Surr)	106		73 - 120						08/30/22 19:42	1
1,2-Dichloroethane-d4 (Surr)	97		62 - 137						08/30/22 19:42	1
Toluene-d8 (Surr)	99		78 - 122						08/30/22 19:42	

Client Sample ID: MSA-SW47A-082222

Date Collected: 08/22/22 12:05

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/30/22 20:06	1
Benzene	0.42	U	1.0	0.42	ug/L			08/30/22 20:06	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/30/22 20:06	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/30/22 20:06	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/30/22 20:06	1
Bromoform	0.76	U *+	1.0	0.76	ug/L			08/30/22 20:06	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/30/22 20:06	1
2-Butanone	1.2	U	10	1.2	ug/L			08/30/22 20:06	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/30/22 20:06	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/30/22 20:06	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/30/22 20:06	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/30/22 20:06	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/30/22 20:06	1
Chloroform	0.47	U	1.0	0.47	ug/L			08/30/22 20:06	1
Chloromethane	0.63	U	1.0	0.63	ug/L			08/30/22 20:06	1
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/30/22 20:06	1
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/30/22 20:06	1
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/30/22 20:06	1
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/30/22 20:06	1
Dibromochloromethane	0.39	U	1.0	0.39	ug/L			08/30/22 20:06	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91	ug/L			08/30/22 20:06	1
1,2-Dibromoethane	0.41	U	1.0	0.41	ug/L			08/30/22 20:06	1

Eurofins Canton

Lab Sample ID: 240-171981-27

Matrix: Water

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW47A-082222

Lab Sample ID: 240-171981-27 Date Collected: 08/22/22 12:05 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibromomethane	0.40	U	1.0	0.40	ug/L			08/30/22 20:06	
1,2-Dichlorobenzene	0.48	U	1.0	0.48	ug/L			08/30/22 20:06	
1,3-Dichlorobenzene	0.45	U	1.0	0.45	ug/L			08/30/22 20:06	
1,4-Dichlorobenzene	0.41	U	1.0	0.41	ug/L			08/30/22 20:06	
Dichlorodifluoromethane	0.35	U	1.0	0.35	ug/L			08/30/22 20:06	
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/30/22 20:06	
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/30/22 20:06	
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/30/22 20:06	
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/30/22 20:06	
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/30/22 20:06	
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/30/22 20:06	
1,1-Dichloropropene	0.36	U	1.0		ug/L			08/30/22 20:06	
Diisopropyl ether	0.17	U	10		ug/L			08/30/22 20:06	
Ethylbenzene	0.42	U	1.0		ug/L			08/30/22 20:06	
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0		ug/L			08/30/22 20:06	
Hexachlorobutadiene	0.83		1.0		ug/L			08/30/22 20:06	
2-Hexanone	1.1		10		ug/L			08/30/22 20:06	
Isopropylbenzene	0.49		1.0		ug/L			08/30/22 20:06	
Methylene Chloride	2.6		5.0		ug/L			08/30/22 20:06	
4-Methyl-2-pentanone	0.99		10		ug/L			08/30/22 20:06	
Methyl tert-butyl ether	0.47		1.0		ug/L			08/30/22 20:06	
m-Xylene & p-Xylene	0.42		2.0		ug/L			08/30/22 20:06	
Naphthalene	0.80		1.0		ug/L			08/30/22 20:06	
n-Butylbenzene	0.60		1.0		ug/L			08/30/22 20:06	
n-Propylbenzene	0.57		1.0		ug/L			08/30/22 20:06	
o-Xylene	0.42		1.0		ug/L			08/30/22 20:06	
p-Isopropyltoluene	0.56		1.0		ug/L			08/30/22 20:06	
sec-Butylbenzene	0.53		1.0		ug/L			08/30/22 20:06	
Styrene	0.45		1.0		ug/L			08/30/22 20:06	
Tert-amyl-methyl ether (TAME)	0.43		5.0		ug/L			08/30/22 20:06	
tert-Butyl alcohol	7.2		40		ug/L			08/30/22 20:06	
tert-Butylbenzene	0.48		1.0		ug/L			08/30/22 20:06	
1,1,1,2-Tetrachloroethane		U *+	1.0		ug/L ug/L			08/30/22 20:06	
1,1,2,2-Tetrachloroethane	0.43		1.0		ug/L ug/L			08/30/22 20:06	
	0.60		1.0		ug/L ug/L			08/30/22 20:06	
Tetrachloroethene Toluene	0.44							08/30/22 20:06	
			1.0		ug/L				
trans-1,2-Dichloroethene	0.51		1.0		ug/L			08/30/22 20:06	
trans-1,3-Dichloropropene	0.67		1.0		ug/L			08/30/22 20:06	
1,2,3-Trichlorobenzene	0.54		1.0		ug/L			08/30/22 20:06	
1,2,4-Trichlorobenzene	0.77		1.0		ug/L			08/30/22 20:06	
1,1,1-Trichloroethane	0.48		1.0		ug/L			08/30/22 20:06	
Trichloroethene	0.44		1.0		ug/L			08/30/22 20:06	
Trichlorofluoromethane	0.45		1.0		ug/L			08/30/22 20:06	
1,2,3-Trichloropropane	0.52		1.0		ug/L			08/30/22 20:06	
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41		1.0		ug/L			08/30/22 20:06	
1,2,3-Trimethylbenzene	0.31		5.0		ug/L			08/30/22 20:06	
1,2,4-Trimethylbenzene	0.52		1.0		ug/L			08/30/22 20:06	
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/30/22 20:06	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 SDG: MSA Frog Mortar Creek Project/Site: MSA Surface Water Sampling

Client Sample ID: MSA-SW47A-082222

Lab Sample ID: 240-171981-27

Date Collected: 08/22/22 12:05 Date Received: 08/23/22 15:30

Matrix: Water

Analyte	Result	Qualifier	RL		MDL Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.42	U	2.0		0.42 ug/L			08/30/22 20:06	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L			75-45-6		08/30/22 20:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		56 - 136			,		08/30/22 20:06	1
Dibromofluoromethane (Surr)	107		73 - 120					08/30/22 20:06	1
1,2-Dichloroethane-d4 (Surr)	98		62 - 137					08/30/22 20:06	1
Toluene-d8 (Surr)	101		78 - 122					08/30/22 20:06	

Client Sample ID: MSA-SW48A-082222

Date Collected: 08/22/22 11:48 Date Received: 08/23/22 15:30

Lab Sample ID: 240-171981-28 **Matrix: Water**

Method: 8260C - Volatile Organic Compounds by GC/MS **Analyte** Result Qualifier RL **MDL** Unit D Dil Fac Prepared **Analyzed** Acetone 5.4 U 10 5.4 ug/L 08/30/22 20:29 0.42 U 1.0 Benzene 0.42 ug/L 08/30/22 20:29 1 Bromobenzene 0.50 U 1.0 0.50 ug/L 08/30/22 20:29 1 0.54 U Bromochloromethane 1.0 08/30/22 20:29 0.54 ug/L 1 08/30/22 20:29 Bromodichloromethane 0.17 U 1.0 0.17 ug/L 1 **Bromoform** 0.76 U*+ 1.0 0.76 ug/L 08/30/22 20:29 1 Bromomethane 0.42 U 1.0 0.42 ug/L 08/30/22 20:29 1 2-Butanone 1.2 U 10 1.2 ug/L 08/30/22 20:29 1 Carbon disulfide 0.59 U 1.0 0.59 ug/L 08/30/22 20:29 1 Carbon tetrachloride 0.26 U 1.0 0.26 ug/L 08/30/22 20:29 1 Chlorobenzene 08/30/22 20:29 0.38 U 10 0.38 ug/L 1 08/30/22 20:29 Chloroethane 0.83 U 1.0 0.83 ug/L 1 2-Chloroethyl vinyl ether 1.5 U 10 08/30/22 20:29 1.5 ug/L 1 Chloroform 0.47 U 1.0 0.47 ug/L 08/30/22 20:29 1 Chloromethane 0.63 U 1.0 0.63 ug/L 08/30/22 20:29 1 2-Chlorotoluene 0.57 U 1.0 0.57 ug/L 08/30/22 20:29 1 4-Chlorotoluene 0.43 U 1.0 0.43 ug/L 08/30/22 20:29 1 cis-1,2-Dichloroethene 0.46 U 1.0 0.46 ug/L 08/30/22 20:29 1 cis-1,3-Dichloropropene 0.61 U 1.0 0.61 ug/L 08/30/22 20:29 1 Dibromochloromethane 0.39 U 1.0 08/30/22 20:29 1 0.39 ug/L 1,2-Dibromo-3-Chloropropane 0.91 U 2.0 0.91 ug/L 08/30/22 20:29 0.41 U 1.0 1 2-Dibromoethane 0.41 ug/L 08/30/22 20:29 1 Dibromomethane 0.40 U 1.0 0.40 ug/L 08/30/22 20:29 1 1,2-Dichlorobenzene 0.48 U 1.0 0.48 ug/L 08/30/22 20:29 1 1,3-Dichlorobenzene 0.45 U 1.0 0.45 ug/L 08/30/22 20:29 1 1,4-Dichlorobenzene 0.41 U 1.0 0.41 ug/L 08/30/22 20:29 1 0.35 ug/L 08/30/22 20:29 Dichlorodifluoromethane 0.35 U 1.0 1 0.47 U 1.0 0.47 ug/L 08/30/22 20:29 1,1-Dichloroethane 0.21 U 1.0 0.21 ug/L 08/30/22 20:29 1,2-Dichloroethane 1 1,1-Dichloroethene 0.49 U 1.0 0.49 ug/L 08/30/22 20:29 1 1,2-Dichloropropane 0.47 U 1.0 0.47 ug/L 08/30/22 20:29 1 1,3-Dichloropropane 0.21 U 1.0 0.21 ug/L 08/30/22 20:29 1 2,2-Dichloropropane 0.78 U 1.0 0.78 ug/L 08/30/22 20:29 1

Eurofins Canton

Page 56 of 539

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW48A-082222

Date Collected: 08/22/22 11:48 **Matrix: Water** Date Received: 08/23/22 15:30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) RL Analyte Result Qualifier **MDL** Unit D Prepared Analyzed Dil Fac 0.36 U 1.0 1,1-Dichloropropene 0.36 ug/L 08/30/22 20:29 10 Diisopropyl ether 0.17 U 0.17 ug/L 08/30/22 20:29 1 0.42 U 1.0 08/30/22 20:29 Ethylbenzene 0.42 ug/L 1 Ethyl-t-butyl ether (ETBE) 0.40 U 5.0 0.40 ug/L 08/30/22 20:29 1 Hexachlorobutadiene 0.83 U 1.0 0.83 ug/L 08/30/22 20:29 1 1.1 U 10 08/30/22 20:29 2-Hexanone 1.1 ug/L 1 0.49 U 08/30/22 20:29 Isopropylbenzene 1.0 0.49 ug/L 1 Methylene Chloride 2.6 U 5.0 2.6 ug/L 08/30/22 20:29 1 0.99 U 10 0.99 ug/L 08/30/22 20:29 4-Methyl-2-pentanone 1 Methyl tert-butyl ether 0.47 U 08/30/22 20:29 1.0 0.47 ug/L 1 m-Xylene & p-Xylene 0.42 U 2.0 0.42 ug/L 08/30/22 20:29 1 Naphthalene 0.80 U 1.0 0.80 ug/L 08/30/22 20:29 1 n-Butylbenzene 0.60 U 1.0 0.60 ug/L 08/30/22 20:29 1 n-Propylbenzene 0.57 U 10 0.57 ug/L 08/30/22 20:29 1 o-Xylene 0.42 U 1.0 0.42 ug/L 08/30/22 20:29 0.56 U 1.0 08/30/22 20:29 p-Isopropyltoluene 0.56 ug/L 1 sec-Butylbenzene 0.53 U 0.53 ug/L 08/30/22 20:29 1.0 1 Styrene 0.45 U 1.0 0.45 ug/L 08/30/22 20:29 1 Tert-amyl-methyl ether (TAME) 0.43 U 5.0 0.43 ug/L 08/30/22 20:29 1 tert-Butyl alcohol 7.2 U 40 7.2 ug/L 08/30/22 20:29 1 tert-Butvlbenzene 0.48 U 1.0 0.48 ug/L 08/30/22 20:29 1 0.43 U*+ 1,1,1,2-Tetrachloroethane 1.0 0.43 ug/L 08/30/22 20:29 1.1.2.2-Tetrachloroethane 0.60 U 1.0 0.60 ug/L 08/30/22 20:29 1 Tetrachloroethene 0.44 U 1.0 0.44 ug/L 08/30/22 20:29 1 Toluene 0.44 U 1.0 08/30/22 20:29 0.44 ug/L 1 trans-1,2-Dichloroethene 0.51 U 1.0 0.51 ug/L 08/30/22 20:29 1 0.67 U 08/30/22 20:29 trans-1,3-Dichloropropene 1.0 0.67 ug/L 1 1,2,3-Trichlorobenzene 0.54 U 1.0 0.54 ug/L 08/30/22 20:29 1 1,2,4-Trichlorobenzene 0.77 U 1.0 0.77 ug/L 08/30/22 20:29 1 0.48 U 1.0 1.1.1-Trichloroethane 0.48 ug/L 08/30/22 20:29 1 Trichloroethene 0.44 U 1.0 0.44 ug/L 08/30/22 20:29 1 Trichlorofluoromethane 0.45 U 1.0 0.45 ug/L 08/30/22 20:29 1 1,2,3-Trichloropropane 0.52 U 1.0 0.52 ug/L 08/30/22 20:29 1,1,2-Trichloro-1,2,2-trichfluoroethane 0.41 U 1.0 0.41 ug/L 08/30/22 20:29 1 1,2,3-Trimethylbenzene 0.31 U 5.0 0.31 ug/L 08/30/22 20:29 1 1,2,4-Trimethylbenzene 0.52 U 1.0 0.52 ug/L 08/30/22 20:29 1 Vinyl acetate 0.61 U 2.0 0.61 ug/L 08/30/22 20:29 Vinyl chloride 0.45 U 1.0 0.45 ug/L 08/30/22 20:29 1 Xylenes, Total 0.42 U 2.0 0.42 ug/L 08/30/22 20:29 1 Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Dil Fac Analyzed 75-45-6 Chlorodifluoromethane TIC 1.0 U ug/L 08/30/22 20:29 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 95 56 - 136 08/30/22 20:29 Dibromofluoromethane (Surr) 107 73 - 120 08/30/22 20:29 1 1,2-Dichloroethane-d4 (Surr) 62 - 137 97 08/30/22 20:29 1 Toluene-d8 (Surr) 100 78 - 122 08/30/22 20:29

Lab Sample ID: 240-171981-28

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW49A-082222

Lab Sample ID: 240-171981-29 Date Collected: 08/22/22 11:30 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	5.4	U	10	5.4	ug/L			08/30/22 20:53	
Benzene	0.42	U	1.0	0.42	ug/L			08/30/22 20:53	
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/30/22 20:53	
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/30/22 20:53	
Bromodichloromethane	0.17	U	1.0		ug/L			08/30/22 20:53	
Bromoform	0.76	U *+	1.0		ug/L			08/30/22 20:53	
Bromomethane	0.42	U	1.0	0.42				08/30/22 20:53	
2-Butanone	1.2	U	10		ug/L			08/30/22 20:53	
Carbon disulfide	0.59	U	1.0		ug/L			08/30/22 20:53	
Carbon tetrachloride	0.26		1.0		ug/L			08/30/22 20:53	
Chlorobenzene	0.38		1.0	0.38	_			08/30/22 20:53	
Chloroethane	0.83		1.0		ug/L			08/30/22 20:53	
2-Chloroethyl vinyl ether	1.5		10		ug/L			08/30/22 20:53	
Chloroform	0.47		1.0	0.47	_			08/30/22 20:53	
Chloromethane	0.63		1.0		ug/L			08/30/22 20:53	
2-Chlorotoluene	0.57		1.0	0.57				08/30/22 20:53	
4-Chlorotoluene	0.43		1.0	0.43	_			08/30/22 20:53	
cis-1,2-Dichloroethene	0.45		1.0		ug/L			08/30/22 20:53	
cis-1,3-Dichloropropene	0.40		1.0		ug/L ug/L			08/30/22 20:53	
Dibromochloromethane	0.39		1.0	0.39	_			08/30/22 20:53	
1,2-Dibromo-3-Chloropropane	0.39		2.0		-				
					ug/L			08/30/22 20:53	
,2-Dibromoethane	0.41		1.0		ug/L			08/30/22 20:53	
Dibromomethane	0.40		1.0	0.40	_			08/30/22 20:53	
,2-Dichlorobenzene	0.48		1.0		ug/L			08/30/22 20:53	
I,3-Dichlorobenzene	0.45		1.0	0.45	_			08/30/22 20:53	
I,4-Dichlorobenzene	0.41		1.0	0.41	_			08/30/22 20:53	
Dichlorodifluoromethane	0.35		1.0	0.35				08/30/22 20:53	
1,1-Dichloroethane	0.47		1.0		ug/L			08/30/22 20:53	
1,2-Dichloroethane	0.21		1.0		ug/L			08/30/22 20:53	
1,1-Dichloroethene	0.49		1.0		ug/L			08/30/22 20:53	
1,2-Dichloropropane	0.47		1.0		ug/L			08/30/22 20:53	
1,3-Dichloropropane	0.21		1.0		ug/L			08/30/22 20:53	
2,2-Dichloropropane	0.78	U	1.0		ug/L			08/30/22 20:53	
1,1-Dichloropropene	0.36	U	1.0	0.36	ug/L			08/30/22 20:53	
Diisopropyl ether	0.17	U	10	0.17	ug/L			08/30/22 20:53	
Ethylbenzene	0.42	U	1.0	0.42	ug/L			08/30/22 20:53	
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40	ug/L			08/30/22 20:53	
Hexachlorobutadiene	0.83	U	1.0	0.83	ug/L			08/30/22 20:53	
2-Hexanone	1.1	U	10	1.1	ug/L			08/30/22 20:53	
sopropylbenzene	0.49	U	1.0	0.49	ug/L			08/30/22 20:53	
Methylene Chloride	2.6	U	5.0	2.6	ug/L			08/30/22 20:53	
1-Methyl-2-pentanone	0.99	U	10	0.99	ug/L			08/30/22 20:53	
Methyl tert-butyl ether	0.47		1.0		ug/L			08/30/22 20:53	
m-Xylene & p-Xylene	0.42		2.0		ug/L			08/30/22 20:53	
Naphthalene	0.80		1.0		ug/L			08/30/22 20:53	
n-Butylbenzene	0.60		1.0		ug/L			08/30/22 20:53	
n-Propylbenzene	0.57		1.0		ug/L			08/30/22 20:53	
o-Xylene	0.42		1.0		ug/L			08/30/22 20:53	
p-Isopropyltoluene	0.56		1.0		ug/L			08/30/22 20:53	

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW49A-082222

Lab Sample ID: 240-171981-29 Date Collected: 08/22/22 11:30 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	0.53	U	1.0	0.53	ug/L			08/30/22 20:53	1
Styrene	0.45	U	1.0	0.45	ug/L			08/30/22 20:53	1
Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43	ug/L			08/30/22 20:53	1
tert-Butyl alcohol	7.2	U	40	7.2	ug/L			08/30/22 20:53	1
tert-Butylbenzene	0.48	U	1.0	0.48	ug/L			08/30/22 20:53	1
1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43	ug/L			08/30/22 20:53	1
1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60	ug/L			08/30/22 20:53	1
Tetrachloroethene	0.44	U	1.0	0.44	ug/L			08/30/22 20:53	1
Toluene	0.44	U	1.0	0.44	ug/L			08/30/22 20:53	1
trans-1,2-Dichloroethene	0.51	U	1.0	0.51	ug/L			08/30/22 20:53	1
trans-1,3-Dichloropropene	0.67	U	1.0	0.67	ug/L			08/30/22 20:53	1
1,2,3-Trichlorobenzene	0.54	U	1.0	0.54	ug/L			08/30/22 20:53	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.77	ug/L			08/30/22 20:53	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	ug/L			08/30/22 20:53	1
Trichloroethene	0.44	U	1.0	0.44	ug/L			08/30/22 20:53	1
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/30/22 20:53	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	ug/L			08/30/22 20:53	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/30/22 20:53	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/30/22 20:53	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/30/22 20:53	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/30/22 20:53	1
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/30/22 20:53	1
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/30/22 20:53	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L	_		75-45-6		08/30/22 20:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		56 - 136					08/30/22 20:53	1
Dibromofluoromethane (Surr)	106		73 - 120					08/30/22 20:53	1
1,2-Dichloroethane-d4 (Surr)	98		62 - 137					08/30/22 20:53	1
Toluene-d8 (Surr)	99		78 - 122					08/30/22 20:53	1

Client Sample ID: MSA-SWEQB-082222

Lab Sample ID: 240-171981-30 Date Collected: 08/22/22 00:00 **Matrix: Water**

Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/30/22 17:20	1
Benzene	0.42	U	1.0	0.42	ug/L			08/30/22 17:20	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/30/22 17:20	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/30/22 17:20	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/30/22 17:20	1
Bromoform	0.76	U *+	1.0	0.76	ug/L			08/30/22 17:20	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/30/22 17:20	1
2-Butanone	1.2	U	10	1.2	ug/L			08/30/22 17:20	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/30/22 17:20	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/30/22 17:20	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/30/22 17:20	1

Eurofins Canton

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SWEQB-082222

Date Collected: 08/22/22 00:00 **Matrix: Water** Date Received: 08/23/22 15:30

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloroethane	0.83	U	1.0	0.83	ug/L			08/30/22 17:20	
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/30/22 17:20	
Chloroform	0.47	U	1.0	0.47	ug/L			08/30/22 17:20	
Chloromethane	0.63	U	1.0	0.63	ug/L			08/30/22 17:20	
2-Chlorotoluene	0.57	U	1.0	0.57	ug/L			08/30/22 17:20	
4-Chlorotoluene	0.43	U	1.0	0.43	ug/L			08/30/22 17:20	
cis-1,2-Dichloroethene	0.46	U	1.0	0.46	ug/L			08/30/22 17:20	
cis-1,3-Dichloropropene	0.61	U	1.0	0.61	ug/L			08/30/22 17:20	
Dibromochloromethane	0.39	U	1.0		ug/L			08/30/22 17:20	
1,2-Dibromo-3-Chloropropane	0.91	U	2.0		ug/L			08/30/22 17:20	
1,2-Dibromoethane	0.41	U	1.0		ug/L			08/30/22 17:20	
Dibromomethane	0.40	U	1.0		ug/L			08/30/22 17:20	
1,2-Dichlorobenzene	0.48	U	1.0		ug/L			08/30/22 17:20	
1.3-Dichlorobenzene	0.45	U	1.0		ug/L			08/30/22 17:20	
1,4-Dichlorobenzene	0.41		1.0		ug/L			08/30/22 17:20	
Dichlorodifluoromethane	0.35		1.0		ug/L			08/30/22 17:20	
1,1-Dichloroethane	0.47		1.0		ug/L			08/30/22 17:20	
1,2-Dichloroethane	0.21		1.0		ug/L			08/30/22 17:20	
1,1-Dichloroethene	0.49		1.0		ug/L			08/30/22 17:20	
1,2-Dichloropropane	0.47		1.0		ug/L			08/30/22 17:20	
1,3-Dichloropropane	0.21		1.0		ug/L			08/30/22 17:20	
2,2-Dichloropropane	0.78		1.0		ug/L			08/30/22 17:20	
1,1-Dichloropropene	0.36		1.0		ug/L			08/30/22 17:20	
Diisopropyl ether	0.17		10		ug/L			08/30/22 17:20	
Ethylbenzene	0.42		1.0		ug/L			08/30/22 17:20	
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/30/22 17:20	
Hexachlorobutadiene	0.83		1.0		ug/L			08/30/22 17:20	
2-Hexanone	1.1		10		ug/L			08/30/22 17:20	
Isopropylbenzene	0.49		1.0		ug/L			08/30/22 17:20	
Methylene Chloride	2.6		5.0		ug/L			08/30/22 17:20	
4-Methyl-2-pentanone	0.99		10		ug/L			08/30/22 17:20	
Methyl tert-butyl ether	0.33		1.0		ug/L			08/30/22 17:20	
m-Xylene & p-Xylene	0.47		2.0		ug/L			08/30/22 17:20	
Naphthalene	0.42		1.0		ug/L			08/30/22 17:20	
n-Butylbenzene	0.60		1.0		ug/L			08/30/22 17:20	
n-Propylbenzene	0.57		1.0		ug/L ug/L			08/30/22 17:20	
• •	0.37		1.0		ug/L ug/L			08/30/22 17:20	
o-Xylene									
p-Isopropyltoluene	0.56 0.53		1.0 1.0		ug/L ug/L			08/30/22 17:20	
sec-Butylbenzene					•			08/30/22 17:20	
Styrene	0.45		1.0		ug/L			08/30/22 17:20	
Tert-amyl-methyl ether (TAME)	0.43		5.0		ug/L			08/30/22 17:20	
tert-Butyl alcohol	7.2		40		ug/L			08/30/22 17:20	
tert-Butylbenzene	0.48		1.0		ug/L			08/30/22 17:20	
1,1,1,2-Tetrachloroethane		U *+	1.0		ug/L			08/30/22 17:20	
1,1,2,2-Tetrachloroethane	0.60		1.0		ug/L			08/30/22 17:20	
Tetrachloroethene	0.44		1.0		ug/L			08/30/22 17:20	
Toluene	0.44		1.0		ug/L			08/30/22 17:20	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.51 0.67		1.0		ug/L ug/L			08/30/22 17:20	

Eurofins Canton

Lab Sample ID: 240-171981-30

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 240-171981-1
Project/Site: MSA Surface Water Sampling

SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SWEQB-082222 Lab Sample ID: 240-171981-30

Date Collected: 08/22/22 00:00
Date Received: 08/23/22 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	0.54	U	1.0	0.54	ug/L			08/30/22 17:20	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.77	ug/L			08/30/22 17:20	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	ug/L			08/30/22 17:20	1
Trichloroethene	0.44	U	1.0	0.44	ug/L			08/30/22 17:20	1
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/30/22 17:20	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	ug/L			08/30/22 17:20	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/30/22 17:20	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/30/22 17:20	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/30/22 17:20	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/30/22 17:20	1
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/30/22 17:20	1
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/30/22 17:20	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane TIC	1.0	U	ug/L	_		75-45-6		08/30/22 17:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		56 - 136			·		08/30/22 17:20	1
Dibromofluoromethane (Surr)	108		73 - 120					08/30/22 17:20	1
1,2-Dichloroethane-d4 (Surr)	96		62 - 137					08/30/22 17:20	1
Toluene-d8 (Surr)	103		78 - 122					08/30/22 17:20	1

Matrix: Water

Default Detection Limits

Client: Tetra Tech, Inc.

Job ID: 240-171981-1

Project/Site: MSA Surface Water Sampling

SDG: MSA Frog Mortar Creek

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	RL	MDL	Units	
1,1,1,2-Tetrachloroethane	1.0	0.43	ug/L	
1,1,1-Trichloroethane	1.0	0.48	ug/L	
1,1,2,2-Tetrachloroethane	1.0	0.60	ug/L	
1,1,2-Trichloro-1,2,2-trichfluoroethane	1.0	0.41	ug/L	
1,1-Dichloroethane	1.0	0.47	ug/L	
1,1-Dichloroethene	1.0	0.49	ug/L	
1,1-Dichloropropene	1.0	0.36	ug/L	
1,2,3-Trichlorobenzene	1.0	0.54	ug/L	
1,2,3-Trichloropropane	1.0	0.52	ug/L	
1,2,3-Trimethylbenzene	5.0	0.31	ug/L	
1,2,4-Trichlorobenzene	1.0	0.77	ug/L	
1,2,4-Trimethylbenzene	1.0	0.52	ug/L	
1,2-Dibromo-3-Chloropropane	2.0	0.91	ug/L	
1,2-Dibromoethane	1.0	0.41	ug/L	
1,2-Dichlorobenzene	1.0	0.48	ug/L	
1,2-Dichloroethane	1.0	0.21	ug/L	
1,2-Dichloropropane	1.0	0.47	ug/L	
1,3-Dichlorobenzene	1.0	0.45	ug/L	
1,3-Dichloropropane	1.0	0.43	ug/L	
1,4-Dichlorobenzene	1.0	0.41	ug/L ug/L	
	1.0	0.41		
2,2-Dichloropropane			ug/L	
2-Butanone	10	1.2	ug/L	
2-Chloroethyl vinyl ether	10	1.5	ug/L	
2-Chlorotoluene	1.0	0.57	ug/L	
2-Hexanone	10	1.1	ug/L	
4-Chlorotoluene	1.0	0.43	ug/L	
4-Methyl-2-pentanone	10	0.99	ug/L	
Acetone	10	5.4	ug/L	
Benzene	1.0	0.42	ug/L	
Bromobenzene	1.0	0.50	ug/L	
Bromochloromethane	1.0	0.54	ug/L	
Bromodichloromethane	1.0	0.17	ug/L	
Bromoform	1.0	0.76	ug/L	
Bromomethane	1.0	0.42	ug/L	
Carbon disulfide	1.0	0.59	ug/L	
Carbon tetrachloride	1.0	0.26	ug/L	
Chlorobenzene	1.0	0.38	ug/L	
Chloroethane	1.0	0.83	ug/L	
Chloroform	1.0	0.47	ug/L	
Chloromethane	1.0	0.63	ug/L	
cis-1,2-Dichloroethene	1.0	0.46	ug/L	
cis-1,3-Dichloropropene	1.0	0.61	ug/L	
Dibromochloromethane	1.0	0.39	ug/L	
Dibromomethane	1.0	0.40	ug/L	
Dichlorodifluoromethane	1.0	0.35	ug/L	
Diisopropyl ether	10	0.17	ug/L	
Ethylbenzene	1.0	0.42	ug/L	
Ethyl-t-butyl ether (ETBE)	5.0	0.40	ug/L	
Hexachlorobutadiene	1.0	0.83	ug/L	
Isopropylbenzene	1.0	0.49	ug/L	
Methyl tert-butyl ether	1.0	0.47	ug/L	
Methylene Chloride	5.0	2.6	ug/L	
m-Xylene & p-Xylene	2.0	0.42	ug/L ug/L	

Eurofins Canton 09/01/2022

Default Detection Limits

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	RL	MDL	Units	
Naphthalene	1.0	0.80	ug/L	
n-Butylbenzene	1.0	0.60	ug/L	
n-Propylbenzene	1.0	0.57	ug/L	
o-Xylene	1.0	0.42	ug/L	
p-Isopropyltoluene	1.0	0.56	ug/L	
sec-Butylbenzene	1.0	0.53	ug/L	
Styrene	1.0	0.45	ug/L	
Tert-amyl-methyl ether (TAME)	5.0	0.43	ug/L	
tert-Butyl alcohol	40	7.2	ug/L	
tert-Butylbenzene	1.0	0.48	ug/L	
Tetrachloroethene	1.0	0.44	ug/L	
Toluene	1.0	0.44	ug/L	
trans-1,2-Dichloroethene	1.0	0.51	ug/L	
trans-1,3-Dichloropropene	1.0	0.67	ug/L	
Trichloroethene	1.0	0.44	ug/L	
Trichlorofluoromethane	1.0	0.45	ug/L	
Vinyl acetate	2.0	0.61	ug/L	
Vinyl chloride	1.0	0.45	ug/L	
Xylenes, Total	2.0	0.42	ug/L	

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Lab Sample ID Client Sample ID (56-136) (73-120) (62-137) (78-122) 240-171981-1 MSA-SW37A-082222 98 106 102 102 240-171981-2 MSA-SW37B-082222 97 108 101 104
40-171981-1 MSA-SW37A-082222 98 106 102 102 40-171981-2 MSA-SW37B-082222 97 108 101 104
0-171981-2 MSA-SW37B-082222 97 108 101 104
0-171981-3 MSA-SW37C-082222 98 108 103 102
0-171981-4 MSA-SW37D-082222 99 108 103 103
0-171981-5 MSA-SW38A-082222 98 108 102 103
-171981-6 MSA-SW38B-082222 97 108 103 102
0-171981-7 MSA-SW38C-082222 96 107 102 102
-171981-8 MSA-SW38D-082222 96 107 105 100
-171981-9 MSA-SW40A-082222 95 104 98 101
-171981-10 MSA-SW40B-082222 92 107 101 101
0-171981-11 MSA-SW40C-082222 94 105 101 99
-171981-12 MSA-SW40D-082222 96 103 98 100
-171981-13 MSA-SW41A-082222 94 105 100 99
0-171981-14 MSA-SW41B-082222 93 104 98 98
0-171981-15 MSA-SW41C-082222 95 105 100 99
0-171981-16 MSA-SW41D-082222 93 102 96 98
-171981-17 MSA-SW42A-082222 92 104 99 97
-171981-18 MSA-SW42B-082222 93 104 97 98
0-171981-19 MSA-SW42C-082222 91 103 98 96
0-171981-20 MSA-SW42D-082222 97 108 99 101
0-171981-21 MSA-SW43A-082222 98 108 99 103
0-171981-22 MSA-SW43B-082222 96 106 97 100
0-171981-23 MSA-SW43C-082222 96 108 99 102
0-171981-24 MSA-SW43D-082222 96 107 100 100
0-171981-25 TB-082222 98 106 94 104
0-171981-26 MSA-SW46A-082222 95 106 97 99
D-171981-27 MSA-SW47A-082222 96 107 98 101
0-171981-28 MSA-SW48A-082222 95 107 97 100
0-171981-29 MSA-SW49A-082222 96 106 98 99
40-171981-29 MSA-SWEQB-082222 96 106 96 99 40-171981-30 MSA-SWEQB-082222 97 108 96 103
CS 240-540508/5 Lab Control Sample 102 102 95 107
CS 240-540508/6 Lab Control Sample 102 103 98 104
CS 240-540740/5 Lab Control Sample 104 105 98 108
CS 240-540740/6 Lab Control Sample 102 105 91 102
IB 240-540508/8 Method Blank 98 104 98 113 IB 240-540740/8 Method Blank 97 113 105 101

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-540508/8

Matrix: Water

Analysis Batch: 540508

Client Sample ID: Method Blank

Prep Type: Total/NA

		MB							
Analyte		Qualifier	RL _	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fac
Acetone	5.4		10		ug/L			08/29/22 13:29	1
Benzene	0.42		1.0		ug/L			08/29/22 13:29	1
Bromobenzene	0.50	U	1.0		ug/L			08/29/22 13:29	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/29/22 13:29	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/29/22 13:29	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/29/22 13:29	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/29/22 13:29	1
2-Butanone	1.2	U	10	1.2	ug/L			08/29/22 13:29	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/29/22 13:29	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/29/22 13:29	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/29/22 13:29	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/29/22 13:29	1
2-Chloroethyl vinyl ether	1.5	U	10	1.5	ug/L			08/29/22 13:29	1
Chloroform	0.47	U	1.0		ug/L			08/29/22 13:29	1
Chloromethane	0.63	U	1.0		ug/L			08/29/22 13:29	1
2-Chlorotoluene	0.57		1.0		ug/L			08/29/22 13:29	1
4-Chlorotoluene	0.43	U	1.0		ug/L			08/29/22 13:29	1
cis-1,2-Dichloroethene	0.46		1.0		ug/L			08/29/22 13:29	1
cis-1,3-Dichloropropene	0.61		1.0		ug/L			08/29/22 13:29	1
Dibromochloromethane	0.39		1.0		-			08/29/22 13:29	1
1,2-Dibromo-3-Chloropropane	0.91		2.0		ug/L			08/29/22 13:29	1
1.2-Dibromoethane	0.41		1.0		ug/L			08/29/22 13:29	
Dibromomethane	0.40		1.0		ug/L			08/29/22 13:29	1
1,2-Dichlorobenzene	0.48		1.0		ug/L			08/29/22 13:29	1
1,3-Dichlorobenzene	0.45		1.0		ug/L			08/29/22 13:29	· · · · · · · · · · · · · · · · · · ·
1,4-Dichlorobenzene	0.41		1.0		ug/L			08/29/22 13:29	1
Dichlorodifluoromethane	0.35		1.0		ug/L			08/29/22 13:29	1
1,1-Dichloroethane	0.47		1.0		ug/L			08/29/22 13:29	· · · · · · · · · · · · · · · · · · ·
1,2-Dichloroethane	0.47		1.0		-			08/29/22 13:29	1
1,1-Dichloroethene	0.49		1.0		ug/L ug/L			08/29/22 13:29	1
	0.49		1.0		ug/L ug/L			08/29/22 13:29	· · · · · · · · · · · · · · · · · · ·
1,2-Dichloropropane	0.47		1.0					08/29/22 13:29	1
1,3-Dichloropropane	0.21				ug/L			08/29/22 13:29	
2,2-Dichloropropane			1.0		ug/L				
1,1-Dichloropropene	0.36		1.0		ug/L			08/29/22 13:29	1
Diisopropyl ether	0.17		10	0.17				08/29/22 13:29	1
Ethylbenzene	0.42		1.0		ug/L			08/29/22 13:29	1
Ethyl-t-butyl ether (ETBE)	0.40		5.0		ug/L			08/29/22 13:29	1
Hexachlorobutadiene	0.83		1.0		ug/L			08/29/22 13:29	1
2-Hexanone	1.1		10		ug/L			08/29/22 13:29	1
Isopropylbenzene	0.49		1.0		ug/L			08/29/22 13:29	1
Methylene Chloride	2.6		5.0		ug/L			08/29/22 13:29	1
4-Methyl-2-pentanone	0.99		10		ug/L			08/29/22 13:29	1
Methyl tert-butyl ether	0.47		1.0		ug/L			08/29/22 13:29	1
m-Xylene & p-Xylene	0.42	U	2.0		ug/L			08/29/22 13:29	1
Naphthalene	0.80	U	1.0		ug/L			08/29/22 13:29	1
n-Butylbenzene	0.60	U	1.0	0.60	ug/L			08/29/22 13:29	1
n-Propylbenzene	0.57	U	1.0	0.57	ug/L			08/29/22 13:29	1
o-Xylene	0.42	U	1.0	0.42	ug/L			08/29/22 13:29	1

Eurofins Canton 09/01/2022

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 240-540508/8

Matrix: Water

Analysis Batch: 540508

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	0.56	U	1.0	0.56	ug/L			08/29/22 13:29	1
sec-Butylbenzene	0.53	U	1.0	0.53	ug/L			08/29/22 13:29	1
Styrene	0.45	U	1.0	0.45	ug/L			08/29/22 13:29	1
Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43	ug/L			08/29/22 13:29	1
tert-Butyl alcohol	7.2	U	40	7.2	ug/L			08/29/22 13:29	1
tert-Butylbenzene	0.48	U	1.0	0.48	ug/L			08/29/22 13:29	1
1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43	ug/L			08/29/22 13:29	1
1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60	ug/L			08/29/22 13:29	1
Tetrachloroethene	0.44	U	1.0	0.44	ug/L			08/29/22 13:29	1
Toluene	0.44	U	1.0	0.44	ug/L			08/29/22 13:29	1
trans-1,2-Dichloroethene	0.51	U	1.0	0.51	ug/L			08/29/22 13:29	1
trans-1,3-Dichloropropene	0.67	U	1.0	0.67	ug/L			08/29/22 13:29	1
1,2,3-Trichlorobenzene	0.54	U	1.0	0.54	ug/L			08/29/22 13:29	1
1,2,4-Trichlorobenzene	0.77	U	1.0	0.77	ug/L			08/29/22 13:29	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	ug/L			08/29/22 13:29	1
Trichloroethene	0.44	U	1.0	0.44	ug/L			08/29/22 13:29	1
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/29/22 13:29	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	ug/L			08/29/22 13:29	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/29/22 13:29	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/29/22 13:29	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/29/22 13:29	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/29/22 13:29	1
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/29/22 13:29	1
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/29/22 13:29	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		56 - 136		08/29/22 13:29	1
Dibromofluoromethane (Surr)	104		73 - 120		08/29/22 13:29	1
1,2-Dichloroethane-d4 (Surr)	98		62 - 137		08/29/22 13:29	1
Toluene-d8 (Surr)	113		78 - 122		08/29/22 13:29	1

Lab Sample ID: LCS 240-540508/5

Matrix: Water

Analysis Batch: 540508

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Alialysis Datcii. 340300								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	50.0	47.6		ug/L		95	50 - 149	
Benzene	25.0	24.3		ug/L		97	77 - 123	
Bromobenzene	25.0	27.5		ug/L		110	80 - 122	
Bromochloromethane	25.0	21.5		ug/L		86	71 - 121	
Bromodichloromethane	25.0	23.7		ug/L		95	69 - 126	
Bromoform	25.0	31.6		ug/L		127	57 - 129	
Bromomethane	25.0	13.6		ug/L		54	36 - 142	
2-Butanone	50.0	51.3		ug/L		103	54 - 156	
Carbon disulfide	25.0	22.8		ug/L		91	43 - 140	
Carbon tetrachloride	25.0	27.1		ug/L		108	55 - 137	
Chlorobenzene	25.0	25.3		ug/L		101	80 - 121	
Chloroethane	25.0	13.0		ug/L		52	38 - 152	
2-Butanone Carbon disulfide Carbon tetrachloride Chlorobenzene	50.0 25.0 25.0 25.0	51.3 22.8 27.1 25.3		ug/L ug/L ug/L ug/L		103 91 108 101	54 - 156 43 - 140 55 - 137 80 - 121	

Eurofins Canton

Page 66 of 539

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-540508/5

Matrix: Water

Analysis Batch: 540508

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 540508	Spike		LCS		%Rec
Analyte	Added		Qualifier Unit	D %Rec	Limits
2-Chloroethyl vinyl ether	25.0	24.3	ug/L	97	40 - 157
Chloroform	25.0	22.6	ug/L	90	74 - 122
Chloromethane	25.0	20.1	ug/L	80	47 - 143
2-Chlorotoluene	25.0	25.8	ug/L	103	79 - 124
4-Chlorotoluene	25.0	26.7	ug/L	107	80 - 125
cis-1,2-Dichloroethene	25.0	23.2	ug/L	93	77 - 123
cis-1,3-Dichloropropene	25.0	24.7	ug/L	99	64 - 130
Dibromochloromethane	25.0	27.2	ug/L	109	70 - 124
1,2-Dibromo-3-Chloropropane	25.0	27.6	ug/L	111	53 - 135
1,2-Dibromoethane	25.0	25.6	ug/L	103	71 - 134
Dibromomethane	25.0	27.3	ug/L	109	67 - 131
1,2-Dichlorobenzene	25.0	25.9	ug/L	104	78 - 120
1,3-Dichlorobenzene	25.0	26.1	ug/L	104	80 - 120
1,4-Dichlorobenzene	25.0	26.1	ug/L	104	80 - 120
Dichlorodifluoromethane	25.0	18.9	ug/L	75	34 - 153
1,1-Dichloroethane	25.0	22.9	ug/L	92	72 - 127
1,2-Dichloroethane	25.0	22.0	ug/L	88	66 - 128
1,1-Dichloroethene	25.0	24.3	ug/L	97	63 - 134
1,2-Dichloropropane	25.0	24.1	ug/L	97	75 - 133
1,3-Dichloropropane	25.0	24.9	ug/L	100	68 - 139
2,2-Dichloropropane	25.0	24.2	ug/L	97	48 - 142
1,1-Dichloropropene	25.0	24.7	ug/L	99	71 - 124
Ethylbenzene	25.0	24.6	ug/L	98	80 - 121
Hexachlorobutadiene	25.0	24.9	ug/L	100	37 - 162
2-Hexanone	50.0	51.9	ug/L	104	43 - 167
Isopropylbenzene	25.0	24.5	ug/L	98	74 - 128
Methylene Chloride	25.0	23.7	ug/L	95	71 - 125
4-Methyl-2-pentanone	50.0	50.5	ug/L	101	46 - 158
Methyl tert-butyl ether	25.0	23.4	ug/L	93	65 - 126
m-Xylene & p-Xylene	25.0	24.5	ug/L	98	80 - 120
Naphthalene	25.0	23.7	ug/L	95	53 - 138
n-Butylbenzene	25.0	22.2	ug/L	89	62 - 139
n-Propylbenzene	25.0	24.9	ug/L	100	76 - 127
o-Xylene	25.0	24.5	ug/L	98	80 - 123
p-lsopropyltoluene	25.0	24.0	ug/L	96	71 - 132
sec-Butylbenzene	25.0	23.2	J	93	69 ₋ 135
Styrene		24.9	ug/L	99	80 - 135
•	25.0		ug/L		
tert-Butyl alcohol	250	286	ug/L	115	33 - 153
tert-Butylbenzene	25.0	24.0	ug/L	96	64 - 134
1,1,1,2-Tetrachloroethane	25.0	29.1	ug/L	116	71 - 124
1,1,2,2-Tetrachloroethane	25.0	26.3	ug/L	105	58 - 157
Tetrachloroethene	25.0	28.5	ug/L	114	76 - 123
Toluene	25.0	24.3	ug/L	97	80 - 123
trans-1,2-Dichloroethene	25.0	23.4	ug/L	94	75 - 124
trans-1,3-Dichloropropene	25.0	26.2	ug/L	105	57 - 129
1,2,3-Trichlorobenzene	25.0	25.1	ug/L	100	45 - 149
1,2,4-Trichlorobenzene	25.0	25.9	ug/L	104	44 - 147
1,1,1-Trichloroethane	25.0	23.7	ug/L	95	64 - 131
Trichloroethene	25.0	26.5	ug/L	106	70 - 122

Eurofins Canton

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-540508/5

Matrix: Water

Analysis Batch: 540508

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Trichlorofluoromethane	25.0	17.8		ug/L		71	30 - 170	
1,2,3-Trichloropropane	25.0	25.9		ug/L		104	57 - 150	
1,1,2-Trichloro-1,2,2-trichfluoroet	25.0	25.0		ug/L		100	51 - 146	
hane								
1,2,4-Trimethylbenzene	25.0	24.3		ug/L		97	77 - 129	
Vinyl acetate	25.0	24.1		ug/L		96	44 - 145	
Vinyl chloride	25.0	20.6		ug/L		82	60 - 144	
Xylenes, Total	50.0	49.0		ug/L		98	80 - 121	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		56 - 136
Dibromofluoromethane (Surr)	102		73 - 120
1,2-Dichloroethane-d4 (Surr)	95		62 - 137
Toluene-d8 (Surr)	107		78 - 122

Lab Sample ID: LCS 240-540508/6

Matrix: Water

Analysis Batch: 540508

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit D %Rec Limits Diisopropyl ether 25.0 25.4 ug/L 102 70 - 124 Ethyl-t-butyl ether (ETBE) 25.0 23.9 ug/L 62 - 135 95 Tert-amyl-methyl ether (TAME) 25.0 22.3 ug/L 89 60 - 128 1,2,3-Trimethylbenzene 25.0 23.5 94 ug/L 72 - 133

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		56 - 136
Dibromofluoromethane (Surr)	103		73 - 120
1,2-Dichloroethane-d4 (Surr)	98		62 - 137
Toluene-d8 (Surr)	104		78 - 122

Lab Sample ID: MB 240-540740/8

Matrix: Water

Analysis Batch: 540740

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	U	10	5.4	ug/L			08/30/22 16:09	1
Benzene	0.42	U	1.0	0.42	ug/L			08/30/22 16:09	1
Bromobenzene	0.50	U	1.0	0.50	ug/L			08/30/22 16:09	1
Bromochloromethane	0.54	U	1.0	0.54	ug/L			08/30/22 16:09	1
Bromodichloromethane	0.17	U	1.0	0.17	ug/L			08/30/22 16:09	1
Bromoform	0.76	U	1.0	0.76	ug/L			08/30/22 16:09	1
Bromomethane	0.42	U	1.0	0.42	ug/L			08/30/22 16:09	1
2-Butanone	1.2	U	10	1.2	ug/L			08/30/22 16:09	1
Carbon disulfide	0.59	U	1.0	0.59	ug/L			08/30/22 16:09	1
Carbon tetrachloride	0.26	U	1.0	0.26	ug/L			08/30/22 16:09	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			08/30/22 16:09	1
Chloroethane	0.83	U	1.0	0.83	ug/L			08/30/22 16:09	1
•									

Eurofins Canton

Page 68 of 539

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 240-540740/8

Matrix: Water

Analysis Batch: 540740

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chloroethyl vinyl ether	1.5		10	1.5	ug/L			08/30/22 16:09	1
Chloroform	0.47		1.0	0.47	Ü			08/30/22 16:09	1
Chloromethane	0.63		1.0		ug/L			08/30/22 16:09	1
2-Chlorotoluene	0.57		1.0		ug/L			08/30/22 16:09	1
4-Chlorotoluene	0.43		1.0		ug/L			08/30/22 16:09	1
cis-1,2-Dichloroethene	0.46		1.0		ug/L			08/30/22 16:09	1
cis-1,3-Dichloropropene	0.61		1.0		ug/L			08/30/22 16:09	1
Dibromochloromethane	0.39		1.0		ug/L			08/30/22 16:09	1
1,2-Dibromo-3-Chloropropane	0.91	U	2.0		ug/L			08/30/22 16:09	1
1,2-Dibromoethane	0.41		1.0		ug/L			08/30/22 16:09	1
Dibromomethane	0.40		1.0	0.40	ug/L			08/30/22 16:09	1
1,2-Dichlorobenzene	0.48		1.0	0.48	ug/L			08/30/22 16:09	1
1,3-Dichlorobenzene	0.45	U	1.0		ug/L			08/30/22 16:09	1
1,4-Dichlorobenzene	0.41	U	1.0		ug/L			08/30/22 16:09	1
Dichlorodifluoromethane	0.35	U	1.0		ug/L			08/30/22 16:09	1
1,1-Dichloroethane	0.47	U	1.0	0.47	ug/L			08/30/22 16:09	1
1,2-Dichloroethane	0.21	U	1.0	0.21	ug/L			08/30/22 16:09	1
1,1-Dichloroethene	0.49	U	1.0	0.49	ug/L			08/30/22 16:09	1
1,2-Dichloropropane	0.47	U	1.0	0.47	ug/L			08/30/22 16:09	1
1,3-Dichloropropane	0.21	U	1.0	0.21	ug/L			08/30/22 16:09	1
2,2-Dichloropropane	0.78	U	1.0	0.78	ug/L			08/30/22 16:09	1
1,1-Dichloropropene	0.36	U	1.0	0.36	ug/L			08/30/22 16:09	1
Diisopropyl ether	0.17	U	10	0.17	ug/L			08/30/22 16:09	1
Ethylbenzene	0.42	U	1.0	0.42	ug/L			08/30/22 16:09	1
Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40	ug/L			08/30/22 16:09	1
Hexachlorobutadiene	0.83	U	1.0	0.83	ug/L			08/30/22 16:09	1
2-Hexanone	1.1	U	10	1.1	ug/L			08/30/22 16:09	1
Isopropylbenzene	0.49	U	1.0	0.49	ug/L			08/30/22 16:09	1
Methylene Chloride	2.6	U	5.0	2.6	ug/L			08/30/22 16:09	1
4-Methyl-2-pentanone	0.99	U	10	0.99	ug/L			08/30/22 16:09	1
Methyl tert-butyl ether	0.47	U	1.0	0.47	ug/L			08/30/22 16:09	1
m-Xylene & p-Xylene	0.42	U	2.0	0.42	ug/L			08/30/22 16:09	1
Naphthalene	0.80	U	1.0	0.80	ug/L			08/30/22 16:09	1
n-Butylbenzene	0.60	U	1.0	0.60	ug/L			08/30/22 16:09	1
n-Propylbenzene	0.57	U	1.0	0.57	ug/L			08/30/22 16:09	1
o-Xylene	0.42	U	1.0	0.42	ug/L			08/30/22 16:09	1
p-Isopropyltoluene	0.56	U	1.0	0.56	ug/L			08/30/22 16:09	1
sec-Butylbenzene	0.53	U	1.0	0.53	ug/L			08/30/22 16:09	1
Styrene	0.45	U	1.0	0.45	ug/L			08/30/22 16:09	1
Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43	ug/L			08/30/22 16:09	1
tert-Butyl alcohol	7.2	U	40	7.2	ug/L			08/30/22 16:09	1
tert-Butylbenzene	0.48	U	1.0	0.48	ug/L			08/30/22 16:09	1
1,1,1,2-Tetrachloroethane	0.43	U	1.0		ug/L			08/30/22 16:09	1
1,1,2,2-Tetrachloroethane	0.60	U	1.0		ug/L			08/30/22 16:09	1
Tetrachloroethene	0.44	U	1.0	0.44	ug/L			08/30/22 16:09	1
Toluene	0.44	U	1.0		ug/L			08/30/22 16:09	1
trans-1,2-Dichloroethene	0.51		1.0		ug/L			08/30/22 16:09	1
trans-1,3-Dichloropropene	0.67	U	1.0		ug/L			08/30/22 16:09	1
1,2,3-Trichlorobenzene	0.54	U	1.0		ug/L			08/30/22 16:09	1

Eurofins Canton

Page 69 of 539

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 240-540740/8

Matrix: Water

Analysis Batch: 540740

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	0.77	U	1.0	0.77	ug/L			08/30/22 16:09	1
1,1,1-Trichloroethane	0.48	U	1.0	0.48	ug/L			08/30/22 16:09	1
Trichloroethene	0.44	U	1.0	0.44	ug/L			08/30/22 16:09	1
Trichlorofluoromethane	0.45	U	1.0	0.45	ug/L			08/30/22 16:09	1
1,2,3-Trichloropropane	0.52	U	1.0	0.52	ug/L			08/30/22 16:09	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	0.41	U	1.0	0.41	ug/L			08/30/22 16:09	1
1,2,3-Trimethylbenzene	0.31	U	5.0	0.31	ug/L			08/30/22 16:09	1
1,2,4-Trimethylbenzene	0.52	U	1.0	0.52	ug/L			08/30/22 16:09	1
Vinyl acetate	0.61	U	2.0	0.61	ug/L			08/30/22 16:09	1
Vinyl chloride	0.45	U	1.0	0.45	ug/L			08/30/22 16:09	1
Xylenes, Total	0.42	U	2.0	0.42	ug/L			08/30/22 16:09	1

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97	56 - 136		08/30/22 16:09	1
Dibromofluoromethane (Surr)	113	73 - 120		08/30/22 16:09	1
1,2-Dichloroethane-d4 (Surr)	105	62 - 137		08/30/22 16:09	1
Toluene-d8 (Surr)	101	78 - 122		08/30/22 16:09	1

Lab Sample ID: LCS 240-540740/5

Matrix: Water

Analysis Batch: 540740

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

7 maryolo Batom 6-107-10	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetone	50.0	49.6		ug/L		99	50 - 149
Benzene	25.0	24.8		ug/L		99	77 - 123
Bromobenzene	25.0	26.1		ug/L		104	80 - 122
Bromochloromethane	25.0	22.3		ug/L		89	71 - 121
Bromodichloromethane	25.0	24.9		ug/L		100	69 - 126
Bromoform	25.0	34.9	*+	ug/L		140	57 - 129
Bromomethane	25.0	20.1		ug/L		80	36 - 142
2-Butanone	50.0	53.6		ug/L		107	54 - 156
Carbon disulfide	25.0	23.8		ug/L		95	43 - 140
Carbon tetrachloride	25.0	28.7		ug/L		115	55 - 137
Chlorobenzene	25.0	26.0		ug/L		104	80 - 121
Chloroethane	25.0	17.9		ug/L		72	38 - 152
2-Chloroethyl vinyl ether	25.0	24.5		ug/L		98	40 - 157
Chloroform	25.0	23.6		ug/L		94	74 - 122
Chloromethane	25.0	20.4		ug/L		82	47 - 143
2-Chlorotoluene	25.0	24.9		ug/L		99	79 - 124
4-Chlorotoluene	25.0	26.7		ug/L		107	80 - 125
cis-1,2-Dichloroethene	25.0	23.8		ug/L		95	77 - 123
cis-1,3-Dichloropropene	25.0	24.8		ug/L		99	64 - 130
Dibromochloromethane	25.0	30.3		ug/L		121	70 - 124
1,2-Dibromo-3-Chloropropane	25.0	29.3		ug/L		117	53 - 135
1,2-Dibromoethane	25.0	26.7		ug/L		107	71 - 134
Dibromomethane	25.0	28.0		ug/L		112	67 - 131
1,2-Dichlorobenzene	25.0	26.0		ug/L		104	78 - 120
1,3-Dichlorobenzene	25.0	26.8		ug/L		107	80 - 120

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-540740/5

Matrix: Water

Analysis Batch: 540740

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

•	Spike		LCS				%Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,4-Dichlorobenzene	25.0	26.4		ug/L		105	80 - 120
Dichlorodifluoromethane	25.0	22.3		ug/L		89	34 - 153
1,1-Dichloroethane	25.0	23.0		ug/L		92	72 - 127
1,2-Dichloroethane	25.0	22.9		ug/L		91	66 - 128
1,1-Dichloroethene	25.0	25.1		ug/L		100	63 - 134
1,2-Dichloropropane	25.0	24.1		ug/L		96	75 - 133
1,3-Dichloropropane	25.0	25.3		ug/L		101	68 - 139
2,2-Dichloropropane	25.0	24.9		ug/L		100	48 - 142
1,1-Dichloropropene	25.0	24.1		ug/L		96	71 - 124
Ethylbenzene	25.0	25.2		ug/L		101	80 - 121
Hexachlorobutadiene	25.0	21.1		ug/L		84	37 - 162
2-Hexanone	50.0	57.5		ug/L		115	43 - 167
Isopropylbenzene	25.0	25.1		ug/L		100	74 - 128
Methylene Chloride	25.0	24.3		ug/L		97	71 - 125
4-Methyl-2-pentanone	50.0	54.7		ug/L		109	46 - 158
Methyl tert-butyl ether	25.0	23.7		ug/L		95	65 - 126
m-Xylene & p-Xylene	25.0	25.5		ug/L		102	80 - 120
Naphthalene	25.0	24.4		ug/L		98	53 - 138
n-Butylbenzene	25.0	22.5		ug/L		90	62 - 139
n-Propylbenzene	25.0	24.2		ug/L		97	76 - 127
o-Xylene	25.0	25.6		ug/L		102	80 - 123
p-Isopropyltoluene	25.0	24.5		ug/L		98	71 - 132
sec-Butylbenzene	25.0	23.8		ug/L		95	69 - 135
Styrene	25.0	25.8		ug/L		103	80 - 135
tert-Butyl alcohol	250	311		ug/L		124	33 - 153
tert-Butylbenzene	25.0	24.2		ug/L		97	64 - 134
1,1,1,2-Tetrachloroethane	25.0	31.3	*+	ug/L		125	71 - 124
1,1,2,2-Tetrachloroethane	25.0	25.7		ug/L		103	58 ₋ 157
Tetrachloroethene	25.0	29.3		ug/L		117	76 ₋ 123
Toluene	25.0	24.9		ug/L		100	80 - 123
trans-1,2-Dichloroethene	25.0	24.4		ug/L		97	75 - 124
trans-1,3-Dichloropropene	25.0	27.3		ug/L		109	57 - 129
1,2,3-Trichlorobenzene	25.0	24.1		ug/L		96	45 - 149
1,2,4-Trichlorobenzene	25.0	24.2		ug/L		97	44 - 147
1,1,1-Trichloroethane	25.0	25.3		ug/L		101	64 - 131
Trichloroethene	25.0	26.6		ug/L		106	70 - 122
Trichlorofluoromethane	25.0	21.2		ug/L		85	30 - 170
1,2,3-Trichloropropane	25.0	26.4		ug/L		106	57 ₋ 150
1,1,2-Trichloro-1,2,2-trichfluoroet	25.0	25.3		ug/L		101	51 - 146
hane				J			-
1,2,4-Trimethylbenzene	25.0	24.9		ug/L		99	77 - 129
Vinyl acetate	25.0	30.9		ug/L		124	44 - 145
Vinyl chloride	25.0	20.7		ug/L		83	60 - 144
		51.1					

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		56 - 136
Dibromofluoromethane (Surr)	105		73 - 120

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-540740/5

Matrix: Water

Analysis Batch: 540740

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

100	100
1 (1 ()

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		62 - 137
Toluene-d8 (Surr)	108		78 - 122

Lab Sample ID: LCS 240-540740/6

Matrix: Water

Analysis Batch: 540740

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diisopropyl ether	25.0	25.1		ug/L		100	70 - 124	
Ethyl-t-butyl ether (ETBE)	25.0	23.6		ug/L		94	62 - 135	
Tert-amyl-methyl ether (TAME)	25.0	22.5		ug/L		90	60 - 128	
1,2,3-Trimethylbenzene	25.0	24.2		ug/L		97	72 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		56 - 136
Dibromofluoromethane (Surr)	105		73 - 120
1,2-Dichloroethane-d4 (Surr)	91		62 - 137
Toluene-d8 (Surr)	102		78 - 122

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: MSA Surface Water Sampling Job ID: 240-171981-1 SDG: MSA Frog Mortar Creek

GC/MS VOA

Analysis Batch: 540508

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-171981-1	MSA-SW37A-082222	Total/NA	Water	8260C	
240-171981-2	MSA-SW37B-082222	Total/NA	Water	8260C	
240-171981-3	MSA-SW37C-082222	Total/NA	Water	8260C	
240-171981-4	MSA-SW37D-082222	Total/NA	Water	8260C	
240-171981-5	MSA-SW38A-082222	Total/NA	Water	8260C	
240-171981-6	MSA-SW38B-082222	Total/NA	Water	8260C	
240-171981-7	MSA-SW38C-082222	Total/NA	Water	8260C	
240-171981-8	MSA-SW38D-082222	Total/NA	Water	8260C	
240-171981-9	MSA-SW40A-082222	Total/NA	Water	8260C	
240-171981-10	MSA-SW40B-082222	Total/NA	Water	8260C	
240-171981-11	MSA-SW40C-082222	Total/NA	Water	8260C	
240-171981-12	MSA-SW40D-082222	Total/NA	Water	8260C	
240-171981-13	MSA-SW41A-082222	Total/NA	Water	8260C	
240-171981-14	MSA-SW41B-082222	Total/NA	Water	8260C	
240-171981-15	MSA-SW41C-082222	Total/NA	Water	8260C	
240-171981-16	MSA-SW41D-082222	Total/NA	Water	8260C	
240-171981-17	MSA-SW42A-082222	Total/NA	Water	8260C	
240-171981-18	MSA-SW42B-082222	Total/NA	Water	8260C	
240-171981-19	MSA-SW42C-082222	Total/NA	Water	8260C	
MB 240-540508/8	Method Blank	Total/NA	Water	8260C	
LCS 240-540508/5	Lab Control Sample	Total/NA	Water	8260C	
LCS 240-540508/6	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 540740

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-171981-20	MSA-SW42D-082222	Total/NA	Water	8260C	
240-171981-21	MSA-SW43A-082222	Total/NA	Water	8260C	
240-171981-22	MSA-SW43B-082222	Total/NA	Water	8260C	
240-171981-23	MSA-SW43C-082222	Total/NA	Water	8260C	
240-171981-24	MSA-SW43D-082222	Total/NA	Water	8260C	
240-171981-25	TB-082222	Total/NA	Water	8260C	
240-171981-26	MSA-SW46A-082222	Total/NA	Water	8260C	
240-171981-27	MSA-SW47A-082222	Total/NA	Water	8260C	
240-171981-28	MSA-SW48A-082222	Total/NA	Water	8260C	
240-171981-29	MSA-SW49A-082222	Total/NA	Water	8260C	
240-171981-30	MSA-SWEQB-082222	Total/NA	Water	8260C	
MB 240-540740/8	Method Blank	Total/NA	Water	8260C	
LCS 240-540740/5	Lab Control Sample	Total/NA	Water	8260C	
LCS 240-540740/6	Lab Control Sample	Total/NA	Water	8260C	

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37A-082222

Date Collected: 08/22/22 12:40

Date Received: 08/23/22 15:30

Lab Sample ID: 240-171981-1

Lab Sample ID: 240-171981-2

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540508	SAM	EET CAN	08/29/22 13:53

Client Sample ID: MSA-SW37B-082222

Date Collected: 08/22/22 12:42

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C	 -	1	540508	SAM	EET CAN	08/29/22 14:17

Client Sample ID: MSA-SW37C-082222

Date Collected: 08/22/22 12:44

Date Received: 08/23/22 15:30

	IV.	latrive	Water
	IV	iau ix.	vvalei

Lab Sample ID: 240-171981-3

Lab Sample ID: 240-171981-4

Lab Sample ID: 240-171981-5

Lab Sample ID: 240-171981-6

Lab Sample ID: 240-171981-7

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540508	SAM	EET CAN	08/29/22 14:40

Client Sample ID: MSA-SW37D-082222

Date Collected: 08/22/22 12:47

Date Received: 08/23/22 15:30

_								
	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540508	SAM	EET CAN	08/29/22 15:04

Client Sample ID: MSA-SW38A-082222

Date Collected: 08/22/22 11:53

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540508	SAM	EET CAN	08/29/22 15:27

Client Sample ID: MSA-SW38B-082222

Date Collected: 08/22/22 11:55

Date Received: 08/23/22 15:30

		Batch	Batch		Dilution	Batch			Prepared	
P	rep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
T	otal/NA	Analysis	8260C		1	540508	SAM	EET CAN	08/29/22 15:51	

Client Sample ID: MSA-SW38C-082222

Date Collected: 08/22/22 11:58

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540508	SAM	EET CAN	08/29/22 16:15

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38D-082222

Date Collected: 08/22/22 12:00

Date Received: 08/23/22 15:30

Lab Sample ID: 240-171981-8

Lab Sample ID: 240-171981-9

Lab Sample ID: 240-171981-12

Matrix: Water

Batch Batch Dilution Batch Prepared **Prep Type** Method Run **Factor** Number Analyst or Analyzed Type Lab Total/NA 8260C 540508 SAM EET CAN 08/29/22 16:38 Analysis

Client Sample ID: MSA-SW40A-082222

Date Collected: 08/22/22 12:11 **Matrix: Water**

Date Received: 08/23/22 15:30

Dilution Batch Batch Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab EET CAN 08/29/22 17:02 Total/NA Analysis 8260C 540508 SAM

Client Sample ID: MSA-SW40B-082222

Lab Sample ID: 240-171981-10 Date Collected: 08/22/22 12:14 Matrix: Water

Date Received: 08/23/22 15:30

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed 08/29/22 17:26 Total/NA Analysis 8260C 540508 SAM **EET CAN**

Client Sample ID: MSA-SW40C-082222 Lab Sample ID: 240-171981-11

Date Collected: 08/22/22 12:17 **Matrix: Water**

Date Received: 08/23/22 15:30

Batch **Batch** Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab 8260C 540508 SAM EET CAN 08/29/22 17:49 Total/NA Analysis

Client Sample ID: MSA-SW40D-082222

Date Collected: 08/22/22 12:20 **Matrix: Water**

Date Received: 08/23/22 15:30

Dilution **Batch Batch** Batch **Prepared Prep Type** Type Method Run **Factor** Number Analyst or Analyzed Lab FFT CAN 08/29/22 18:13 Total/NA 8260C 540508 SAM Analysis

Client Sample ID: MSA-SW41A-082222 Lab Sample ID: 240-171981-13

Date Collected: 08/22/22 11:34

Date Received: 08/23/22 15:30

Dilution **Batch Batch** Batch Prepared Number Type Method Run **Factor** Analyst or Analyzed **Prep Type** Lab 08/29/22 18:37 SAM EET CAN Total/NA Analysis 8260C 540508

Client Sample ID: MSA-SW41B-082222 Lab Sample ID: 240-171981-14

Date Collected: 08/22/22 11:38 **Matrix: Water** Date Received: 08/23/22 15:30

Batch **Batch** Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number **Analyst** Lab 08/29/22 19:01 SAM Total/NA Analysis 8260C 540508 **EET CAN**

Matrix: Water

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41C-082222

Date Collected: 08/22/22 11:40

Matrix: Water

Lab Sample ID: 240-171981-15

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540508	SAM	EET CAN	08/29/22 19:24

Client Sample ID: MSA-SW41D-082222

Lab Sample ID: 240-171981-16 Date Collected: 08/22/22 11:43 **Matrix: Water**

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540508	SAM	EET CAN	08/29/22 19:48

Client Sample ID: MSA-SW42A-082222

Lab Sample ID: 240-171981-17 Date Collected: 08/22/22 12:26 **Matrix: Water**

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Туре	Method	Run	Factor	Number Analy	st Lab	or Analyzed
Total/NA	Analysis	8260C		1	540508 SAM	EET CAN	08/29/22 20:11

Client Sample ID: MSA-SW42B-082222 Lab Sample ID: 240-171981-18

Date Collected: 08/22/22 12:28 **Matrix: Water**

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540508	SAM	EET CAN	08/29/22 20:35

Lab Sample ID: 240-171981-19 Client Sample ID: MSA-SW42C-082222

Date Collected: 08/22/22 12:31 **Matrix: Water**

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540508	SAM	EET CAN	08/29/22 20:59

Client Sample ID: MSA-SW42D-082222 Lab Sample ID: 240-171981-20

Date Collected: 08/22/22 12:35

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540740	SAM	EET CAN	08/30/22 17:44

Client Sample ID: MSA-SW43A-082222 Lab Sample ID: 240-171981-21

Date Collected: 08/22/22 11:12 **Matrix: Water**

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540740	SAM	EET CAN	08/30/22 18:08

Matrix: Water

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43B-082222

Lab Sample ID: 240-171981-22 Date Collected: 08/22/22 11:17

Matrix: Water

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540740	SAM	EET CAN	08/30/22 18:31

Client Sample ID: MSA-SW43C-082222

Lab Sample ID: 240-171981-23 Date Collected: 08/22/22 11:19 **Matrix: Water**

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			540740	SAM	EET CAN	08/30/22 18:55

Client Sample ID: MSA-SW43D-082222

Lab Sample ID: 240-171981-24 Date Collected: 08/22/22 11:25 Matrix: Water

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analys	t Lab	or Analyzed
Total/NA	Analysis	8260C	•	1	540740 SAM	EET CAN	08/30/22 19:18

Client Sample ID: TB-082222 Lab Sample ID: 240-171981-25

Date Collected: 08/22/22 00:00 **Matrix: Water**

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260C			540740	SAM	EET CAN	08/30/22 16:57	

Client Sample ID: MSA-SW46A-082222

Date Collected: 08/22/22 12:22 **Matrix: Water**

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			540740	SAM	EET CAN	08/30/22 19:42

Client Sample ID: MSA-SW47A-082222 Lab Sample ID: 240-171981-27

Date Collected: 08/22/22 12:05

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch		Prepared		
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260C	 -	1	540740	SAM	EET CAN	08/30/22 20:06	

Client Sample ID: MSA-SW48A-082222 Lab Sample ID: 240-171981-28

Date Collected: 08/22/22 11:48

Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch		Prepared	
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540740	SAM	EET CAN	08/30/22 20:29

Matrix: Water

Matrix: Water

Lab Sample ID: 240-171981-26

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Client Sample ID: MSA-SW49A-082222

Lab Sample ID: 240-171981-29

Date Collected: 08/22/22 11:30

Matrix: Water

Date	Received:	08/23/22	15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	540740	SAM	EET CAN	08/30/22 20:53

Client Sample ID: MSA-SWEQB-082222

Lab Sample ID: 240-171981-30

Matrix: Water

Date Collected: 08/22/22 00:00 Date Received: 08/23/22 15:30

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Ana	alyst Lab	or Analyzed
Total/NA	Analysis	8260C		1	540740 SAI	M EET CAN	08/30/22 17:20

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Laboratory: Eurofins Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-23
Connecticut	State	PH-0590	12-31-23
Florida	NELAP	E87225	06-30-23
Georgia	State	4062	02-27-23
Illinois	NELAP	200004	07-31-23
lowa	State	421	06-01-23
Kentucky (UST)	State	112225	02-27-23
Kentucky (WW)	State	KY98016	12-31-22
Minnesota	NELAP	039-999-348	12-31-22
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-23
New York	NELAP	10975	04-01-23
Ohio	State	8303	02-23-23
Ohio VAP	State	CL0024	02-27-23
Oregon	NELAP	4062	02-27-23
Pennsylvania	NELAP	68-00340	08-31-23
Texas	NELAP	T104704517-22-17	08-31-22
Virginia	NELAP	11570	09-14-22
Washington	State	C971	01-12-23
West Virginia DEP	State	210	12-31-22

Method Summary

Client: Tetra Tech, Inc.

Job ID: 240-171981-1 Project/Site: MSA Surface Water Sampling SDG: MSA Frog Mortar Creek

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET CAN
5030C	Purge and Trap	SW846	EET CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Sample Summary

Client: Tetra Tech, Inc. Project/Site: MSA Surface Water Sampling Job ID: 240-171981-1 SDG: MSA Frog Mortar Creek

240-171981-1 M 240-171981-2 M 240-171981-3 M 240-171981-4 M 240-171981-5 M 240-171981-6 M 240-171981-7 M	Client Sample ID MSA-SW37A-082222 MSA-SW37B-082222 MSA-SW37C-082222 MSA-SW37D-082222 MSA-SW38A-082222 MSA-SW38B-082222 MSA-SW38B-082222	Water Water Water Water Water Water Water Water Water	Collected 08/22/22 12:40 08/22/22 12:42 08/22/22 12:44 08/22/22 12:47 08/22/22 11:53 08/22/22 11:55	Received 08/23/22 15:30 08/23/22 15:30 08/23/22 15:30 08/23/22 15:30 08/23/22 15:30	
240-171981-2 M 240-171981-3 M 240-171981-4 M 240-171981-5 M 240-171981-6 M 240-171981-7 M	MSA-SW37B-082222 MSA-SW37C-082222 MSA-SW37D-082222 MSA-SW38A-082222 MSA-SW38B-082222 MSA-SW38C-082222	Water Water Water Water Water	08/22/22 12:42 08/22/22 12:44 08/22/22 12:47 08/22/22 11:53	08/23/22 15:30 08/23/22 15:30 08/23/22 15:30	
240-171981-3 M 240-171981-4 M 240-171981-5 M 240-171981-6 M 240-171981-7 M	MSA-SW37C-082222 MSA-SW37D-082222 MSA-SW38A-082222 MSA-SW38B-082222 MSA-SW38C-082222	Water Water Water Water	08/22/22 12:44 08/22/22 12:47 08/22/22 11:53	08/23/22 15:30 08/23/22 15:30	
240-171981-4 M 240-171981-5 M 240-171981-6 M 240-171981-7 M	MSA-SW37D-082222 MSA-SW38A-082222 MSA-SW38B-082222 MSA-SW38C-082222	Water Water Water	08/22/22 12:47 08/22/22 11:53	08/23/22 15:30	
240-171981-5 M 240-171981-6 M 240-171981-7 M	MSA-SW38A-082222 MSA-SW38B-082222 MSA-SW38C-082222	Water Water	08/22/22 11:53		
240-171981-6 M 240-171981-7 M	MSA-SW38B-082222 MSA-SW38C-082222	Water		08/23/22 15:30	
240-171981-7 N	MSA-SW38C-082222		08/22/22 11:55	00/00/00 4= 00	
				08/23/22 15:30	
		Water	08/22/22 11:58	08/23/22 15:30	
	MSA-SW38D-082222	Water	08/22/22 12:00	08/23/22 15:30	
240-171981-9 N	MSA-SW40A-082222	Water	08/22/22 12:11	08/23/22 15:30	
240-171981-10 M	MSA-SW40B-082222	Water	08/22/22 12:14	08/23/22 15:30	
240-171981-11 N	MSA-SW40C-082222	Water	08/22/22 12:17	08/23/22 15:30	
240-171981-12 N	MSA-SW40D-082222	Water	08/22/22 12:20	08/23/22 15:30	
240-171981-13 N	MSA-SW41A-082222	Water	08/22/22 11:34	08/23/22 15:30	
240-171981-14 N	MSA-SW41B-082222	Water	08/22/22 11:38	08/23/22 15:30	
240-171981-15 M	MSA-SW41C-082222	Water	08/22/22 11:40	08/23/22 15:30	
240-171981-16 N	MSA-SW41D-082222	Water	08/22/22 11:43	08/23/22 15:30	
240-171981-17 N	MSA-SW42A-082222	Water	08/22/22 12:26	08/23/22 15:30	
240-171981-18 M	MSA-SW42B-082222	Water	08/22/22 12:28	08/23/22 15:30	
240-171981-19 N	MSA-SW42C-082222	Water	08/22/22 12:31	08/23/22 15:30	
240-171981-20 M	MSA-SW42D-082222	Water	08/22/22 12:35	08/23/22 15:30	
240-171981-21 N	MSA-SW43A-082222	Water	08/22/22 11:12	08/23/22 15:30	
240-171981-22 N	MSA-SW43B-082222	Water	08/22/22 11:17	08/23/22 15:30	
240-171981-23 N	MSA-SW43C-082222	Water	08/22/22 11:19	08/23/22 15:30	
240-171981-24 N	MSA-SW43D-082222	Water	08/22/22 11:25	08/23/22 15:30	
240-171981-25	TB-082222	Water	08/22/22 00:00	08/23/22 15:30	
240-171981-26 N	MSA-SW46A-082222	Water	08/22/22 12:22	08/23/22 15:30	
240-171981-27 N	MSA-SW47A-082222	Water	08/22/22 12:05	08/23/22 15:30	
240-171981-28 N	MSA-SW48A-082222	Water	08/22/22 11:48	08/23/22 15:30	
240-171981-29 N	MSA-SW49A-082222	Water	08/22/22 11:30	08/23/22 15:30	
	MSA-SWEQB-082222	Water	08/22/22 00:00	08/23/22 15:30	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 Analysis Batch Number: 522080

Lab Sample ID: IC 240-522080/11 Client Sample ID:

COMPOUND NAME	MANUAL INTEGRATION				
	TIME	REASON	ANALYST	DATE	
Acetone	2.82	Peak assignment corrected	macenczak	04/08/22 09:17	
			S		

8260C

Page 82 of 539 09/01/2022

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 Analysis Batch Number: 524416

Lab Sample ID: IC 240-524416/3 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION				
	TIME	REASON	ANALYST	DATE		
1,1,2-Trichloro-1,2,2-trichfluoro	2.57	Peak assignment corrected	macenczak	04/28/22 17:07		
ethane			S			

Lab Sample ID: IC 240-524416/11 Client Sample ID:

COMPOU	ND NAME	RETENTION	MANUAL INTEGRATION			
		TIME	REASON	ANALYST	DATE	
Acetone		2.80	Peak assignment corrected	macenczak	04/29/22 09:04	

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Instrument ID: A3UX22 Analysis Batch Number: 540508 Lab Sample ID: CCVIS 240-540508/3 Client Sample ID: Date Analyzed: 08/29/22 11:30 Lab File ID: 227976.D GC Column: DB-624 ID: 0.18 (mm) COMPOUND NAME RETENTION MANUAL INTEGRATION TIME REASON ANALYST DATE Chloroethane 1.80 | Poor chromatography SE1B 08/29/22 11:50 Client Sample ID: Lab Sample ID: LCS 240-540508/5 GC Column: DB-624 Date Analyzed: 08/29/22 12:18 Lab File ID: 227978.D ID: 0.18 (mm) COMPOUND NAME RETENTION MANUAL INTEGRATION REASON DATE TIME ANALYST 08/29/22 12:47 SE1B Chloroethane 1.80 | Poor chromatography Lab Sample ID: MB 240-540508/8 Client Sample ID: GC Column: DB-624 ID: 0.18 (mm) Date Analyzed: 08/29/22 13:29 Lab File ID: 227981.D COMPOUND NAME RETENTION MANUAL INTEGRATION REASON ANALYST DATE TIME Invalid Compound ID Chloroethane SE1B 08/29/22 13:49 Lab Sample ID: 240-171981-1 Client Sample ID: MSA-SW37A-082222 Date Analyzed: 08/29/22 13:53 Lab File ID: 227982.D GC Column: DB-624 ID: 0.18 (mm)COMPOUND NAME RETENTION MANUAL INTEGRATION REASON DATE TIME ANALYST Invalid Compound ID Chloroethane SE1B 08/29/22 15:02 Lab Sample ID: 240-171981-2 Client Sample ID: MSA-SW37B-082222 Lab File ID: 227983.D GC Column: DB-624 Date Analyzed: 08/29/22 14:17 ID: 0.18 (mm) COMPOUND NAME RETENTION MANUAL INTEGRATION REASON ANALYST DATE TIME Chloroethane Invalid Compound ID SE1B 08/29/22 15:04

8260C

Page 84 of 539 09/01/2022

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Instrument ID: A3UX22 Analysis Batch Number: 540508 Lab Sample ID: 240-171981-3 Client Sample ID: MSA-SW37C-082222 Date Analyzed: 08/29/22 14:40 Lab File ID: 227984.D GC Column: DB-624 ID: 0.18 (mm)COMPOUND NAME RETENTION MANUAL INTEGRATION TIME REASON ANALYST DATE Chloroethane Invalid Compound ID SE1B 08/29/22 15:05 Client Sample ID: MSA-SW37D-082222 Lab Sample ID: 240-171981-4 Date Analyzed: 08/29/22 15:04 Lab File ID: 227985.D GC Column: DB-624 ID: 0.18 (mm)COMPOUND NAME RETENTION MANUAL INTEGRATION REASON ANALYST TIME DATE 08/29/22 15:25 2-Hexanone Invalid Compound ID SE1B Chloroethane Invalid Compound ID SE1B 08/29/22 15:25 Lab Sample ID: 240-171981-5 Client Sample ID: MSA-SW38A-082222 Date Analyzed: 08/29/22 15:27 Lab File ID: 227986.D GC Column: DB-624 ID: 0.18 (mm)COMPOUND NAME RETENTION MANUAL INTEGRATION REASON DATE TIME ANALYST Chloroethane Invalid Compound ID 08/29/22 16:16 SE1B Lab Sample ID: 240-171981-6 Client Sample ID: MSA-SW38B-082222 Date Analyzed: 08/29/22 15:51 Lab File ID: 227987.D GC Column: DB-624 ID: 0.18 (mm) COMPOUND NAME RETENTION MANUAL INTEGRATION TIME REASON ANALYST DATE Chloroethane Invalid Compound ID 08/29/22 16:19 SE1B Client Sample ID: MSA-SW38D-082222 Lab Sample ID: 240-171981-8 Date Analyzed: 08/29/22 16:38 Lab File ID: 227989.D GC Column: DB-624 ID: 0.18 (mm)COMPOUND NAME RETENTION MANUAL INTEGRATION TIME REASON ANALYST DATE 1,2-Dichloroethane Invalid Compound ID 08/30/22 09:41 SE1B

8260C

Page 85 of 539 09/01/2022

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 Analysis Batch Number: 540740

Lab Sample ID: 240-171981-25 Client Sample ID: TB-082222

COMPOUND NAME RETENTION MANUAL INTEGRATION
TIME REASON ANALYST DATE

1,2-Dichloropropane Invalid Compound ID SE1B 08/31/22 10:22

Lab Sample ID: 240-171981-20 Client Sample ID: MSA-SW42D-082222

COMPOUND NAME	RETENTION	MANUAL INTEGRATION			
	TIME	REASON ANALYST DATE			
Benzene		Invalid Compound ID	SE1B	08/31/22 10:28	

8260C

Page 86 of 539 09/01/2022

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reagent			
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
vm25UX18IS_00004	05/01/22	11/01/21	MEOH, Lot +232960000273166JL	100 mL	VM568718_00023	10 mL	1,4-Dichlorobenzene-d4	25 ug/mL
							Chlorobenzene-d5	25 ug/mL
							Fluorobenzene	25 ug/mL
.VM568718 00023	01/31/26		restek, Lot A0168626		(Purchased Rea	agent)	1,4-Dichlorobenzene-d4	250 ug/mL
_							Chlorobenzene-d5	250 ug/mL
							Fluorobenzene	250 ug/mL
vm25UX18IS_00005	11/02/22	05/02/22	MEOH, Lot +232960000273166JL	100 mL	VM568718_00023	10 mL	1,4-Dichlorobenzene-d4	25 ug/mL
							Chlorobenzene-d5	25 ug/mL
							Fluorobenzene	25 ug/mL
.VM568718_00023	01/31/26		restek, Lot A0168626		(Purchased Rea	agent)	1,4-Dichlorobenzene-d4	250 ug/mL
-							Chlorobenzene-d5	250 ug/mL
							Fluorobenzene	250 ug/mL
vm25UX18SS_00005	07/25/22	01/25/22	MEOH, Lot +232960000273166JL	100 mL	VM567650_00035	1 mL	1,2-Dichloroethane-d4 (Surr)	25 ug/mL
							4-Bromofluorobenzene (Surr)	25 ug/mL
							Dibromofluoromethane (Surr)	25 ug/mL
							Toluene-d8 (Surr)	25 ug/mL
.VM567650 00035	11/30/23		Restek, Lot A0143613		(Purchased Rea	agent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
_							4-Bromofluorobenzene (Surr)	2500 ug/mL
							Dibromofluoromethane (Surr)	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
vm25UX18SS_00006	01/26/23	07/26/22	MEOH, Lot +232960000273166JL	100 mL	VM567650_00036	1 mL	1,2-Dichloroethane-d4 (Surr)	25 ug/mL
							4-Bromofluorobenzene (Surr)	25 ug/mL
							Dibromofluoromethane (Surr)	25 ug/mL
							Toluene-d8 (Surr)	25 ug/mL
.VM567650 00036	01/31/25		Restek, Lot A0156891		(Purchased Rea	agent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
-							4-Bromofluorobenzene (Surr)	2500 ug/mL
							Dibromofluoromethane (Surr)	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
vm50ss 00470	04/08/22	04/01/22	MEOH, Lot na	5 mT ₁	vm50ss stk 00090	5 mT ₁	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
	,,	, ,					4-Bromofluorobenzene (Surr)	50 ug/mL
							Dibromofluoromethane (Surr)	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
.vm50ss stk 00090	06/20/22	12/20/21	MEOH, Lot 0000273166	200 mL	VM567650 00035	4 mL	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
					_		4-Bromofluorobenzene (Surr)	50 ug/mL
							Dibromofluoromethane (Surr)	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
VM567650 00035	11/30/23		Restek, Lot A0143613	1	(Purchased Rea	agent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
_							4-Bromofluorobenzene (Surr)	2500 ug/mL
							Dibromofluoromethane (Surr)	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
vm50ss_00472	05/05/22	04/28/22	MEOH, Lot na	5 mT	vm50ss stk 00090	5 mT	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
	100/00/22	101/20/22	I THOM TOO IIA	1 2 III	A THOUSE SEE GOODS	1 2 11111	1 - , 2 Dichitorocchiane ut (bull)	JU uy/IIIL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Dibromofluoromethane (Surr)	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
.vm50ss_stk_00090	06/20/22	12/20/21	MEOH, Lot 0000273166	200 mL	VM567650_00035	4 mL	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
							4-Bromofluorobenzene (Surr)	50 ug/mL
							Dibromofluoromethane (Surr)	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
VM567650_00035	11/30/23		Restek, Lot A0143613		(Purchased Rea	agent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
							4-Bromofluorobenzene (Surr)	2500 ug/mL
							Dibromofluoromethane (Surr)	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
VMAROLISTDW 00432	04/11/22	04/04/22	MEOH, Lot na	5 mL	VMACROLSTD 00105	5 mL	Acrolein	250 ug/mL
.VMACROLSTD 00105			MEOH, Lot 0000273166	20 mL			Acrolein	250 ug/mL
VM568720 00042	02/28/23		restek, Lot A0175809		(Purchased Rea		Acrolein	20000 ug/mL
VMAROLISTDW 00435		04/27/22	MEOH, Lot na	5 mL			Acrolein	250 ug/mL
.VMACROLISIDW_00435			MEOH, Lot 0000273166	20 mL	_		Acrolein	250 ug/mL
.VM568720 00042	02/28/23	04/21/22	restek, Lot A0175809	20 1111	(Purchased Rea		Acrolein	20000 ug/mL
<u>—</u>								
VMAROLISTDW_00451	08/29/22	08/24/22	MEOH, Lot na	5 mL			Acrolein	250 ug/mL
.VMACROLSTD_00109		07/29/22	MEOH, Lot 0000273166	20 mL			Acrolein	250 ug/mL
VM568720_00042	02/28/23		restek, Lot A0175809		(Purchased Rea	agent)	Acrolein	20000 ug/mL
VMAROLISTDW 00452	09/06/22	08/30/22	MEOH, Lot na	5 mL	VMACROLSTD 00110	5 mL	Acrolein	250 ug/mL
.VMACROLSTD 00110			MEOH, Lot 0000273166	20 mL		0.25 mL	Acrolein	250 ug/mL
VM568720 00042	02/28/23		restek, Lot A0175809		(Purchased Rea	agent)	Acrolein	20000 ug/mL
vmbfb 00028			T .				1,2-Dichloroethene, Total	
VIIDID_00028							1,3-Dichloropropene, Total	
							Tentatively Identified	
							Compound	
							Total BTEX	
							Trihalomethanes, Total	
							Xylenes, Total	
					vm30026 00003	1.25 mL	BFB	50 ug/mL
.vm30026 00003	08/31/23		restek, Lot A0141187		(Purchased Rea		BFB	2000 ug/mL
	00/31/23		rester, Lot A0141107		(Fulchased Kea	agenc)		2000 ug/IIIL
vmbfb_00030							1,2-Dichloroethene, Total	
							1,3-Dichloropropene, Total	
							Tentatively Identified	
							Compound	
							Total BTEX	
							Trihalomethanes, Total	
							Xylenes, Total	50 / -
	00/01/00				vm30026_00003	2.5 mL		50 ug/mL
.vm30026_00003	08/31/23		restek, Lot A0141187		(Purchased Rea	_	BFB	2000 ug/mL
VMFASA9W_00354	04/12/22	04/05/22	MEOH, Lot NA	5 mL	VMFASA9_00029	5 mL	Cyclohexanone	500 ug/mL
_							2-Methylnaphthalene	100 ug/mL
							1,2,3-Trimethylbenzene	50 ug/mL
							1,3,5-Trichlorobenzene	50 ug/mL
							2-Nitropropane	100 ug/mL
							Methacrylonitrile	500 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							n-Butanol	1250 ug/mL
							Ethyl acetate	100 ug/mL
							Methyl methacrylate	100 ug/mL
							Acetonitrile	500 ug/mL
							Diisopropyl ether	50 ug/mL
							Ethyl-t-butyl ether (ETBE)	50 ug/mL
							Propionitrile	500 ug/mL
							Tert-amyl-methyl ether (TAME)	50 ug/mL
.VMFASA9 00029	08/01/22	02/01/22	MEOH, Lot 0000273166	100 mL	VM569727S 00005	2 mL	Cyclohexanone	500 ug/mL
_					vm570807S 00006	4 mL	2-Methylnaphthalene	100 ug/mL
					VM570808S 00011	2 mL	1,2,3-Trimethylbenzene	50 ug/mL
					_		1,3,5-Trichlorobenzene	50 ug/mL
							2-Nitropropane	100 ug/mL
							Methacrylonitrile	500 ug/mL
							n-Butanol	1250 ug/mL
					VM570809S 00010	2 mL	Ethyl acetate	100 ug/mL
					_		Methyl methacrylate	100 ug/mL
					VM571993S 00008	2 mL	Acetonitrile	500 ug/mL
							Diisopropyl ether	50 ug/mL
							Ethyl-t-butyl ether (ETBE)	50 ug/mL
							Propionitrile	500 ug/mL
							Tert-amyl-methyl ether (TAME)	50 ug/mL
VM569727S 00005	09/30/22		RESTEK, Lot A0152945		(Purchased Read	gent.)	Cyclohexanone	25000 ug/mL
vm570807S 00006	12/31/23		Restek, Lot A0144306		(Purchased Read		2-Methylnaphthalene	2500 ug/mL
VM570808S 00011	10/31/22		Restek, Lot A0171439		(Purchased Read		1,2,3-Trimethylbenzene	2500 ug/mL
			,		, , , , , , , , , , , , , , , , , , , ,	J ,	1,3,5-Trichlorobenzene	2500 ug/mL
							2-Nitropropane	5000 ug/mL
							Methacrylonitrile	25000 ug/mL
							n-Butanol	62500 ug/mL
VM570809S 00010	10/31/22		Restek, Lot A0171207		(Purchased Read	gent)	Ethyl acetate	5000 ug/mL
	10,01,22		1000001, 200 1101/120/		(raronassa noa	901107	Methyl methacrylate	5000 ug/mL
VM571993S 00008	10/31/22		restek, Lot A0165034		(Purchased Read	rent)	Acetonitrile	25000 ug/mL
	10/31/22		1000001, 100 110100004		(rarchabea near	901101	Diisopropyl ether	25000 ug/mL
							Ethyl-t-butyl ether (ETBE)	2500 ug/mL
							Propionitrile	25000 ug/mL
							Tert-amyl-methyl ether (TAME)	25000 ug/mL
	100/04/22		T					
VMFASA9W_00371	08/31/22	08/24/22	MEOH, Lot NA	5 mL	VMFASA9_00030	5 mL	1,2,3-Trimethylbenzene	50 ug/mL
							Diisopropyl ether	50 ug/mL
							Ethyl-t-butyl ether (ETBE)	50 ug/mL
							Tert-amyl-methyl ether (TAME)	50 ug/mL
.VMFASA9_00030	10/31/22	07/30/22	MEOH, Lot 0000273166	50 mL	VM570808S_00011		1,2,3-Trimethylbenzene	50 ug/mL
					VM571993S_00008	1 mL	Diisopropyl ether	50 ug/mL
							Ethyl-t-butyl ether (ETBE)	50 ug/mL
							Tert-amyl-methyl ether (TAME)	50 ug/mL
VM570808S_00011	10/31/22		Restek, Lot A0171439		(Purchased Read		1,2,3-Trimethylbenzene	2500 ug/mL
VM571993S_00008	10/31/22		restek, Lot A0165034		(Purchased Read	gent)	Diisopropyl ether	2500 ug/mL
							Ethyl-t-butyl ether (ETBE)	2500 ug/mI

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Tert-amyl-methyl ether (TAME)	2500 ug/mI
VMFASAW 00415	05/04/22	04/27/22	MEOH, Lot NA	5 mL	VMFASA 00074	5 mL	Acrolein	250 ug/mI
.VMFASA 00074			MEOH, Lot 0000273166		VM568720S 00039		Acrolein	250 ug/mI
VM568720S 00039	08/31/22		restek, Lot A0169469		(Purchased Rea		Acrolein	20000 ug/mI
VMFASGW_00452	05/04/22	04/27/22	MEOH, Lot NA	5 mL	VMFASG 00118	5 mL	Bromomethane	50 ug/mI
_					_		Chloroethane	50 ug/mI
							Chloromethane	50 ug/mI
							Dichlorodifluoromethane	50 ug/mI
							Trichlorofluoromethane	50 ug/mI
							Vinyl chloride	50 ug/ml
.VMFASG 00118	05/27/22	04/27/22	MEOH, Lot 0000273166	50 mT.	vm569722S_00010	1 mT.	Bromomethane	50 ug/mI
.VMFA5G_00110	03/21/22	04/2//22	MEON, ECC 0000275100	30 1111	VIII3037223_00010	1 11111	Chloroethane	50 ug/mi
							Chloromethane	50 ug/mi
							Dichlorodifluoromethane	50 ug/mI
							Trichlorofluoromethane	50 ug/mI
							Vinyl chloride	50 ug/mI
vm569722S_00010	04/30/23		Restek, Lot A0159768		(Purchased Rea	agent)	Bromomethane	2500 ug/ml
							Chloroethane	2500 ug/ml
							Chloromethane	2500 ug/mI
							Dichlorodifluoromethane	2500 ug/mI
							Trichlorofluoromethane	2500 ug/mI
							Vinyl chloride	2500 ug/mI
VMFASGW_00469	08/29/22	08/24/22	MEOH, Lot NA	5 mL	VMFASG 00121	5 mL	Bromomethane	50 ug/mI
_					_		Chloroethane	50 ug/mI
							Chloromethane	50 ug/mI
							Dichlorodifluoromethane	50 ug/mI
							Trichlorofluoromethane	50 ug/mI
							Vinyl chloride	50 ug/mI
.VMFASG 00121	08/29/22	07/29/22	MEOH, Lot 0000273166	50 mT.	vm569722S 00010	1 mL		50 ug/mI
	00/23/22	01/23/22	HEOM, HOC 0000275100	30 1111	VIII.3037228_00010	1 11111	Chloroethane	50 ug/mI
							Chloromethane	50 ug/mI
							Dichlorodifluoromethane	
								50 ug/mI
							Trichlorofluoromethane	50 ug/mI
							Vinyl chloride	50 ug/mI
vm569722S_00010	04/30/23		Restek, Lot A0159768		(Purchased Rea	agent)	Bromomethane	2500 ug/mI
							Chloroethane	2500 ug/mI
							Chloromethane	2500 ug/mI
							Dichlorodifluoromethane	2500 ug/mI
							Trichlorofluoromethane	2500 ug/mI
							Vinyl chloride	2500 ug/mI
VMFASGW_00470	09/06/22	08/30/22	MEOH, Lot NA	5 mL	VMFASG 00122	5 mL	Bromomethane	50 ug/mI
_					_		Chloroethane	50 ug/mI
							Chloromethane	50 ug/mI
							Dichlorodifluoromethane	50 ug/mI
							Trichlorofluoromethane	50 ug/mI
							Vinyl chloride	50 ug/m

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reage	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
.VMFASG 00122	09/30/22	08/30/22	MEOH, Lot 0000273166	50 mL	vm569722S 00010	1 mL	Bromomethane	50 ug/ml
_					_		Chloroethane	50 ug/mI
							Chloromethane	50 ug/mI
							Dichlorodifluoromethane	50 ug/mI
							Trichlorofluoromethane	50 ug/mI
							Vinyl chloride	50 ug/mI
vm569722S_00010	04/30/23		Restek, Lot A0159768		(Purchased Rea	agent)	Bromomethane	2500 ug/mI
_			•			<i>,</i>	Chloroethane	2500 ug/ml
							Chloromethane	2500 ug/mI
							Dichlorodifluoromethane	2500 ug/mI
							Trichlorofluoromethane	2500 ug/ml
							Vinyl chloride	2500 ug/ml
								•
VMFASPW_00441	05/01/22	04/24/22	MEOH, Lot n/a	5 mL	VMRFASP_00080	5 mL	2-Butanone	100 ug/mI
							2-Hexanone	100 ug/mI
							4-Methyl-2-pentanone	100 ug/mI
							Acetone	100 ug/ml
							2-Chloroethyl vinyl ether	50 ug/ml
							Vinyl acetate	50 ug/ml
							1,1,1,2-Tetrachloroethane	50 ug/mI
							1,1,1-Trichloroethane	50 ug/mI
							1,1,2,2-Tetrachloroethane	50 ug/mI
							1,1,2-Trichloro-1,2,2-trichflu	
							oroethane	
							1,1-Dichloroethane	50 ug/mI
							1,1-Dichloroethene	50 ug/ml
							1,1-Dichloropropene	50 ug/ml
							1,2,3-Trichlorobenzene	50 ug/ml
							1,2,3-Trichloropropane	50 ug/ml
							1,2,4-Trichlorobenzene	50 ug/mI
							1,2,4-Trimethylbenzene	50 ug/mI
							1,2-Dibromo-3-Chloropropane	50 ug/mi
							1,2-Dibromoethane	50 ug/ml
							1,2-Dichlorobenzene	50 ug/mI
							1,2-Dichloroethane	50 ug/ml
							1,2-Dichloropropane	50 ug/mI
							1,3-Dichlorobenzene	50 ug/mI
							1,3-Dichloropropane	50 ug/mI
							1,4-Dichlorobenzene	50 ug/ml
							1,4-Dioxane	1000 ug/mI
							2,2-Dichloropropane	50 ug/m]
							2-Chlorotoluene	50 ug/mI
							4-Chlorotoluene	50 ug/ml
							Acrylonitrile	500 ug/ml
							Benzene	50 ug/mI
							Bromobenzene	50 ug/mI
							Bromochloromethane	50 ug/ml
							Bromodichloromethane	50 ug/ml
							Bromoform	50 ug/ml

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reage	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Carbon disulfide	50 ug/mL
							Carbon tetrachloride	50 ug/mL
							Chlorobenzene	50 ug/mL
							Chloroform	50 ug/mL
							cis-1,2-Dichloroethene	50 ug/mL
							cis-1,3-Dichloropropene	50 ug/mL
							Dibromochloromethane	50 ug/mL
							Dibromomethane	50 ug/mL
							Ethylbenzene	50 ug/mL
							Hexachlorobutadiene	50 ug/mL
							Isobutyl alcohol	1250 ug/mL
							Isopropylbenzene	50 ug/mL
							m-Xylene & p-Xylene	50 ug/mL
							Methyl acetate	100 ug/mL
							Methyl tert-butyl ether	50 ug/mL
							Methylene Chloride	50 ug/mL
							n-Butylbenzene	50 ug/mL
							n-Propylbenzene	50 ug/mL
							Naphthalene	50 ug/mL
							o-Xylene	50 ug/mL
							p-Isopropyltoluene	50 ug/mL
							sec-Butylbenzene	50 ug/mL
							Styrene	50 ug/mL
							tert-Butyl alcohol	
							tert-Butyl alcohol tert-Butylbenzene	500 ug/mL 50 ug/mL
							Tetrachloroethene	50 ug/mL
							Tetrahydrofuran	100 ug/mL
							Toluene	50 ug/mL
							Total BTEX	250 ug/mL
							trans-1,2-Dichloroethene	50 ug/mL
							trans-1,3-Dichloropropene	50 ug/mL
							Trichloroethene	50 ug/mL
							Trihalomethanes, Total	200 ug/mL
TREE 0 00000	0.6 /01 /00	10/01/01	157077 7 1 0000073166	100 -	TREE COROLO 00007	0.0.7	Xylenes, Total	100 ug/mL
.VMRFASP_00080	06/01/22	12/01/21	MEOH, Lot 0000273166	100 mL	VM569721S_00007	0.8 mL	2-Butanone	100 ug/mL
							2-Hexanone	100 ug/mL
							4-Methyl-2-pentanone	100 ug/mL
							Acetone	100 ug/mL
					VM569723S_00009		2-Chloroethyl vinyl ether	50 ug/mL
					VM569724S_00031		Vinyl acetate	50 ug/mL
					VM571992S_00008	2 mL	1,1,1,2-Tetrachloroethane	50 ug/mL
							1,1,1-Trichloroethane	50 ug/mL
							1,1,2,2-Tetrachloroethane	50 ug/mL
							1,1,2-Trichloro-1,2,2-trichfluoroethane	50 ug/mL
							1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							1,1-Dichloropropene	50 ug/mL
					I		1, 1-premiorobrobene	l 20 mg/mr

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	rent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	- Analyte	Concentration
							1,2,3-Trichlorobenzene	50 ug/mI
							1,2,3-Trichloropropane	50 ug/mI
							1,2,4-Trichlorobenzene	50 ug/mI
							1,2,4-Trimethylbenzene	50 ug/mI
							1,2-Dibromo-3-Chloropropane	50 ug/mI
							1,2-Dibromoethane	50 ug/mI
							1,2-Dichlorobenzene	50 ug/mI
							1,2-Dichloroethane	50 ug/mI
							1,2-Dichloropropane	50 ug/mI
							1,3-Dichlorobenzene	50 ug/mI
							1,3-Dichloropropane	50 ug/mI
							1,4-Dichlorobenzene	50 ug/mI
							1,4-Dioxane	1000 ug/mI
							2,2-Dichloropropane	50 ug/mI
							2-Chlorotoluene	50 ug/mI
							4-Chlorotoluene	50 ug/mI
							Acrylonitrile	500 ug/mI
							Benzene	50 ug/mI
							Bromobenzene	50 ug/mI
							Bromochloromethane	50 ug/mI
							Bromodichloromethane	50 ug/mI
							Bromoform	50 ug/mI
							Carbon disulfide	50 ug/mI
							Carbon tetrachloride	50 ug/mI
							Chlorobenzene	50 ug/mI
							Chloroform	50 ug/mI
							cis-1,2-Dichloroethene	50 ug/mI
							cis-1,3-Dichloropropene	50 ug/mI
							Dibromochloromethane	50 ug/mI
							Dibromomethane	50 ug/mI
							Ethylbenzene	50 ug/mI
							Hexachlorobutadiene	50 ug/mI
							Isobutyl alcohol	1250 ug/ml
							Isopropylbenzene	50 ug/mI
							m-Xylene & p-Xylene	50 ug/mI
							Methyl acetate	100 ug/mI
							Methyl tert-butyl ether	50 ug/mI
							Methylene Chloride	50 ug/mI
							n-Butylbenzene	50 ug/mI
							n-Propylbenzene	50 ug/mI
							Naphthalene	50 ug/mI
							o-Xylene	50 ug/mI
							p-Isopropyltoluene	50 ug/mI
							sec-Butylbenzene	50 ug/mI
							Styrene	50 ug/mI
							tert-Butyl alcohol	500 ug/mI
							tert-Butylbenzene	50 ug/mI
							Tetrachloroethene	50 ug/mI

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reage	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Tetrahydrofuran	100 ug/mL
							Toluene	50 ug/mL
							Total BTEX	250 ug/mL
							trans-1,2-Dichloroethene	50 ug/mL
							trans-1,3-Dichloropropene	50 ug/mL
							Trichloroethene	50 ug/mL
							Trihalomethanes, Total	200 ug/mL
							Xylenes, Total	100 ug/mL
77ME C07010 00007	01/31/24		Restek, Lot A0167967		(Purchased Rea		2-Butanone	12500 ug/mL
VM569721S_00007	01/31/24		Rester, Lot AU16/96/		(Furchased Rea	igent)		
							2-Hexanone	12500 ug/mL
							4-Methyl-2-pentanone	12500 ug/mL
							Acetone	12500 ug/mL
VM569723S_00009	09/30/22		Restek, Lot A0153415		(Purchased Rea	, ,	2-Chloroethyl vinyl ether	2500 ug/mL
VM569724S_00031	09/30/22		Restek, Lot A0169715		(Purchased Rea		Vinyl acetate	5000 ug/mL
VM571992S_00008	06/30/23		Restek, Lot A0167172		(Purchased Rea	igent)	1,1,1,2-Tetrachloroethane	2500 ug/mL
							1,1,1-Trichloroethane	2500 ug/mL
							1,1,2,2-Tetrachloroethane	2500 ug/mL
							1,1,2-Trichloro-1,2,2-trichflu	2500 ug/mL
							oroethane	
							1,1-Dichloroethane	2500 ug/mL
							1,1-Dichloroethene	2500 ug/mL
							1,1-Dichloropropene	2500 ug/mL
							1,2,3-Trichlorobenzene	2500 ug/mL
							1,2,3-Trichloropropane	2500 ug/mL
							1,2,4-Trichlorobenzene	2500 ug/mL
							1,2,4-Trimethylbenzene	2500 ug/mL
							1,2-Dibromo-3-Chloropropane	2500 ug/mL
							1,2-Dibromoethane	2500 ug/mL
							1,2-Dichlorobenzene	2500 ug/mL
							1,2-Dichloroethane	2500 ug/mL
							1,2-Dichloropropane	2500 ug/mL
							1,3-Dichlorobenzene	2500 ug/mL
							1,3-Dichloropropane	2500 ug/mL
							1,4-Dichlorobenzene	2500 ug/mL
							,	
							1,4-Dioxane	50000 ug/mL
							2,2-Dichloropropane	2500 ug/mL
							2-Chlorotoluene	2500 ug/mL
							4-Chlorotoluene	2500 ug/mL
							Acrylonitrile	25000 ug/mL
							Benzene	2500 ug/mL
							Bromobenzene	2500 ug/mL
							Bromochloromethane	2500 ug/mL
							Bromodichloromethane	2500 ug/mL
							Bromoform	2500 ug/mL
							Carbon disulfide	2500 ug/mL
							Carbon tetrachloride	2500 ug/mL
							Chlorobenzene	2500 ug/mL
							Chloroform	2500 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							cis-1,2-Dichloroethene	2500 ug/mL
							cis-1,3-Dichloropropene	2500 ug/mL
							Dibromochloromethane	2500 ug/mL
							Dibromomethane	2500 ug/mL
							Ethylbenzene	2500 ug/mL
							Hexachlorobutadiene	2500 ug/mL
							Isobutyl alcohol	62500 ug/mL
							Isopropylbenzene	2500 ug/mL
							m-Xylene & p-Xylene	2500 ug/mL
							Methyl acetate	5000 ug/mL
							Methyl tert-butyl ether	2500 ug/mL
							Methylene Chloride	2500 ug/mL
							n-Butylbenzene	2500 ug/mL
							n-Propylbenzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							o-Xylene	2500 ug/mL
							p-Isopropyltoluene	2500 ug/mL
							sec-Butylbenzene	2500 ug/mL
							Styrene	2500 ug/mL
							tert-Butyl alcohol	25000 ug/mL
							tert-Butylbenzene	25000 ug/mL
							Tetrachloroethene	2500 ug/mL
							Tetrahydrofuran	5000 ug/mL
							Toluene	2500 ug/mL
							Total BTEX	12500 ug/mL
							trans-1,2-Dichloroethene	2500 ug/mL
							,	
							trans-1,3-Dichloropropene	2500 ug/mL
							Trichloroethene	2500 ug/mL
							Trihalomethanes, Total	10000 ug/mL
							Xylenes, Total	5000 ug/mL
VMFASPW 00456	08/29/22	08/22/22	MEOH, Lot n/a	5 mL	VMRFASP 00081	5 mL	2-Butanone	100 ug/mL
_					_		2-Hexanone	100 ug/mL
							4-Methyl-2-pentanone	100 ug/mL
							Acetone	100 ug/mL
							2-Chloroethyl vinyl ether	50 ug/mL
							Vinyl acetate	50 ug/mL
							1,1,1,2-Tetrachloroethane	50 ug/mL
							1,1,1-Trichloroethane	50 ug/mL
							1,1,2,2-Tetrachloroethane	50 ug/mL
							1,1,2-Trichloro-1,2,2-trichflu	50 ug/mL
							oroethane	
							1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							1,1-Dichloropropene	50 ug/mL
							1,2,3-Trichlorobenzene	50 ug/mL
							1,2,3-Trichloropropane	50 ug/mL
							1,2,4-Trichlorobenzene	50 ug/mL
i e	1	1		1		1		55 ag/11111

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	- Analyte	Concentration
							1,2-Dibromo-3-Chloropropane	50 ug/m
							1,2-Dibromoethane	50 ug/m
							1,2-Dichlorobenzene	50 ug/mi
							1,2-Dichloroethane	50 ug/mi
							1,2-Dichloropropane	50 ug/m
							1,3-Dichlorobenzene	50 ug/mi
							1,3-Dichloropropane	50 ug/m
							1,4-Dichlorobenzene	50 ug/m
							2,2-Dichloropropane	50 ug/m
							2-Chlorotoluene	50 ug/m
							4-Chlorotoluene	50 ug/mi
							Benzene	50 ug/mi
							Bromobenzene	50 ug/m
							Bromochloromethane	50 ug/m
							Bromodichloromethane	50 ug/m
							Bromoform	50 ug/m
							Carbon disulfide	50 ug/m
							Carbon tetrachloride	50 ug/m
							Chlorobenzene	50 ug/m
							Chloroform	50 ug/m
							cis-1,2-Dichloroethene	50 ug/m
							cis-1,3-Dichloropropene	50 ug/m
							Dibromochloromethane	50 ug/m
							Dibromomethane	50 ug/m
							Ethylbenzene	50 ug/m
							Hexachlorobutadiene	50 ug/m
							Isopropylbenzene	50 ug/m
							m-Xylene & p-Xylene	50 ug/m
							Methyl tert-butyl ether	50 ug/m
							Methylene Chloride	50 ug/m
							n-Butylbenzene	50 ug/m
							n-Propylbenzene	50 ug/m
							Naphthalene	50 ug/m
							o-Xylene	50 ug/m
							p-Isopropyltoluene	50 ug/m
							sec-Butylbenzene	50 ug/m
							Styrene	50 ug/m
							tert-Butyl alcohol	500 ug/m.
							tert-Butylbenzene	50 ug/m
							Tetrachloroethene	50 ug/m.
							Toluene	50 ug/m.
							trans-1,2-Dichloroethene	50 ug/m.
							trans-1,3-Dichloropropene Trichloroethene	50 ug/m
								50 ug/m
(MDEACD 00001	00/20/22	04/20/22	MEOH, Lot 0000273166	100	77ME CO 7 2 1 C 0 0 0 0 7	0 0	Xylenes, Total 2-Butanone	100 ug/m
VMRFASP_00081	09/30/22	04/29/22	MEOH, Lot 00002/3166	100 mL	VM569721S_00007	0.8 mL		100 ug/m
_							2-Hexanone	100 ug/m

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Acetone	100 ug/m
					VM569723S 00009	2 mL	2-Chloroethyl vinyl ether	50 ug/m
					VM569724S 00031	1 mL	Vinyl acetate	50 ug/m
					VM571992S 00008	2 mL	1,1,1,2-Tetrachloroethane	50 ug/m
					_		1,1,1-Trichloroethane	50 ug/m
							1,1,2,2-Tetrachloroethane	50 ug/m
							1,1,2-Trichloro-1,2,2-trichflu oroethane	50 ug/m
							1,1-Dichloroethane	50 ug/m
							1,1-Dichloroethene	50 ug/m
							1,1-Dichloropropene	50 ug/m
							1,2,3-Trichlorobenzene	50 ug/ml
							1,2,3-Trichloropropane	50 ug/ml
							1,2,4-Trichlorobenzene	50 ug/ml
							1,2,4-Trimethylbenzene	50 ug/ml
							1,2-Dibromo-3-Chloropropane	50 ug/ml
							1,2-Dibromoethane	50 ug/ml
							1,2-Dibromoethane	
							,	50 ug/ml
							1,2-Dichloroethane	50 ug/ml
							1,2-Dichloropropane	50 ug/ml
							1,3-Dichlorobenzene	50 ug/ml
							1,3-Dichloropropane	50 ug/ml
							1,4-Dichlorobenzene	50 ug/ml
							2,2-Dichloropropane	50 ug/ml
							2-Chlorotoluene	50 ug/ml
							4-Chlorotoluene	50 ug/ml
							Benzene	50 ug/ml
							Bromobenzene	50 ug/ml
							Bromochloromethane	50 ug/ml
							Bromodichloromethane	50 ug/ml
							Bromoform	50 ug/ml
							Carbon disulfide	50 ug/ml
							Carbon tetrachloride	50 ug/ml
							Chlorobenzene	50 ug/m]
							Chloroform	50 ug/ml
							cis-1,2-Dichloroethene	50 ug/ml
							cis-1,3-Dichloropropene	50 ug/ml
							Dibromochloromethane	50 ug/ml
							Dibromomethane	50 ug/ml
							Ethylbenzene	50 ug/ml
							Hexachlorobutadiene	50 ug/ml
							Isopropylbenzene	50 ug/ml
							m-Xylene & p-Xylene	50 ug/ml
							Methyl tert-butyl ether	50 ug/ml
							Methylene Chloride	50 ug/ml
							n-Butylbenzene	50 ug/ml
							n-Propylbenzene	50 ug/ml
							Naphthalene	50 ug/ml

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Boagont	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
	Reagent ID	50 ug/ml						
								50 ug/m
							sec-Butylbenzene	50 ug/m
							Styrene	50 ug/m
								500 ug/m
							tert-Butylbenzene	50 ug/m
							Tetrachloroethene	50 ug/m
							Toluene	50 ug/m
							trans-1,2-Dichloroethene	50 ug/m
							trans-1,3-Dichloropropene	50 ug/m
								50 ug/m
								100 ug/m
.VM569721S 00007	01/31/24		Restek, Lot A0167967		(Purchased Rea	agent.)		12500 ug/m
	,,				(-9/		12500 ug/mI
								12500 ug/ml
								12500 ug/mI
VM569723S 00009	09/30/22		Restek, Lot A0153415		(Purchased Rea	agent)		2500 ug/ml
.VM569724S 00031								5000 ug/ml
.VM571992S 00008								2500 ug/ml
. 113/13/25_00000	00/30/23		Rester, Hot Motorine		(Tarchasea nee	igene)		2500 ug/ml
								2500 ug/ml
								2500 ug/iii
								2500 ug/mI
								2500 ug/mI
								2500 ug/mI
							<u> </u>	2500 ug/mI
								2500 ug/mI
								2500 ug/mI
								2500 ug/mI
								2500 ug/mI
								2500 ug/mI
								2500 ug/mI
								2500 ug/ml
							<u> </u>	2500 ug/ml
								2500 ug/mI
								2500 ug/mI
								2500 ug/mI
							2,2-Dichloropropane	2500 ug/mI
							2-Chlorotoluene	2500 ug/mI
							4-Chlorotoluene	2500 ug/mI
							Benzene	2500 ug/mI
							Bromobenzene	2500 ug/mI
							Bromochloromethane	2500 ug/mI
							Bromodichloromethane	2500 ug/mI
							Bromoform	2500 ug/mI
							Carbon disulfide	2500 ug/mI
							Carbon tetrachloride	2500 ug/mI

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Read	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
				<u>'</u>		•	Chlorobenzene	2500 ug/mL
							Chloroform	2500 ug/mL
							cis-1,2-Dichloroethene	2500 ug/mL
							cis-1,3-Dichloropropene	2500 ug/mL
							Dibromochloromethane	2500 ug/mL
							Dibromomethane	2500 ug/mL
							Ethylbenzene	2500 ug/mL
							Hexachlorobutadiene	2500 ug/mL
							Isopropylbenzene	2500 ug/mL
							m-Xylene & p-Xylene	2500 ug/mL
							Methyl tert-butyl ether	2500 ug/mL
							Methylene Chloride	2500 ug/mL
							n-Butylbenzene	2500 ug/mL
							n-Propylbenzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							o-Xylene	2500 ug/mL
							p-Isopropyltoluene	2500 ug/mL
							sec-Butylbenzene	2500 ug/mL
							Styrene	2500 ug/mL
							tert-Butyl alcohol	25000 ug/mL
							tert-Butylbenzene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
							Toluene	2500 ug/mL
							trans-1,2-Dichloroethene	2500 ug/mL
							trans-1,3-Dichloropropene	2500 ug/mL
							Trichloroethene	2500 ug/mL
							Xylenes, Total	5000 ug/mL
VMFASPW 00457	09/05/22	08/29/22	MEOH, Lot n/a	5 mT ₁	VMRFASP 00081	5 mT	2-Butanone	100 ug/mL
	, , , , ,		, , , , , , , , , , , , , , , , , , , ,				2-Hexanone	100 ug/mL
							4-Methyl-2-pentanone	100 ug/mL
							Acetone	100 ug/mL
							2-Chloroethyl vinyl ether	50 ug/mL
							Vinyl acetate	50 ug/mL
							1,1,1,2-Tetrachloroethane	50 ug/mL
							1,1,1-Trichloroethane	50 ug/mL
							1,1,2,2-Tetrachloroethane	50 ug/mL
							1,1,2-Trichloro-1,2,2-trichflu	50 ug/mL
							oroethane	JU ug/III
							1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
	1						1,1-Dichloropropene	50 ug/mL
						1	1 - , - D - C	
							1.2.3-Trichlorohenzene	50 11cr/mT.
							1,2,3-Trichlorobenzene	50 ug/mL
							1,2,3-Trichloropropane	50 ug/mL
							1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	50 ug/mL 50 ug/mL
							1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	50 ug/mL 50 ug/mL 50 ug/mL
							1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	50 ug/mL 50 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							1,2-Dichloroethane	50 ug/mL
							1,2-Dichloropropane	50 ug/mL
							1,3-Dichlorobenzene	50 ug/mL
							1,3-Dichloropropane	50 ug/mL
							1,4-Dichlorobenzene	50 ug/mL
							2,2-Dichloropropane	50 ug/mL
							2-Chlorotoluene	50 ug/mL
							4-Chlorotoluene	50 ug/mL
							Benzene	50 ug/mL
							Bromobenzene	50 ug/mL
							Bromochloromethane	50 ug/mL
							Bromodichloromethane	50 ug/mL
							Bromoform	50 ug/mL
							Carbon disulfide	50 ug/mL
							Carbon tetrachloride	50 ug/mL
							Chlorobenzene	50 ug/mL
							Chloroform	50 ug/mL
							cis-1,2-Dichloroethene	50 ug/mL
							cis-1,3-Dichloropropene	50 ug/mL
							Dibromochloromethane	50 ug/mL
							Dibromomethane	50 ug/mL
							Ethylbenzene	50 ug/mL
							Hexachlorobutadiene	50 ug/mL
							Isopropylbenzene	50 ug/mL
							m-Xylene & p-Xylene	50 ug/mL
							Methyl tert-butyl ether	50 ug/mL
							Methylene Chloride	50 ug/mL
							n-Butylbenzene	50 ug/mL
							n-Propylbenzene	50 ug/mL
							Naphthalene	50 ug/mL
							o-Xylene	50 ug/mL
							p-Isopropyltoluene	50 ug/mL
							sec-Butylbenzene	50 ug/mL
							Styrene	50 ug/mL
							tert-Butyl alcohol	500 ug/mL
							tert-Butylbenzene	50 ug/mL
							Tetrachloroethene	50 ug/mL
							Toluene	50 ug/mL
							trans-1,2-Dichloroethene	50 ug/mL
							trans-1,3-Dichloropropene	50 ug/mL
							Trichloroethene	50 ug/mL
							Xylenes, Total	100 ug/mL
.VMRFASP 00081	09/30/22	04/29/22	MEOH, Lot 0000273166	100 mT.	VM569721S 00007	0.8 mT.	2-Butanone	100 ug/mL
	05,50,22	31,23,22	1	100 1111	1113037218_00007	0.0 1111	2-Hexanone	100 ug/mL
							4-Methyl-2-pentanone	100 ug/mL
							Acetone	100 ug/mL
I					VM569723S 00009	2 mT.	2-Chloroethyl vinyl ether	50 ug/mL
					VM569724S 00031		Vinyl acetate	50 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					VM571992S 00008	2 mT ₁	1,1,1,2-Tetrachloroethane	50 ug/ml
							1,1,1-Trichloroethane	50 ug/mI
							1,1,2,2-Tetrachloroethane	50 ug/ml
							1,1,2-Trichloro-1,2,2-trichflu	
							oroethane	. 00 49/1112
							1,1-Dichloroethane	50 ug/ml
							1,1-Dichloroethene	50 ug/ml
							1,1-Dichloropropene	50 ug/ml
							1,2,3-Trichlorobenzene	50 ug/ml
							1,2,3-Trichloropropane	50 ug/mI
							1,2,4-Trichlorobenzene	50 ug/mI
							1,2,4-Trimethylbenzene	50 ug/mI
							1,2-Dibromo-3-Chloropropane	50 ug/ml
							1,2-Dibromoethane	50 ug/ml
							1,2-Dichlorobenzene	50 ug/ml
							1,2-Dichloroethane	50 ug/ml
							1,2-Dichloropropane	50 ug/ml
							1,3-Dichlorobenzene	50 ug/mI
							1,3-Dichloropropane	50 ug/ml
							1,4-Dichlorobenzene	50 ug/ml
							2,2-Dichloropropane	50 ug/mI
							2-Chlorotoluene	50 ug/mI
							4-Chlorotoluene	50 ug/mI
							Benzene	50 ug/ml
							Bromobenzene	50 ug/mI
							Bromochloromethane	50 ug/mI
							Bromodichloromethane	50 ug/ml
							Bromoform	50 ug/ml
							Carbon disulfide	50 ug/ml
							Carbon tetrachloride	50 ug/mI
							Chlorobenzene	50 ug/ml
							Chloroform	50 ug/ml
							cis-1,2-Dichloroethene	50 ug/ml
							cis-1,3-Dichloropropene	50 ug/ml
							Dibromochloromethane	50 ug/mI
							Dibromomethane	50 ug/ml
							Ethylbenzene	50 ug/mI
							Hexachlorobutadiene	50 ug/ml
							Isopropylbenzene	50 ug/mI
							m-Xylene & p-Xylene	50 ug/mI
							Methyl tert-butyl ether	50 ug/mI
							Methylene Chloride	50 ug/mI
							n-Butylbenzene	50 ug/mi
							n-Propylbenzene	50 ug/mi
							Naphthalene	50 ug/mi
							o-Xylene	50 ug/mi
							p-Isopropyltoluene	50 ug/mi
							sec-Butylbenzene	50 ug/mi

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Styrene	50 ug/mL
							tert-Butyl alcohol	500 ug/mL
							tert-Butylbenzene	50 ug/mL
							Tetrachloroethene	50 ug/mL
							Toluene	50 ug/mL
							trans-1,2-Dichloroethene	50 ug/mL
							trans-1,3-Dichloropropene	50 ug/mL
							Trichloroethene	50 ug/mL
							Xylenes, Total	100 ug/mL
VM569721S 00007	01/31/24		Restek, Lot A0167967		(Purchased Rea	igent)	2-Butanone	12500 ug/mL
_							2-Hexanone	12500 ug/mL
							4-Methyl-2-pentanone	12500 ug/mL
							Acetone	12500 ug/mL
VM569723S 00009	09/30/22		Restek, Lot A0153415		(Purchased Rea	igent)	2-Chloroethyl vinyl ether	2500 ug/mL
VM569724S 00031	09/30/22		Restek, Lot A0169715		(Purchased Rea	igent)	Vinyl acetate	5000 ug/mL
VM571992S 00008	06/30/23		Restek, Lot A0167172		(Purchased Rea	igent)	1,1,1,2-Tetrachloroethane	2500 ug/mL
_							1,1,1-Trichloroethane	2500 ug/mL
							1,1,2,2-Tetrachloroethane	2500 ug/mL
							1,1,2-Trichloro-1,2,2-trichflu	2500 ug/mL
							oroethane	
							1,1-Dichloroethane	2500 ug/mL
							1,1-Dichloroethene	2500 ug/mL
							1,1-Dichloropropene	2500 ug/mL
							1,2,3-Trichlorobenzene	2500 ug/mL
							1,2,3-Trichloropropane	2500 ug/mL
							1,2,4-Trichlorobenzene	2500 ug/mL
							1,2,4-Trimethylbenzene	2500 ug/mL
							1,2-Dibromo-3-Chloropropane	2500 ug/mL
							1,2-Dibromoethane	2500 ug/mL
							1,2-Dichlorobenzene	2500 ug/mL
							1,2-Dichloroethane	2500 ug/mL
							1,2-Dichloropropane	2500 ug/mL
							1,3-Dichlorobenzene	2500 ug/mL
							1,3-Dichloropropane	2500 ug/mL
							1,4-Dichlorobenzene	2500 ug/mL
							2,2-Dichloropropane	2500 ug/mL
							2-Chlorotoluene	2500 ug/mL
							4-Chlorotoluene	2500 ug/mL
							Benzene	2500 ug/mL
							Bromobenzene	2500 ug/mL
							Bromochloromethane	2500 ug/mL
							Bromodichloromethane	2500 ug/mL
							Bromoform	2500 ug/mL
							Carbon disulfide	2500 ug/mL
							Carbon tetrachloride	2500 ug/mL
							Chlorobenzene	2500 ug/mL
							Chloroform	2500 ug/mL
							cis-1,2-Dichloroethene	2500 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
				•			cis-1,3-Dichloropropene	2500 ug/mL
							Dibromochloromethane	2500 ug/mL
							Dibromomethane	2500 ug/mL
							Ethylbenzene	2500 ug/mL
							Hexachlorobutadiene	2500 ug/mL
							Isopropylbenzene	2500 ug/mL
							m-Xylene & p-Xylene	2500 ug/mL
							Methyl tert-butyl ether	2500 ug/mL
							Methylene Chloride	2500 ug/mL
							n-Butylbenzene	2500 ug/mL
							n-Propylbenzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							o-Xylene	2500 ug/mL
							p-Isopropyltoluene	2500 ug/mL
							sec-Butylbenzene	2500 ug/mL
							Styrene	2500 ug/mL
							tert-Butyl alcohol	25000 ug/mL
							tert-Butylbenzene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
							Toluene	2500 ug/mL
							trans-1,2-Dichloroethene	2500 ug/mL
							trans-1,3-Dichloropropene	2500 ug/mL
							Trichloroethene	2500 ug/mL
							Xylenes, Total	5000 ug/mL
VMRA9W 00430	04/08/22	04/01/22	MEOH, Lot NA	5 mT ₁	VMRA9 00040	5 mT ₁	Cyclohexanone	500 ug/mL
	,,	,,					Pentachloroethane	100 ug/mL
							2-Methylnaphthalene	100 ug/mL
							1,2,3-Trimethylbenzene	50 ug/mL
							1,3,5-Trichlorobenzene	50 ug/mL
							1-Chlorohexane	50 ug/mL
							2-Chloro-1,3-butadiene	50 ug/mL
							2-Nitropropane	100 ug/mL
							Benzyl chloride	50 ug/mL
							Methacrylonitrile	500 ug/mL
							n-Butanol	1250 ug/mL
							Ethyl acetate	100 ug/mL
							Methyl methacrylate	100 ug/mL
							n-Butyl acetate	50 ug/mL
							Acetonitrile	
							Diisopropyl ether	500 ug/mL 50 ug/mL
							Ethyl-t-butyl ether (ETBE)	50 ug/mL
							Propionitrile	500 ug/mL
				1			Tert-amyl-methyl ether (TAME)	50 ug/mL
11MD 2 0 0 0 0 0 0	10/01/00	04/01/00	MEOU TO+ 0000272166	E ∩ T	TME 60727 00006	1 7		E O O 33.00 / T
.VMRA9_00040	10/01/22	04/01/22	MEOH, Lot 0000273166	50 mL	VM569727_00006		Cyclohexanone	500 ug/mL
.VMRA9_00040	10/01/22	04/01/22	MEOH, Lot 0000273166	50 mL	VM569727_00006 vm570806_00005 vm570807_00006	2 mL		500 ug/mL 100 ug/mL 100 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							1,3,5-Trichlorobenzene	50 ug/mL
							1-Chlorohexane	50 ug/mL
							2-Chloro-1,3-butadiene	50 ug/mL
							2-Nitropropane	100 ug/mL
							Benzyl chloride	50 ug/mL
							Methacrylonitrile	500 ug/mL
							n-Butanol	1250 ug/mL
					VM570809 00010	1 mL	Ethyl acetate	100 ug/mL
							Methyl methacrylate	100 ug/mI
							n-Butyl acetate	50 ug/mL
					VM571993 00005	1 mT.	Acetonitrile	500 ug/mL
							Diisopropyl ether	50 ug/mL
							Ethyl-t-butyl ether (ETBE)	50 ug/mL
							Propionitrile	500 ug/mL
							Tert-amyl-methyl ether (TAME)	50 ug/mL
VM569727 00006	08/31/24		RESTEK, Lot A0175475		(Purchased Rea	agent)	Cyclohexanone	25000 ug/mL
vm570806 00005	08/31/23		Restek, Lot A0140938		(Purchased Rea		Pentachloroethane	2500 ug/mL
vm570807 00006	09/30/24		Restek, Lot A0153266		(Purchased Rea		2-Methylnaphthalene	2500 ug/mL
VM570808 00008	04/30/23		Restek, Lot A0177095		(Purchased Rea		1,2,3-Trimethylbenzene	2500 ug/mL
	04/30/23		100 101 / 105		(Turchasea nee	igenc)	1,3,5-Trichlorobenzene	2500 ug/mL
							1-Chlorohexane	2500 ug/mL
							2-Chloro-1,3-butadiene	2500 ug/mL
							2-Nitropropane	5000 ug/mL
							Benzyl chloride	2500 ug/mL
							Methacrylonitrile	25000 ug/mL
							n-Butanol	62500 ug/mL
VM570809 00010	12/31/22		Restek, Lot A0173205		(Purchased Rea	2 ~ 2 ~ 2 + \	Ethyl acetate	5000 ug/mL
VM370809_00010	12/31/22		Rester, Lot A01/3203		(Fulchased Rea	agenc)		
							Methyl methacrylate	5000 ug/mL
77ME 71 002 0000E	06/20/22				(December and Dec		n-Butyl acetate	2500 ug/mL
VM571993_00005	06/30/23		restek, Lot A0172903		(Purchased Rea	agent)	Acetonitrile	25000 ug/mL
							Diisopropyl ether	2500 ug/mL
							Ethyl-t-butyl ether (ETBE)	2500 ug/mL
							Propionitrile	25000 ug/mL
							Tert-amyl-methyl ether (TAME)	2500 ug/mL
VMRA9W_00448	09/02/22	08/26/22	MEOH, Lot NA	5 mL	VMRA9_00041	5 mL	Cyclohexanone	500 ug/mL
_					_		Pentachloroethane	100 ug/mL
							2-Methylnaphthalene	100 ug/mL
							1,2,3-Trimethylbenzene	50 ug/mL
							2-Nitropropane	100 ug/mL
							Methacrylonitrile	500 ug/mL
							n-Butanol	1250 ug/mL
							Ethyl acetate	100 ug/mL
							Methyl methacrylate	100 ug/mL
							Acetonitrile	500 ug/mL
							Diisopropyl ether	50 ug/mL
	1	1	1			1		
							Ethyl-t-butyl ether (ETBE)	50 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Doogont	Parent Reage	ent		
	Erm	Dron	Dilutant	Reagent Final		Volume		
Reagent ID	Exp Date	Prep Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
Reagent 1D	Date	Date	Usea	VOLUME	Reagent 1D	Added	=	
							Tert-amyl-methyl ether (TAME)	50 ug/mL
.VMRA9_00041	12/31/22	08/05/22	MEOH, Lot 0000273166	50 mL			Cyclohexanone	500 ug/mL
					vm570806_00005		Pentachloroethane	100 ug/mL
					vm570807_00006		2-Methylnaphthalene	100 ug/mL
					VM570808_00008	1 mL	1,2,3-Trimethylbenzene	50 ug/mL
							2-Nitropropane	100 ug/mL
							Methacrylonitrile	500 ug/mL
							n-Butanol	1250 ug/mL
					VM570809_00010	1 mL	Ethyl acetate	100 ug/mL
							Methyl methacrylate	100 ug/mL
					VM571993_00005	1 mL	Acetonitrile	500 ug/mL
							Diisopropyl ether	50 ug/mL
							Ethyl-t-butyl ether (ETBE)	50 ug/mL
							Propionitrile	500 ug/mL
							Tert-amyl-methyl ether (TAME)	50 ug/mL
VM569727_00006	08/31/24		RESTEK, Lot A0175475		(Purchased Rea		Cyclohexanone	25000 ug/mL
vm570806_00005	08/31/23		Restek, Lot A0140938		(Purchased Rea		Pentachloroethane	2500 ug/mL
vm570807_00006	09/30/24		Restek, Lot A0153266		(Purchased Rea		2-Methylnaphthalene	2500 ug/mL
VM570808_00008	04/30/23		Restek, Lot A0177095		(Purchased Rea	.gent)	1,2,3-Trimethylbenzene	2500 ug/mL
							2-Nitropropane	5000 ug/mL
							Methacrylonitrile	25000 ug/mL
							n-Butanol	62500 ug/mL
VM570809_00010	12/31/22		Restek, Lot A0173205		(Purchased Rea	.gent)	Ethyl acetate	5000 ug/mL
							Methyl methacrylate	5000 ug/mL
VM571993_00005	06/30/23		restek, Lot A0172903		(Purchased Rea	.gent)	Acetonitrile	25000 ug/mL
							Diisopropyl ether	2500 ug/mL
							Ethyl-t-butyl ether (ETBE)	2500 ug/mL
							Propionitrile	25000 ug/mL
							Tert-amyl-methyl ether (TAME)	2500 ug/mL
VMRGAS 00421	04/07/22	03/31/22	MEOH, Lot 0000273166	10 mL	vm569722 00020	0.2 mL	Bromomethane	50 ug/mL
_					_		Butadiene	50 ug/mL
							Chloroethane	50 ug/mL
							Chloromethane	50 ug/mL
							Dichlorodifluoromethane	50 ug/mL
							Dichlorofluoromethane	50 ug/mL
							Trichlorofluoromethane	50 ug/mL
							Vinyl chloride	50 ug/mL
.vm569722 00020	04/30/24		Restek, Lot A0171131	-	(Purchased Rea	gent)	Bromomethane	2500 ug/mL
_							Butadiene	2500 ug/mL
							Chloroethane	2500 ug/mL
							Chloromethane	2500 ug/mL
							Dichlorodifluoromethane	2500 ug/mL
							Dichlorofluoromethane	2500 ug/mL
							Trichlorofluoromethane	2500 ug/mL
							Vinyl chloride	2500 ug/mL
VMRGAS 00424	05/01/22	04/24/22	MEOH, Lot 0000273166	1 n mT	vm569722 00020	∩ 2 mT	Bromomethane	50 ug/mL
1111GU2 _00324	03/01/22	01/21/22	111011, 100 00002/3100	10 1111	V303722_00020	V.2 IIII	Butadiene	50 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Doogont	Parent Reag	ent		
Decree ID	Exp	Prep	Dilutant Used	Reagent	Decree ID	Volume Added	7.0.1	C
Reagent ID	Date	Date	usea	Volume	Reagent ID	Added	Analyte	Concentration
							Chloroethane	50 ug/mL
							Chloromethane	50 ug/mL
							Dichlorodifluoromethane	50 ug/mL
							Dichlorofluoromethane	50 ug/mL
							Trichlorofluoromethane	50 ug/mL
							Vinyl chloride	50 ug/mL
.vm569722_00020	04/30/24		Restek, Lot A0171131		(Purchased Rea	agent)	Bromomethane	2500 ug/mL
							Butadiene	2500 ug/mL
							Chloroethane	2500 ug/mL
							Chloromethane	2500 ug/mL
							Dichlorodifluoromethane	2500 ug/mL
							Dichlorofluoromethane	2500 ug/mL
							Trichlorofluoromethane	2500 ug/mL
							Vinyl chloride	2500 ug/mL
VMRGAS 00439	08/31/22	08/24/22	MEOH, Lot 0000273166	10 mL	vm569722 00021	0.2 mL	Bromomethane	50 ug/mL
_					_		Chloroethane	50 ug/mL
							Chloromethane	50 ug/mL
							Dichlorodifluoromethane	50 ug/mL
							Trichlorofluoromethane	50 ug/mL
							Vinyl chloride	50 ug/mL
.vm569722 00021	04/30/24		Restek, Lot A0171131	1	(Purchased Rea	agent)	Bromomethane	2500 ug/mL
_						_	Chloroethane	2500 ug/mL
							Chloromethane	2500 ug/mL
							Dichlorodifluoromethane	2500 ug/mL
							Trichlorofluoromethane	2500 ug/mL
							Vinyl chloride	2500 ug/mL
VMRPRIMW_00476	04/13/22	04/06/22	MEOH, Lot NA	5 mT ₁	VMRPRIM 00055	5 mT ₁	2-Butanone	100 ug/mL
	,,	,,					2-Hexanone	100 ug/mL
							4-Methyl-2-pentanone	100 ug/mL
							Acetone	100 ug/mL
							2-Chloroethyl vinyl ether	100 ug/mL
							Vinyl acetate	50 ug/mL
							1,1,1,2-Tetrachloroethane	50 ug/mL
							1,1,1-Trichloroethane	50 ug/mL
							1,1,2,2-Tetrachloroethane	50 ug/mL
							1,1,2-Trichloro-1,2,2-trichflu	
							oroethane	00 497 1112
							1,1,2-Trichloroethane	50 ug/mL
							1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							1,1-Dichloropropene	50 ug/mL
							1,2,3-Trichlorobenzene	50 ug/mL
							1,2,3-Trichloropropane	50 ug/mL
							1,2,4-Trichlorobenzene	50 ug/mL
							1,2,4-Trimethylbenzene	50 ug/mL
							1,2-Dibromo-3-Chloropropane	50 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

		ent	Parent Reag	Reagent				
Concentratio	Analyte	Volume Added	Reagent ID	Final Volume	Dilutant Used	Prep Date	Exp Date	Reagent ID
50 ug/m	1,2-Dichlorobenzene							
50 ug/m	1,2-Dichloroethane							
50 ug/m	1,2-Dichloropropane							
50 ug/m	1,3,5-Trimethylbenzene							
50 ug/m	1,3-Dichlorobenzene							
50 ug/m	1,3-Dichloropropane							
50 ug/m	1,4-Dichlorobenzene							
1000 ug/m	1,4-Dioxane							
50 ug/m	2,2-Dichloropropane							
50 ug/m	2-Chlorotoluene							
50 ug/m	3-Chloro-1-propene							
50 ug/m	4-Chlorotoluene							
500 ug/m	Acrylonitrile							
50 ug/m	Benzene							
50 ug/m	Bromobenzene							
50 ug/m	Bromochloromethane							
50 ug/m	Bromodichloromethane							
	Bromoform							
50 ug/m	Carbon disulfide							
50 ug/m								
50 ug/m	Carbon tetrachloride							
50 ug/m	Chlorobenzene							
50 ug/m	Chloroform							
50 ug/m	cis-1,2-Dichloroethene							
50 ug/m	cis-1,3-Dichloropropene							
50 ug/m	Cyclohexane							
50 ug/m	Dibromochloromethane							
50 ug/m	Dibromomethane							
50 ug/m	Ethyl ether							
50 ug/m	Ethyl methacrylate							
50 ug/m	Ethylbenzene							
50 ug/m	Hexachlorobutadiene							
50 ug/m	Hexane							
50 ug/m	Iodomethane							
1250 ug/m	Isobutyl alcohol							
50 ug/m	Isopropylbenzene							
50 ug/m	m-Xylene & p-Xylene							
100 ug/m	Methyl acetate							
50 ug/m	Methyl tert-butyl ether							
50 ug/m	Methylcyclohexane							
50 ug/m	Methylene Chloride							
50 ug/m	n-Butylbenzene							
50 ug/m	n-Heptane							
50 ug/m	n-Propylbenzene							
50 ug/m	Naphthalene							
50 ug/m	o-Xylene							
50 ug/m	p-Isopropyltoluene							
50 ug/m	sec-Butylbenzene							
50 ug/m	Styrene							

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
Reagent ID	Date	Date	Usea	VOTUILLE	Reagent 1D	Added	=	
							tert-Butyl alcohol	500 ug/mL
							tert-Butylbenzene	50 ug/mL
							Tetrachloroethene	50 ug/mL
							Tetrahydrofuran	100 ug/mL
							Toluene	50 ug/mL
							trans-1,2-Dichloroethene	50 ug/mL
							trans-1,3-Dichloropropene	50 ug/mL
							trans-1,4-Dichloro-2-butene	50 ug/mL
							Trichloroethene	50 ug/mL
.VMRPRIM_00055	07/31/22	02/25/22	MEOH, Lot 0000273166	50 mL	VM569721_00007	0.4 mL	2-Butanone	100 ug/mL
							2-Hexanone	100 ug/mL
							4-Methyl-2-pentanone	100 ug/mL
							Acetone	100 ug/mL
					VM569723_00010		2-Chloroethyl vinyl ether	100 ug/mL
					VM569724_00026		Vinyl acetate	50 ug/mL
					VM571992_00005	1 mL	1,1,1,2-Tetrachloroethane	50 ug/mL
							1,1,1-Trichloroethane	50 ug/mL
							1,1,2,2-Tetrachloroethane	50 ug/mL
							1,1,2-Trichloro-1,2,2-trichflu	50 ug/mL
							oroethane	
							1,1,2-Trichloroethane	50 ug/mL
							1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							1,1-Dichloropropene	50 ug/mL
							1,2,3-Trichlorobenzene	50 ug/mL
							1,2,3-Trichloropropane	50 ug/mL
							1,2,4-Trichlorobenzene	50 ug/mL
							1,2,4-Trimethylbenzene	50 ug/mL
							1,2-Dibromo-3-Chloropropane	50 ug/mL
							1,2-Dibromoethane	50 ug/mL
							1,2-Dichlorobenzene	50 ug/mL
							1,2-Dichloroethane	50 ug/mL
							1,2-Dichloropropane	50 ug/mL
							1,3,5-Trimethylbenzene	50 ug/mL
							1,3-Dichlorobenzene	50 ug/mL
							1,3-Dichloropropane	50 ug/mL
							1,4-Dichlorobenzene	50 ug/mL
							1,4-Dioxane	1000 ug/mL
							2,2-Dichloropropane	50 ug/mL
							2-Chlorotoluene	50 ug/mL
							3-Chloro-1-propene	50 ug/mL
							4-Chlorotoluene	50 ug/mL
							Acrylonitrile	500 ug/mL
							Benzene	50 ug/mL
							Bromobenzene	50 ug/mL
							Bromochloromethane	50 ug/mL
							Bromodichloromethane	50 ug/mL
							Bromoform	50 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

					Parent Reag	ent		
				Reagent _			_	
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Carbon disulfide	50 ug/mI
							Carbon tetrachloride	50 ug/mI
							Chlorobenzene	50 ug/mI
							Chloroform	50 ug/mI
							cis-1,2-Dichloroethene	50 ug/mI
							cis-1,3-Dichloropropene	50 ug/mI
							Cyclohexane	50 ug/ml
							Dibromochloromethane	50 ug/mi
							Dibromomethane	50 ug/m
							Ethyl ether	50 ug/m
							Ethyl methacrylate	50 ug/m
							Ethylbenzene	50 ug/ml
							Hexachlorobutadiene	50 ug/mI
							Hexane	50 ug/mI
							Iodomethane	50 ug/mI
							Isobutyl alcohol	1250 ug/ml
							Isopropylbenzene	50 ug/ml
							m-Xylene & p-Xylene	50 ug/ml
							Methyl acetate	100 ug/ml
							Methyl tert-butyl ether	50 ug/ml
							Methylcyclohexane	50 ug/mI
							Methylene Chloride	50 ug/mI
							n-Butylbenzene	50 ug/mI
							n-Heptane	50 ug/mI
							n-Propylbenzene	50 ug/ml
							Naphthalene	50 ug/ml
							o-Xylene	50 ug/ml
							p-Isopropyltoluene	50 ug/ml
							sec-Butylbenzene	50 ug/ml
							Styrene	50 ug/ml
							tert-Butyl alcohol	500 ug/ml
							tert-Butylbenzene	50 ug/m
							Tetrachloroethene	50 ug/m
							Tetrahydrofuran	100 ug/ml
							Toluene	50 ug/m
							trans-1,2-Dichloroethene	50 ug/ml
							trans-1,3-Dichloropropene	50 ug/m
							trans-1,4-Dichloro-2-butene	50 ug/ml
							Trichloroethene	50 ug/ml
.VM569721_00007	09/30/22		Restek, Lot A0152956		(Purchased Rea	igent)	2-Butanone	12500 ug/ml
_							2-Hexanone	12500 ug/mI
							4-Methyl-2-pentanone	12500 ug/mI
							Acetone	12500 ug/mI
.VM569723 00010	09/30/24		restek, Lot A0176827		(Purchased Rea	agent)	2-Chloroethyl vinyl ether	2500 ug/mI
.VM569724 00026	07/31/22		Restek, Lot A0168154		(Purchased Rea		Vinyl acetate	5000 ug/mI
.VM571992 00005	10/31/22		Restek, Lot A0159680		(Purchased Rea		1,1,1,2-Tetrachloroethane	2500 ug/mI
_ ***			,		,		1,1,1-Trichloroethane	2500 ug/mI
	I					1,1,2,2-Tetrachloroethane	2500 ug/mI	

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
		'				<u> </u>	1,1,2-Trichloro-1,2,2-trichflu	2500 ug/ml
							oroethane	
							1,1,2-Trichloroethane	2500 ug/mI
							1,1-Dichloroethane	2500 ug/ml
							1,1-Dichloroethene	2500 ug/mI
							1,1-Dichloropropene	2500 ug/mI
							1,2,3-Trichlorobenzene	2500 ug/ml
							1,2,3-Trichloropropane	2500 ug/mI
							1,2,4-Trichlorobenzene	2500 ug/ml
							1,2,4-Trimethylbenzene	2500 ug/ml
							1,2-Dibromo-3-Chloropropane	2500 ug/mI
							1,2-Dibromoethane	2500 ug/ml
							1,2-Dichlorobenzene	2500 ug/mI
							1,2-Dichloroethane	2500 ug/ml
							1,2-Dichloropropane	2500 ug/m
							1,3,5-Trimethylbenzene	2500 ug/mI
							1,3-Dichlorobenzene	2500 ug/m
							1,3-Dichloropropane	2500 ug/m
							1,4-Dichlorobenzene	2500 ug/m
							1,4-Dioxane	50000 ug/m
							2,2-Dichloropropane	2500 ug/ml
							2-Chlorotoluene	2500 ug/ml
							3-Chloro-1-propene	2500 ug/ml
							4-Chlorotoluene	2500 ug/mI
							Acrylonitrile	25000 ug/mI
							Benzene	2500 ug/ml
							Bromobenzene	2500 ug/ml
							Bromochloromethane	2500 ug/mI
							Bromodichloromethane	2500 ug/mI
							Bromoform	2500 ug/ml
							Carbon disulfide	2500 ug/mI
							Carbon tetrachloride	2500 ug/ml
							Chlorobenzene	2500 ug/m
							Chloroform	2500 ug/mI
							cis-1,2-Dichloroethene	2500 ug/ml
							cis-1,3-Dichloropropene	2500 ug/mI
							Cyclohexane	2500 ug/ml
							Dibromochloromethane	2500 ug/mI
							Dibromomethane	2500 ug/mI
							Ethyl ether	2500 ug/ml
							Ethyl methacrylate	2500 ug/mI
							Ethylbenzene	2500 ug/mI
							Hexachlorobutadiene	2500 ug/mI
							Hexane	2500 ug/ml
							Iodomethane	2500 ug/ml
							Isobutyl alcohol	62500 ug/mI
							Isopropylbenzene	2500 ug/mI
							m-Xylene & p-Xylene	2500 ug/mI

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Methyl acetate	5000 ug/mI
							Methyl tert-butyl ether	2500 ug/mI
							Methylcyclohexane	2500 ug/mI
							Methylene Chloride	2500 ug/mI
							n-Butylbenzene	2500 ug/mI
							n-Heptane	2500 ug/mI
							n-Propylbenzene	2500 ug/mI
							Naphthalene	2500 ug/ml
							o-Xylene	2500 ug/ml
							p-Isopropyltoluene	2500 ug/ml
							sec-Butylbenzene	2500 ug/ml
							Styrene	2500 ug/ml
							tert-Butyl alcohol	25000 ug/ml
							tert-Butylbenzene	2500 ug/ml
							Tetrachloroethene	2500 ug/ml
							Tetrahydrofuran	5000 ug/mI
							Toluene	2500 ug/mI
							trans-1,2-Dichloroethene	2500 ug/ml
							trans-1,3-Dichloropropene	2500 ug/ml
							trans-1,4-Dichloro-2-butene	2500 ug/ml
							Trichloroethene	2500 ug/ml
VMRPRIMW 00476	04/13/22	04/06/22	MEOH, Lot NA	5 mL	VMRPRIM 00055	5 mL	Total BTEX	250 ug/mI
_					_		Trihalomethanes, Total	200 ug/mI
							Xylenes, Total	100 ug/mI
.VMRPRIM 00055	07/31/22	02/25/22	MEOH, Lot 0000273166	50 mL	VM571992 00005	1 mL	Total BTEX	250 ug/mI
_					_		Trihalomethanes, Total	200 ug/ml
							Xylenes, Total	100 ug/mI
VM571992 00005	10/31/22		Restek, Lot A0159680		(Purchased Rea	gent)	Total BTEX	12500 ug/mI
_							Trihalomethanes, Total	10000 ug/mI
							Xylenes, Total	5000 ug/mI
VMRPRIMW 00479	04/29/22	04/22/22	MEOH, Lot NA	5 mT.	VMRPRIM 00055	5 mT	2-Butanone	100 ug/mI
VIII001/9	01/23/22	01,22,22	112011, 200 1111	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 1112	2-Hexanone	100 ug/mI
							4-Methyl-2-pentanone	100 ug/mI
							Acetone	100 ug/mI
							2-Chloroethyl vinyl ether	100 ug/mI
							Vinyl acetate	50 ug/mI
							1,1,1,2-Tetrachloroethane	50 ug/ml
							1,1,1-Trichloroethane	50 ug/mi
							1,1,2,2-Tetrachloroethane	50 ug/mI
							1,1,2-Trichloro-1,2,2-trichflu	50 ug/mI
							oroethane	30 dg/1111
							1,1,2-Trichloroethane	50 ug/mI
							1,1-Dichloroethane	50 ug/mI
							1,1-Dichloroethene	50 ug/mI
							1,1-Dichloropropene	50 ug/mI
							1,2,3-Trichlorobenzene	50 ug/mI
		1		1		1		
							1,2,3-Trichloropropane	50 ug/mI

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	rent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							1,2,4-Trimethylbenzene	50 ug/mI
							1,2-Dibromo-3-Chloropropane	50 ug/mI
							1,2-Dibromoethane	50 ug/mI
							1,2-Dichlorobenzene	50 ug/mI
							1,2-Dichloroethane	50 ug/mI
							1,2-Dichloropropane	50 ug/mI
							1,3,5-Trimethylbenzene	50 ug/mI
							1,3-Dichlorobenzene	50 ug/mI
							1,3-Dichloropropane	50 ug/mI
							1,4-Dichlorobenzene	50 ug/mI
							1,4-Dioxane	1000 ug/mI
							2,2-Dichloropropane	50 ug/mI
							2-Chlorotoluene	50 ug/mI
							3-Chloro-1-propene	50 ug/mI
							4-Chlorotoluene	50 ug/mI
							Acrylonitrile	500 ug/mI
							Benzene	50 ug/mI
							Bromobenzene	
							Bromochloromethane	50 ug/mI
								50 ug/mI
							Bromodichloromethane	50 ug/mI
							Bromoform	50 ug/mI
							Carbon disulfide	50 ug/mI
							Carbon tetrachloride	50 ug/mI
							Chlorobenzene	50 ug/mI
							Chloroform	50 ug/mI
							cis-1,2-Dichloroethene	50 ug/mI
							cis-1,3-Dichloropropene	50 ug/mI
							Cyclohexane	50 ug/mI
							Dibromochloromethane	50 ug/mI
							Dibromomethane	50 ug/mI
							Ethyl ether	50 ug/mI
							Ethyl methacrylate	50 ug/mI
							Ethylbenzene	50 ug/mI
							Hexachlorobutadiene	50 ug/mI
							Hexane	50 ug/mI
							Iodomethane	50 ug/mI
							Isobutyl alcohol	1250 ug/mI
							Isopropylbenzene	50 ug/mI
							m-Xylene & p-Xylene	50 ug/mI
							Methyl acetate	100 ug/mI
							Methyl tert-butyl ether	50 ug/mI
							Methylcyclohexane	50 ug/mI
							Methylene Chloride	50 ug/mI
							n-Butylbenzene	50 ug/mI
							n-Heptane	50 ug/mI
							n-Propylbenzene	50 ug/mI
							Naphthalene	50 ug/mI
	1						o-Xylene	50 ug/mI

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							p-Isopropyltoluene	50 ug/mL
							sec-Butylbenzene	50 ug/mL
							Styrene	50 ug/mL
							tert-Butyl alcohol	500 ug/mL
							tert-Butylbenzene	50 ug/mL
							Tetrachloroethene	50 ug/mL
							Tetrahydrofuran	100 ug/mL
							Toluene	50 ug/mL
							trans-1,2-Dichloroethene	50 ug/mI
							trans-1,3-Dichloropropene	50 ug/mI
							trans-1,4-Dichloro-2-butene	50 ug/mL
							Trichloroethene	50 ug/mL
.VMRPRIM 00055	07/31/22	02/25/22	MEOH, Lot 0000273166	50 mL	VM569721 00007	0.4 mL	2-Butanone	100 ug/mL
-					_		2-Hexanone	100 ug/mL
							4-Methyl-2-pentanone	100 ug/mL
							Acetone	100 ug/mL
					VM569723_00010	2 mL	2-Chloroethyl vinyl ether	100 ug/mL
					VM569724_00026		Vinyl acetate	50 ug/mL
					VM571992_00005	1 mL	1,1,1,2-Tetrachloroethane	50 ug/mL
							1,1,1-Trichloroethane	50 ug/mL
							1,1,2,2-Tetrachloroethane	50 ug/mL
							1,1,2-Trichloro-1,2,2-trichflu	50 ug/mL
							oroethane	
							1,1,2-Trichloroethane	50 ug/mL
							1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							1,1-Dichloropropene	50 ug/mL
							1,2,3-Trichlorobenzene	50 ug/mL
							1,2,3-Trichloropropane	50 ug/mL
							1,2,4-Trichlorobenzene	50 ug/mL
							1,2,4-Trimethylbenzene	50 ug/mL
							1,2-Dibromo-3-Chloropropane	50 ug/mL
							1,2-Dibromoethane	50 ug/mL
							1,2-Dichlorobenzene	50 ug/mL
							1,2-Dichloroethane	50 ug/mL
							1,2-Dichloropropane	50 ug/mL
							1,3,5-Trimethylbenzene	50 ug/mL
							1,3-Dichlorobenzene	50 ug/mL
							1,3-Dichloropropane	50 ug/mL
							1,4-Dichlorobenzene	50 ug/mL
							1,4-Dioxane	1000 ug/mL
							2,2-Dichloropropane	50 ug/mL
							2-Chlorotoluene	50 ug/mL
							3-Chloro-1-propene	50 ug/mL
							4-Chlorotoluene	50 ug/mL
							Acrylonitrile	500 ug/mL
							Benzene	50 ug/mL
		1					Bromobenzene	50 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reage	ent		
	Fvm	Prep	Dilutant	Final		Volume		
Reagent ID	Exp Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Bromochloromethane	50 ug/mL
							Bromodichloromethane	50 ug/mL
							Bromoform	50 ug/mL
							Carbon disulfide	50 ug/mL
							Carbon tetrachloride	50 ug/mL
							Chlorobenzene	50 ug/mL
							Chloroform	50 ug/mL
							cis-1,2-Dichloroethene	50 ug/mL
							cis-1,3-Dichloropropene	50 ug/mL
							Cyclohexane	50 ug/mL
							Dibromochloromethane	50 ug/mL
							Dibromomethane	50 ug/mL
							Ethyl ether	50 ug/mL
							Ethyl methacrylate	50 ug/mL
							Ethylbenzene	50 ug/mL
							Hexachlorobutadiene	50 ug/mL
							Hexane	50 ug/mL
							Iodomethane	50 ug/mL
							Isobutyl alcohol	1250 ug/mL
							Isopropylbenzene	50 ug/mL
							m-Xylene & p-Xylene	50 ug/mL
							Methyl acetate	100 ug/mL
							Methyl tert-butyl ether	50 ug/mL
							Methylcyclohexane	50 ug/mL
							Methylene Chloride	50 ug/mL
							n-Butylbenzene	50 ug/mL
							n-Heptane	50 ug/mL
							n-Propylbenzene	50 ug/mL
							Naphthalene	50 ug/mL
							o-Xylene	50 ug/mL
							p-Isopropyltoluene	50 ug/mL
							sec-Butylbenzene	50 ug/mL
							Styrene	50 ug/mL
							tert-Butyl alcohol	500 ug/mL
							tert-Butylbenzene	50 ug/mL
							Tetrachloroethene	50 ug/mL
							Tetrahydrofuran	100 ug/mL
							Toluene	50 ug/mL
							trans-1,2-Dichloroethene	50 ug/mL
							trans-1,3-Dichloropropene	50 ug/mL
							trans-1,4-Dichloro-2-butene	50 ug/mL
							Trichloroethene	50 ug/mL
VM569721_00007	09/30/22		Restek, Lot A0152956	;	(Purchased Rea	igent)	2-Butanone	12500 ug/mL
	05,50,22		1.00001, 100 11010200	·	(I alchasca Nea	190110/	2-Hexanone	12500 ug/mL
							4-Methyl-2-pentanone	12500 ug/mL
							Acetone	12500 ug/mL
VM569723 00010	09/30/24		restek, Lot A0176827	,	(Purchased Rea	igent)	2-Chloroethyl vinyl ether	2500 ug/mL
VM569724 00026	07/31/22		Restek, Lot A0168154		(Purchased Rea		Vinyl acetate	5000 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reage:	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
VM571992_00005	10/31/22		Restek, Lot A0159680		(Purchased Read	ent)	1,1,1,2-Tetrachloroethane	2500 ug/mI
							1,1,1-Trichloroethane	2500 ug/mI
							1,1,2,2-Tetrachloroethane	2500 ug/mI
							1,1,2-Trichloro-1,2,2-trichflu	2500 ug/mI
							oroethane	
							1,1,2-Trichloroethane	2500 ug/mI
							1,1-Dichloroethane	2500 ug/mI
							1,1-Dichloroethene	2500 ug/mI
							1,1-Dichloropropene	2500 ug/mI
							1,2,3-Trichlorobenzene	2500 ug/mI
							1,2,3-Trichloropropane	2500 ug/mI
							1,2,4-Trichlorobenzene	2500 ug/mI
							1,2,4-Trimethylbenzene	2500 ug/mI
							1,2-Dibromo-3-Chloropropane	2500 ug/mI
							1,2-Dibromoethane	2500 ug/mI
							1,2-Dichlorobenzene	2500 ug/mI
							1,2-Dichloroethane	2500 ug/mI
							1,2-Dichloropropane	2500 ug/mI
							1,3,5-Trimethylbenzene	2500 ug/mI
							1,3-Dichlorobenzene	2500 ug/mI
							1,3-Dichloropropane	2500 ug/mI
							1,4-Dichlorobenzene	2500 ug/mI
							1,4-Dioxane	50000 ug/mI
							2,2-Dichloropropane	2500 ug/mI
							2-Chlorotoluene	2500 ug/mI
							3-Chloro-1-propene	2500 ug/mI
							4-Chlorotoluene	2500 ug/mI
							Acrylonitrile	25000 ug/mI
							Benzene	2500 ug/mI
							Bromobenzene	2500 ug/mI
							Bromochloromethane	2500 ug/mI
							Bromodichloromethane	2500 ug/mI
							Bromoform	2500 ug/mI
							Carbon disulfide	2500 ug/mI
							Carbon tetrachloride	2500 ug/mI
							Chlorobenzene	2500 ug/mI
							Chloroform	2500 ug/mI
							cis-1,2-Dichloroethene	2500 ug/mI
							cis-1,3-Dichloropropene	2500 ug/mI
							Cyclohexane	2500 ug/mI
							Dibromochloromethane	2500 ug/mI
							Dibromomethane	2500 ug/mI
							Ethyl ether	2500 ug/mI
							Ethyl methacrylate	2500 ug/mI
							Ethylbenzene	2500 ug/mI
							Hexachlorobutadiene	2500 ug/mI
							Hexane	2500 ug/mI
							Iodomethane	2500 ug/mI

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Read	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Isobutyl alcohol	62500 ug/mL
							Isopropylbenzene	2500 ug/mL
							m-Xylene & p-Xylene	2500 ug/mL
							Methyl acetate	5000 ug/mL
							Methyl tert-butyl ether	2500 ug/mL
							Methylcyclohexane	2500 ug/mL
							Methylene Chloride	2500 ug/mL
							n-Butylbenzene	2500 ug/mL
							n-Heptane	2500 ug/mL
							n-Propylbenzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							o-Xylene	2500 ug/mL
							p-Isopropyltoluene	2500 ug/mL
							sec-Butylbenzene	2500 ug/mL
							Styrene	2500 ug/mL
							tert-Butyl alcohol	25000 ug/mL
							tert-Butyl alcohol tert-Butylbenzene	25000 ug/IIIL
							Tetrachloroethene	2500 ug/mL
								2500 ug/mL
							Tetrahydrofuran	5000 ug/mL
							Toluene	2500 ug/mL
							trans-1,2-Dichloroethene	2500 ug/mL
							trans-1,3-Dichloropropene	2500 ug/mL
							trans-1,4-Dichloro-2-butene	2500 ug/mL
							Trichloroethene	2500 ug/mL
VMRPRIMW_00479	04/29/22	04/22/22	MEOH, Lot NA	5 mL	VMRPRIM_00055	5 mL	Total BTEX	250 ug/mL
							Trihalomethanes, Total	200 ug/mL
							Xylenes, Total	100 ug/mL
.VMRPRIM_00055	07/31/22	02/25/22	MEOH, Lot 0000273166	50 mL	VM571992_00005	1 mL	Total BTEX	250 ug/mL
							Trihalomethanes, Total	200 ug/mL
							Xylenes, Total	100 ug/mL
VM571992_00005	10/31/22		Restek, Lot A0159680		(Purchased Re	agent)	Total BTEX	12500 ug/mL
							Trihalomethanes, Total	10000 ug/mL
							Xylenes, Total	5000 ug/mL
VMRPRIMW 00495	09/01/22	08/25/22	MEOH, Lot NA	5 mL	VMRPRIM 00058	5 mL	2-Butanone	100 ug/mL
					_		2-Hexanone	100 ug/mL
							4-Methyl-2-pentanone	100 ug/mL
							Acetone	100 ug/mL
							2-Chloroethyl vinyl ether	100 ug/mL
							Vinyl acetate	50 ug/mL
							1,1,1,2-Tetrachloroethane	50 ug/mL
							1,1,1-Trichloroethane	50 ug/mL
							1,1,2,2-Tetrachloroethane	50 ug/mL
							1,1,2-Trichloro-1,2,2-trichflu	50 ug/mL
							oroethane	JU UG/IIIL
							1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							1,1-Dichloropropene	50 ug/mL
							1,2,3-Trichlorobenzene	
							1,2,3-Trichioropenzene	50 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	rent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	- Analyte	Concentration
							1,2,3-Trichloropropane	50 ug/mI
							1,2,4-Trichlorobenzene	50 ug/mI
							1,2,4-Trimethylbenzene	50 ug/mI
							1,2-Dibromo-3-Chloropropane	50 ug/mI
							1,2-Dibromoethane	50 ug/mI
							1,2-Dichlorobenzene	50 ug/mI
							1,2-Dichloroethane	50 ug/mI
							1,2-Dichloropropane	50 ug/mI
							1,3-Dichlorobenzene	50 ug/mI
							1,3-Dichloropropane	50 ug/mI
							1,4-Dichlorobenzene	50 ug/mI
							1,4-Dioxane	1000 ug/mI
							2,2-Dichloropropane	50 ug/mI
							2-Chlorotoluene	50 ug/mI
							4-Chlorotoluene	50 ug/mI
							Acrylonitrile	500 ug/mI
							Benzene	50 ug/mI
							Bromobenzene	50 ug/mI
							Bromochloromethane	50 ug/mI
							Bromodichloromethane	50 ug/mI
							Bromoform	50 ug/mI
							Carbon disulfide	50 ug/mI
							Carbon tetrachloride	50 ug/mI
							Chlorobenzene	50 ug/mI
							Chloroform	50 ug/mI
							cis-1,2-Dichloroethene	50 ug/mI
							cis-1,3-Dichloropropene	50 ug/mI
							Dibromochloromethane	50 ug/mI
							Dibromomethane	50 ug/mI
							Ethylbenzene	50 ug/mI
							Hexachlorobutadiene	50 ug/mI
							Isobutyl alcohol	1250 ug/mI
							Isopropylbenzene	50 ug/mI
							m-Xylene & p-Xylene	50 ug/mI
							Methyl acetate	100 ug/mI
							Methyl tert-butyl ether	50 ug/mI
							Methylene Chloride	50 ug/mI
							n-Butylbenzene	50 ug/mI
							n-Propylbenzene	50 ug/mI
							Naphthalene	50 ug/mI
							o-Xylene	50 ug/mI
							p-Isopropyltoluene	50 ug/mI
							sec-Butylbenzene	50 ug/mI
							Styrene	50 ug/mI
							tert-Butyl alcohol	500 ug/mI
							tert-Butylbenzene	50 ug/mI
							Tetrachloroethene	50 ug/mI
							Tetrahydrofuran	100 ug/mI

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Read	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Toluene	50 ug/mI
							Total BTEX	250 ug/mI
							trans-1,2-Dichloroethene	50 ug/mI
							trans-1,3-Dichloropropene	50 ug/mI
							Trichloroethene	50 ug/mI
							Trihalomethanes, Total	200 ug/mI
							Xylenes, Total	100 ug/mI
.VMRPRIM 00058	09/30/22	07/29/22	MEOH, Lot 0000273166	50 mL	VM569721 00007	0.4 mL		100 ug/mI
		. , . ,					2-Hexanone	100 ug/mI
							4-Methyl-2-pentanone	100 ug/ml
							Acetone	100 ug/ml
					VM569723 00010	2 mT.	2-Chloroethyl vinyl ether	100 ug/mI
					VM569724 00027		Vinyl acetate	50 ug/ml
					VM571992 00005	0.5 IIIL	1,1,1,2-Tetrachloroethane	50 ug/mi
				VM3/1992_00003	1 11111	1,1,1-Trichloroethane	50 ug/ml	
							1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trichflu	50 ug/m. 50 ug/m.
							1	50 ug/m
							oroethane 1,1-Dichloroethane	E 0 /
	1,1-Dichloroethene		50 ug/m					
		,	50 ug/ml					
							1,1-Dichloropropene	50 ug/ml
							1,2,3-Trichlorobenzene	50 ug/mI
							1,2,3-Trichloropropane	50 ug/ml
							1,2,4-Trichlorobenzene	50 ug/mI
							1,2,4-Trimethylbenzene	50 ug/ml
							1,2-Dibromo-3-Chloropropane	50 ug/ml
							1,2-Dibromoethane	50 ug/mI
							1,2-Dichlorobenzene	50 ug/mI
							1,2-Dichloroethane	50 ug/ml
							1,2-Dichloropropane	50 ug/ml
							1,3-Dichlorobenzene	50 ug/ml
							1,3-Dichloropropane	50 ug/ml
							1,4-Dichlorobenzene	50 ug/m
							1,4-Dioxane	1000 ug/ml
							2,2-Dichloropropane	50 ug/ml
							2-Chlorotoluene	50 ug/ml
							4-Chlorotoluene	50 ug/ml
							Acrylonitrile	500 ug/ml
							Benzene	50 ug/ml
							Bromobenzene	50 ug/ml
							Bromochloromethane	50 ug/mI
							Bromodichloromethane	50 ug/ml
							Bromoform	50 ug/mI
							Carbon disulfide	50 ug/mi
							Carbon disuilide Carbon tetrachloride	
								50 ug/ml
							Chlorobenzene	50 ug/ml
		1		1	1	1	Chloroform	50 ug/mI

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							cis-1,3-Dichloropropene	50 ug/mL
							Dibromochloromethane	50 ug/mL
							Dibromomethane	50 ug/mL
							Ethylbenzene	50 ug/mL
							Hexachlorobutadiene	50 ug/mL
							Isobutyl alcohol	1250 ug/mL
							Isopropylbenzene	50 ug/mL
							m-Xylene & p-Xylene	50 ug/mL
							Methyl acetate	100 ug/mL
							Methyl tert-butyl ether	50 ug/mL
							Methylene Chloride	50 ug/mL
							n-Butylbenzene	50 ug/mL
							n-Propylbenzene	50 ug/mL
							Naphthalene	50 ug/mL
							o-Xylene	50 ug/mL
							p-Isopropyltoluene	50 ug/mL
							sec-Butylbenzene	50 ug/mL
							Styrene	50 ug/mL
							tert-Butyl alcohol	500 ug/mL
							tert-Butylbenzene	50 ug/mL
							Tetrachloroethene	50 ug/mL
							Tetrahydrofuran	100 ug/mL
							Toluene	50 ug/mL
							Total BTEX	250 ug/mL
							trans-1,2-Dichloroethene	50 ug/mL
							trans-1,3-Dichloropropene	50 ug/mL
							Trichloroethene	50 ug/mL
							Trihalomethanes, Total	200 ug/mL
							Xylenes, Total	100 ug/mL
VM569721 00007	09/30/22		Restek, Lot A0152956		(Purchased Rea	gent)	2-Butanone	12500 ug/mL
_							2-Hexanone	12500 ug/mL
							4-Methyl-2-pentanone	12500 ug/mL
							Acetone	12500 ug/mL
VM569723 00010	09/30/24		restek, Lot A0176827		(Purchased Rea	gent)	2-Chloroethyl vinyl ether	2500 ug/mL
VM569724_00027	06/30/23		Restek, Lot A0179890		(Purchased Rea	gent)	Vinyl acetate	5000 ug/mL
VM571992 00005	10/31/22		Restek, Lot A0159680		(Purchased Rea	gent)	1,1,1,2-Tetrachloroethane	2500 ug/mL
_							1,1,1-Trichloroethane	2500 ug/mL
							1,1,2,2-Tetrachloroethane	2500 ug/mL
							1,1,2-Trichloro-1,2,2-trichflu	2500 ug/mL
							oroethane	
							1,1-Dichloroethane	2500 ug/mL
							1,1-Dichloroethene	2500 ug/mL
							1,1-Dichloropropene	2500 ug/mL
							1,2,3-Trichlorobenzene	2500 ug/mL
							1,2,3-Trichloropropane	2500 ug/mL
							1,2,4-Trichlorobenzene	2500 ug/mL
							1,2,4-Trimethylbenzene	2500 ug/mL
							1,2-Dibromo-3-Chloropropane	2500 ug/mL

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							1,2-Dibromoethane	2500 ug/mI
							1,2-Dichlorobenzene	2500 ug/mI
							1,2-Dichloroethane	2500 ug/mI
							1,2-Dichloropropane	2500 ug/mI
							1,3-Dichlorobenzene	2500 ug/mI
							1,3-Dichloropropane	2500 ug/mI
							1,4-Dichlorobenzene	2500 ug/ml
							1,4-Dioxane	50000 ug/ml
							2,2-Dichloropropane	2500 ug/mI
							2-Chlorotoluene	2500 ug/ml
							4-Chlorotoluene	2500 ug/mI
							Acrylonitrile	25000 ug/mI
							Benzene	2500 ug/mI
							Bromobenzene	2500 ug/mI
							Bromochloromethane	2500 ug/mI
							Bromodichloromethane	2500 ug/mI
							Bromoform	2500 ug/m
							Carbon disulfide	2500 ug/ml
							Carbon tetrachloride	2500 ug/ml
							Chlorobenzene	2500 ug/mI
							Chloroform	2500 ug/mI
							cis-1,2-Dichloroethene	2500 ug/mI
							cis-1,3-Dichloropropene	2500 ug/mI
							Dibromochloromethane	2500 ug/ml
							Dibromomethane	2500 ug/mI
							Ethylbenzene	2500 ug/ml
							Hexachlorobutadiene	2500 ug/ml
							Isobutyl alcohol	62500 ug/mI
							Isopropylbenzene	2500 ug/ml
							m-Xylene & p-Xylene	2500 ug/ml
							Methyl acetate	5000 ug/ml
							Methyl tert-butyl ether	2500 ug/mI
							Methylene Chloride	2500 ug/m
							n-Butylbenzene	2500 ug/mI
							n-Propylbenzene	2500 ug/ml
							Naphthalene	2500 ug/mI
							o-Xylene	2500 ug/ml
							p-Isopropyltoluene	2500 ug/ml
							sec-Butylbenzene	2500 ug/mI
							Styrene	2500 ug/mI
							tert-Butyl alcohol	25000 ug/ml
							tert-Butylbenzene	2500 ug/ml
							Tetrachloroethene	2500 ug/ml
							Tetrahydrofuran	5000 ug/ml
							Toluene	2500 ug/mI
							Total BTEX	12500 ug/ml
							trans-1,2-Dichloroethene	2500 ug/mI
							trans-1,3-Dichloropropene	2500 ug/mi

Lab Name: Eurofins Canton Job No.: 240-171981-1

				Reagent	Parent Reagent			
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Trichloroethene	2500 ug/mL
							Trihalomethanes, Total	10000 ug/mL
							Xylenes, Total	5000 ug/mL

Method 8260C

Volatile Organic Compounds (GC/MS) by Method 8260C

FORM II GC/MS VOA SURROGATE RECOVERY

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Level: Low

GC Column (1): DB-624 ID: 0.18 (mm)

Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
MSA-SW37A-082222	240-171981-1	106	102	102	98
MSA-SW37B-082222	240-171981-2	108	101	104	97
MSA-SW37C-082222	240-171981-3	108	103	102	98
MSA-SW37D-082222	240-171981-4	108	103	103	99
MSA-SW38A-082222	240-171981-5	108	102	103	98
MSA-SW38B-082222	240-171981-6	108	103	102	97
MSA-SW38C-082222	240-171981-7	107	102	102	96
MSA-SW38D-082222	240-171981-8	107	105	100	96
MSA-SW40A-082222	240-171981-9	104	98	101	95
MSA-SW40B-082222	240-171981-10	107	101	101	92
MSA-SW40C-082222	240-171981-11	105	101	99	94
MSA-SW40D-082222	240-171981-12	103	98	100	96
MSA-SW41A-082222	240-171981-13	105	100	99	94
MSA-SW41B-082222	240-171981-14	104	98	98	93
MSA-SW41C-082222	240-171981-15	105	100	99	95
MSA-SW41D-082222	240-171981-16	102	96	98	93
MSA-SW42A-082222	240-171981-17	104	99	97	92
MSA-SW42B-082222	240-171981-18	104	97	98	93
MSA-SW42C-082222	240-171981-19	103	98	96	91
MSA-SW42D-082222	240-171981-20	108	99	101	97
MSA-SW43A-082222	240-171981-21	108	99	103	98
MSA-SW43B-082222	240-171981-22	106	97	100	96
MSA-SW43C-082222	240-171981-23	108	99	102	96
MSA-SW43D-082222	240-171981-24	107	100	100	96
TB-082222	240-171981-25	106	94	104	98
MSA-SW46A-082222	240-171981-26	106	97	99	95
MSA-SW47A-082222	240-171981-27	107	98	101	96
MSA-SW48A-082222	240-171981-28	107	97	100	95
MSA-SW49A-082222	240-171981-29	106	98	99	96
MSA-SWEQB-082222	240-171981-30	108	96	103	97
	MB 240-540508/8	104	98	113	98
	MB 240-540740/8	113	105	101	97
	LCS 240-540508/5	102	95	107	102
	LCS 240-540508/6	103	98	104	102
	LCS 240-540740/5	105	98	108	104

	QC LIMITS
DBFM = Dibromofluoromethane (Surr)	73-120
DCA = 1,2-Dichloroethane-d4 (Surr)	62-137
TOL = Toluene-d8 (Surr)	78-122
BFB = 4-Bromofluorobenzene (Surr)	56-136

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II GC/MS VOA SURROGATE RECOVERY

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Level: Low

GC Column (1): DB-624 ID: 0.18 (mm)

Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
	LCS 240-540740/6	105	91	102	102

	QC LIMITS
DBFM = Dibromofluoromethane (Surr)	73-120
DCA = 1,2-Dichloroethane-d4 (Surr)	62-137
TOL = Toluene-d8 (Surr)	78-122
BFB = 4-Bromofluorobenzene (Surr)	56-136

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Level: Low Lab File ID: 227978.D

Lab ID: LCS 240-540508/5 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Acetone	50.0	47.6	95	50-149	
Benzene	25.0	24.3	97	77-123	
Bromobenzene	25.0	27.5	110	80-122	
Bromochloromethane	25.0	21.5	86	71-121	
Bromodichloromethane	25.0	23.7	95	69-126	
Bromoform	25.0	31.6	127	57-129	
Bromomethane	25.0	13.6	54	36-142	
2-Butanone	50.0	51.3	103	54-156	
Carbon disulfide	25.0	22.8	91	43-140	
Carbon tetrachloride	25.0	27.1	108	55-137	
Chlorobenzene	25.0	25.3	101	80-121	
Chloroethane	25.0	13.0	52	38-152	
2-Chloroethyl vinyl ether	25.0	24.3	97	40-157	
Chloroform	25.0	22.6	90	74-122	
Chloromethane	25.0	20.1	80	47-143	
2-Chlorotoluene	25.0	25.8	103		
4-Chlorotoluene	25.0	26.7	107	80-125	
cis-1,2-Dichloroethene	25.0	23.2	93	77-123	
cis-1,3-Dichloropropene	25.0	24.7	99	64-130	
Dibromochloromethane	25.0	27.2	109	70-124	
1,2-Dibromo-3-Chloropropane	25.0	27.6	111	53-135	
1,2-Dibromoethane	25.0	25.6	103		
Dibromomethane	25.0	27.3	109	67-131	
1,2-Dichlorobenzene	25.0	25.9	104	78-120	
1,3-Dichlorobenzene	25.0	26.1	104	80-120	
1,4-Dichlorobenzene	25.0	26.1	104	80-120	
Dichlorodifluoromethane	25.0	18.9	75	34-153	
1,1-Dichloroethane	25.0	22.9	92	72-127	
1,2-Dichloroethane	25.0	22.0	88	66-128	
1,1-Dichloroethene	25.0	24.3	97	63-134	
1,2-Dichloropropane	25.0	24.1	97	75-133	
1,3-Dichloropropane	25.0	24.9	100		
2,2-Dichloropropane	25.0	24.2	97	48-142	
1,1-Dichloropropene	25.0	24.7	99	71-124	
Ethylbenzene	25.0	24.6	98		
Hexachlorobutadiene	25.0	24.9	100	37-162	
2-Hexanone	50.0	51.9	104	43-167	
Isopropylbenzene	25.0	24.5	98		
Methylene Chloride	25.0	23.7	95		
4-Methyl-2-pentanone	50.0	50.5	101		
Methyl tert-butyl ether	25.0	23.4	93		
m-Xylene & p-Xylene	25.0	24.5	98	80-120	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values

FORM III 8260C

Job No.: 240-171981-1 Lab Name: Eurofins Canton

SDG No.: MSA Frog Mortar Creek

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 227978.D

 Lab ID:
 LCS 240-540508/5
 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	%	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	"
Naphthalene	25.0	23.7	95		
n-Butylbenzene	25.0	22.2	89	62-139	
n-Propylbenzene	25.0	24.9	100	76-127	
o-Xylene	25.0	24.5	98	80-123	
p-Isopropyltoluene	25.0	24.0	96	71-132	
sec-Butylbenzene	25.0	23.2	93	69-135	
Styrene	25.0	24.9	99	80-135	
tert-Butyl alcohol	250	286	115	33-153	
tert-Butylbenzene	25.0	24.0	96	64-134	
1,1,1,2-Tetrachloroethane	25.0	29.1	116	71-124	
1,1,2,2-Tetrachloroethane	25.0	26.3	105	58-157	
Tetrachloroethene	25.0	28.5	114	76-123	
Toluene	25.0	24.3	97	80-123	
trans-1,2-Dichloroethene	25.0	23.4	94	75-124	
trans-1,3-Dichloropropene	25.0	26.2	105	57-129	
1,2,3-Trichlorobenzene	25.0	25.1	100	45-149	
1,2,4-Trichlorobenzene	25.0	25.9	104	44-147	
1,1,1-Trichloroethane	25.0	23.7	95		
Trichloroethene	25.0	26.5	106	70-122	
Trichlorofluoromethane	25.0	17.8	71	30-170	
1,2,3-Trichloropropane	25.0	25.9	104	57-150	
1,1,2-Trichloro-1,2,2-trichflu	25.0	25.0	100	51-146	
oroethane					
1,2,4-Trimethylbenzene	25.0	24.3	97	===	
Vinyl acetate	25.0	24.1	96		
Vinyl chloride	25.0	20.6	82		
Xylenes, Total	50.0	49.0	98	80-121	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

Job No.: 240-171981-1 Lab Name: Eurofins Canton

SDG No.: MSA Frog Mortar Creek

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Diisopropyl ether	25.0	25.4	102	70-124	
Ethyl-t-butyl ether (ETBE)	25.0	23.9	95	62-135	
Tert-amyl-methyl ether (TAME)	25.0	22.3	89	60-128	
1,2,3-Trimethylbenzene	25.0	23.5	94	72-133	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Level: Low Lab File ID: 228008.D

Lab ID: LCS 240-540740/5 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Acetone	50.0	49.6	99		
Benzene	25.0	24.8	99	77-123	
Bromobenzene	25.0	26.1	104	80-122	
Bromochloromethane	25.0	22.3	89	71-121	
Bromodichloromethane	25.0	24.9	100	69-126	
Bromoform	25.0	34.9	140		
Bromomethane	25.0	20.1	80		
2-Butanone	50.0	53.6	107	54-156	
Carbon disulfide	25.0	23.8	95		
Carbon tetrachloride	25.0	28.7	115	55-137	
Chlorobenzene	25.0	26.0	104		
Chloroethane	25.0	17.9	72	38-152	
2-Chloroethyl vinyl ether	25.0	24.5	98	40-157	
Chloroform	25.0	23.6	94	74-122	
Chloromethane	25.0	20.4	82	47-143	
2-Chlorotoluene	25.0	24.9	99		
4-Chlorotoluene	25.0	26.7	107	80-125	
cis-1,2-Dichloroethene	25.0	23.8	95	77-123	
cis-1,3-Dichloropropene	25.0	24.8	99	64-130	
Dibromochloromethane	25.0	30.3	121	70-124	
1,2-Dibromo-3-Chloropropane	25.0	29.3	117	53-135	
1,2-Dibromoethane	25.0	26.7	107		
Dibromomethane	25.0	28.0	112	67-131	
1,2-Dichlorobenzene	25.0	26.0	104	78-120	
1,3-Dichlorobenzene	25.0	26.8	107	80-120	
1,4-Dichlorobenzene	25.0	26.4	105		
Dichlorodifluoromethane	25.0	22.3	89		
1,1-Dichloroethane	25.0	23.0	92	72-127	
1,2-Dichloroethane	25.0	22.9	91	66-128	
1,1-Dichloroethene	25.0	25.1	100	63-134	
1,2-Dichloropropane	25.0	24.1	96		
1,3-Dichloropropane	25.0	25.3	101	68-139	
2,2-Dichloropropane	25.0	24.9	100		
1,1-Dichloropropene	25.0	24.1	96	71-124	
Ethylbenzene	25.0	25.2	101	80-121	
Hexachlorobutadiene	25.0	21.1	84		
2-Hexanone	50.0	57.5	115	43-167	
Isopropylbenzene	25.0	25.1	100	74-128	
Methylene Chloride	25.0	24.3	97	71-125	
4-Methyl-2-pentanone	50.0	54.7	109	46-158	
Methyl tert-butyl ether	25.0	23.7	95	65-126	
m-Xylene & p-Xylene	25.0	25.5	102	80-120	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values

FORM III 8260C

Job No.: 240-171981-1 Lab Name: Eurofins Canton

SDG No.: MSA Frog Mortar Creek

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 228008.D

 Lab ID:
 LCS 240-540740/5
 Client ID:

	OD THE	T 0.0	T 00	0.7	
	SPIKE	LCS	LCS	QC	,,
	ADDED	CONCENTRATION	왕	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Naphthalene	25.0	24.4	98		
n-Butylbenzene	25.0	22.5	90		
n-Propylbenzene	25.0	24.2	97	· ·	
o-Xylene	25.0	25.6	102		
p-Isopropyltoluene	25.0	24.5	98	71-132	
sec-Butylbenzene	25.0	23.8	95	69-135	
Styrene	25.0	25.8	103	80-135	
tert-Butyl alcohol	250	311	124	33-153	
tert-Butylbenzene	25.0	24.2	97	64-134	
1,1,1,2-Tetrachloroethane	25.0	31.3	125	71-124	*+
1,1,2,2-Tetrachloroethane	25.0	25.7	103	58-157	
Tetrachloroethene	25.0	29.3	117	76-123	
Toluene	25.0	24.9	100	80-123	
trans-1,2-Dichloroethene	25.0	24.4	97	75-124	
trans-1,3-Dichloropropene	25.0	27.3	109	57-129	
1,2,3-Trichlorobenzene	25.0	24.1	96	45-149	
1,2,4-Trichlorobenzene	25.0	24.2	97	44-147	
1,1,1-Trichloroethane	25.0	25.3	101	64-131	
Trichloroethene	25.0	26.6	106	70-122	
Trichlorofluoromethane	25.0	21.2	85	30-170	
1,2,3-Trichloropropane	25.0	26.4	106	57-150	
1,1,2-Trichloro-1,2,2-trichflu	25.0	25.3	101	51-146	
oroethane					
1,2,4-Trimethylbenzene	25.0	24.9	99	77-129	
Vinyl acetate	25.0	30.9	124	44-145	
Vinyl chloride	25.0	20.7	83	60-144	
Xylenes, Total	50.0	51.1	102	80-121	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

Job No.: 240-171981-1 Lab Name: Eurofins Canton

SDG No.: MSA Frog Mortar Creek

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 228009.D

 Lab ID:
 LCS 240-540740/6
 Client ID:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC	QC LIMITS REC	#
Diisopropyl ether	25.0	25.1	100	70-124	
Ethyl-t-butyl ether (ETBE)	25.0	23.6	94	62-135	
Tert-amyl-methyl ether (TAME)	25.0	22.5	90	60-128	
1,2,3-Trimethylbenzene	25.0	24.2	97	72-133	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: 227981.D Lab Sample ID: MB 240-540508/8

Matrix: Water Heated Purge: (Y/N) N

Instrument ID: A3UX22 Date Analyzed: 08/29/2022 13:29

GC Column: DB-624 ID: 0.18 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 240-540508/5	227978.D	08/29/2022 12:18
	LCS 240-540508/6	227979.D	08/29/2022 12:41
MSA-SW37A-082222	240-171981-1	227982.D	08/29/2022 13:53
MSA-SW37B-082222	240-171981-2	227983.D	08/29/2022 14:17
MSA-SW37C-082222	240-171981-3	227984.D	08/29/2022 14:40
MSA-SW37D-082222	240-171981-4	227985.D	08/29/2022 15:04
MSA-SW38A-082222	240-171981-5	227986.D	08/29/2022 15:27
MSA-SW38B-082222	240-171981-6	227987.D	08/29/2022 15:51
MSA-SW38C-082222	240-171981-7	227988.D	08/29/2022 16:15
MSA-SW38D-082222	240-171981-8	227989.D	08/29/2022 16:38
MSA-SW40A-082222	240-171981-9	227990.D	08/29/2022 17:02
MSA-SW40B-082222	240-171981-10	227991.D	08/29/2022 17:26
MSA-SW40C-082222	240-171981-11	227992.D	08/29/2022 17:49
MSA-SW40D-082222	240-171981-12	227993.D	08/29/2022 18:13
MSA-SW41A-082222	240-171981-13	227994.D	08/29/2022 18:37
MSA-SW41B-082222	240-171981-14	227995.D	08/29/2022 19:01
MSA-SW41C-082222	240-171981-15	227996.D	08/29/2022 19:24
MSA-SW41D-082222	240-171981-16	227997.D	08/29/2022 19:48
MSA-SW42A-082222	240-171981-17	227998.D	08/29/2022 20:11
MSA-SW42B-082222	240-171981-18	227999.D	08/29/2022 20:35
MSA-SW42C-082222	240-171981-19	228000.D	08/29/2022 20:59

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: 228011.D Lab Sample ID: MB 240-540740/8

Matrix: Water Heated Purge: (Y/N) N

Instrument ID: <u>A3UX22</u> Date Analyzed: <u>08/30/2022 16:09</u>

GC Column: DB-624 ID: 0.18 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB		
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALY	ZED
	LCS 240-540740/5	228008.D	08/30/2022	14:58
	LCS 240-540740/6	228009.D	08/30/2022	15:21
TB-082222	240-171981-25	228013.D	08/30/2022	16:57
MSA-SWEQB-082222	240-171981-30	228014.D	08/30/2022	17:20
MSA-SW42D-082222	240-171981-20	228015.D	08/30/2022	17:44
MSA-SW43A-082222	240-171981-21	228016.D	08/30/2022	18:08
MSA-SW43B-082222	240-171981-22	228017.D	08/30/2022	18:31
MSA-SW43C-082222	240-171981-23	228018.D	08/30/2022	18:55
MSA-SW43D-082222	240-171981-24	228019.D	08/30/2022	19:18
MSA-SW46A-082222	240-171981-26	228020.D	08/30/2022	19:42
MSA-SW47A-082222	240-171981-27	228021.D	08/30/2022	20:06
MSA-SW48A-082222	240-171981-28	228022.D	08/30/2022	20:29
MSA-SW49A-082222	240-171981-29	228023.D	08/30/2022	20:53

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: BFB22244.D BFB Injection Date: 04/07/2022

Instrument ID: A3UX22 BFB Injection Time: 15:03

Analysis Batch No.: 522080

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	16.5	
75	30.0 - 60.0 % of mass 95	47.2	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.5	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	Greater than 50% of mass 95	77.0	
175	5.0 - 9.0 % of mass 174	5.7	(7.4) 1
176	95.0 - 101.0 % of mass 174	74.6	(96.9) 1
177	5.0 - 9.0 % of mass 176	4.8	(6.4) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 240-522080/3	225035.D	04/07/2022	15:46
	IC 240-522080/4	225036.D	04/07/2022	16:09
	IC 240-522080/5	225037.D	04/07/2022	16:33
	IC 240-522080/6	225038.D	04/07/2022	16:56
	IC 240-522080/7	225039.D	04/07/2022	17:20
	ICIS 240-522080/8	225040.D	04/07/2022	17:44
	IC 240-522080/9	225041.D	04/07/2022	18:07
	IC 240-522080/10	225042.D	04/07/2022	18:31
	IC 240-522080/11	225043.D	04/07/2022	18:55
	IC 240-522080/18	225050.D	04/07/2022	21:40
	IC 240-522080/19	225051.D	04/07/2022	22:04
	IC 240-522080/20	225052.D	04/07/2022	22:28
	IC 240-522080/21	225053.D	04/07/2022	22:52
	IC 240-522080/22	225054.D	04/07/2022	23:15
	IC 240-522080/23	225055.D	04/07/2022	23:39
	IC 240-522080/24	225056.D	04/08/2022	0:02
	IC 240-522080/25	225057.D	04/08/2022	0:26
	IC 240-522080/26	225058.D	04/08/2022	0:50
	ICV 240-522080/28	225060.D	04/08/2022	1:37

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: BFB22256.D BFB Injection Date: 04/28/2022

Instrument ID: A3UX22 BFB Injection Time: 15:10

Analysis Batch No.: 524416

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	20.2	
75	30.0 - 60.0 % of mass 95	51.6	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.6	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	Greater than 50% of mass 95	65.3	
175	5.0 - 9.0 % of mass 174	4.9	(7.4) 1
176	95.0 - 101.0 % of mass 174	62.5	(95.7) 1
177	5.0 - 9.0 % of mass 176	4.2	(6.7) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 240-524416/3	225395.D	04/28/2022	15:53
	IC 240-524416/4	225396.D	04/28/2022	16:16
	IC 240-524416/5	225397.D	04/28/2022	16:40
	IC 240-524416/6	225398.D	04/28/2022	17:04
	IC 240-524416/7	225399.D	04/28/2022	17:27
	ICIS 240-524416/8	225400.D	04/28/2022	17:51
	IC 240-524416/9	225401.D	04/28/2022	18:15
	IC 240-524416/10	225402.D	04/28/2022	18:39
	IC 240-524416/11	225403.D	04/28/2022	19:03
	ICV 240-524416/14	225406.D	04/28/2022	20:14

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: BFB22344.D BFB Injection Date: 08/29/2022

Instrument ID: A3UX22 BFB Injection Time: 10:47

Analysis Batch No.: 540508

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	18.0	
75	30.0 - 60.0 % of mass 95	48.4	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.8	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	Greater than 50% of mass 95	77.2	
175	5.0 - 9.0 % of mass 174	5.9	(7.7) 1
176	95.0 - 101.0 % of mass 174	74.6	(96.6) 1
177	5.0 - 9.0 % of mass 176	5.0	(6.7) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 240-540508/3	227976.D	08/29/2022	11:30
	CCV 240-540508/4	227977.D	08/29/2022	11:54
	LCS 240-540508/5	227978.D	08/29/2022	12:18
	LCS 240-540508/6	227979.D	08/29/2022	12:41
	MB 240-540508/8	227981.D	08/29/2022	13:29
MSA-SW37A-082222	240-171981-1	227982.D	08/29/2022	13:53
MSA-SW37B-082222	240-171981-2	227983.D	08/29/2022	14:17
MSA-SW37C-082222	240-171981-3	227984.D	08/29/2022	14:40
MSA-SW37D-082222	240-171981-4	227985.D	08/29/2022	15:04
MSA-SW38A-082222	240-171981-5	227986.D	08/29/2022	15:27
MSA-SW38B-082222	240-171981-6	227987.D	08/29/2022	15:51
MSA-SW38C-082222	240-171981-7	227988.D	08/29/2022	16:15
MSA-SW38D-082222	240-171981-8	227989.D	08/29/2022	16:38
MSA-SW40A-082222	240-171981-9	227990.D	08/29/2022	17:02
MSA-SW40B-082222	240-171981-10	227991.D	08/29/2022	17:26
MSA-SW40C-082222	240-171981-11	227992.D	08/29/2022	17:49
MSA-SW40D-082222	240-171981-12	227993.D	08/29/2022	18:13
MSA-SW41A-082222	240-171981-13	227994.D	08/29/2022	18:37
MSA-SW41B-082222	240-171981-14	227995.D	08/29/2022	19:01
MSA-SW41C-082222	240-171981-15	227996.D	08/29/2022	19:24
MSA-SW41D-082222	240-171981-16	227997.D	08/29/2022	19:48
MSA-SW42A-082222	240-171981-17	227998.D	08/29/2022	20:11
MSA-SW42B-082222	240-171981-18	227999.D	08/29/2022	20:35
MSA-SW42C-082222	240-171981-19	228000.D	08/29/2022	20:59

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab File ID: BFB22346.D BFB Injection Date: 08/30/2022

Instrument ID: A3UX22 BFB Injection Time: 13:27

Analysis Batch No.: 540740

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	17.1		
75	30.0 - 60.0 % of mass 95	47.2		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	6.4		
173	Less than 2.0 % of mass 174	0.2	(0.2) 1	
174	Greater than 50% of mass 95	82.1		
175	5.0 - 9.0 % of mass 174	6.0	(7.3) 1	
176	95.0 - 101.0 % of mass 174	78.8	(96.0) 1	
177	5.0 - 9.0 % of mass 176	5.0	(6.3) 2	

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 240-540740/3	228006.D	08/30/2022	14:10
	CCV 240-540740/4	228007.D	08/30/2022	14:34
	LCS 240-540740/5	228008.D	08/30/2022	14:58
	LCS 240-540740/6	228009.D	08/30/2022	15:21
	MB 240-540740/8	228011.D	08/30/2022	16:09
TB-082222	240-171981-25	228013.D	08/30/2022	16:57
MSA-SWEQB-082222	240-171981-30	228014.D	08/30/2022	17:20
MSA-SW42D-082222	240-171981-20	228015.D	08/30/2022	17:44
MSA-SW43A-082222	240-171981-21	228016.D	08/30/2022	18:08
MSA-SW43B-082222	240-171981-22	228017.D	08/30/2022	18:31
MSA-SW43C-082222	240-171981-23	228018.D	08/30/2022	18:55
MSA-SW43D-082222	240-171981-24	228019.D	08/30/2022	19:18
MSA-SW46A-082222	240-171981-26	228020.D	08/30/2022	19:42
MSA-SW47A-082222	240-171981-27	228021.D	08/30/2022	20:06
MSA-SW48A-082222	240-171981-28	228022.D	08/30/2022	20:29
MSA-SW49A-082222	240-171981-29	228023.D	08/30/2022	20:53

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Sample No.: ICIS 240-522080/8 Date Analyzed: 04/07/2022 17:44

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): 225040.D Heated Purge: (Y/N) N

Calibration ID: 65265

	FB		CBNZd5		DCBd4	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT	1111015	6.96	814036	10.17	432421	12.18
UPPER LIMIT	2222030	7.46	1628072	10.67	864842	12.68
LOWER LIMIT	555508	6.46	407018	9.67	216211	11.68
LAB SAMPLE ID CLIENT SAMPLE ID						
ICV 240-522080/28	1023963	6.96	750080	10.17	392850	12.18

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\sharp}$ Column used to flag values outside QC limits

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Sample No.: ICIS 240-524416/8 Date Analyzed: 04/28/2022 17:51

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): 225400.D Heated Purge: (Y/N) N

Calibration ID: 65475

		FB		CBNZd5		DCBd4	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MI	D-POINT	1311546	6.96	970370	10.17	502732	12.18
UPPER LIMIT		2623092	7.46	1940740	10.67	1005464	12.68
LOWER LIMIT		655773	6.46	485185	9.67	251366	11.68
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 240-524416/14		1358856	6.96	1012778	10.17	520201	12.18
CCVIS 240-540508/3		1109816	6.96	823078	10.17	434851	12.17
CCVIS 240-540740/3		691024	6.96	556964	10.17	287841	12.17

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\sharp}$ Column used to flag values outside QC limits

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Sample No.: CCVIS 240-540508/3 Date Analyzed: 08/29/2022 11:30

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): 227976.D Heated Purge: (Y/N) N

Calibration ID: 65475

		FB		CBNZc	15	DCBd	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		1109816	6.96	823078	10.17	434851	12.17
UPPER LIMIT		2219632	7.46	1646156	10.67	869702	12.67
LOWER LIMIT		554908	6.46	411539	9.67	217426	11.67
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCV 240-540508/4		1102555	6.96	834790	10.17	424799	12.17
LCS 240-540508/5		1131958	6.96	849189	10.17	437484	12.17
LCS 240-540508/6		1113684	6.96	838802	10.17	433403	12.17
MB 240-540508/8		1091309	6.96	749476	10.17	400055	12.17
240-171981-1	MSA-SW37A-082222	1076521	6.96	826366	10.17	425626	12.17
240-171981-2	MSA-SW37B-082222	1069482	6.96	817002	10.17	420039	12.17
240-171981-3	MSA-SW37C-082222	1052529	6.96	807561	10.17	423946	12.17
240-171981-4	MSA-SW37D-082222	1072179	6.96	815052	10.17	406007	12.17
240-171981-5	MSA-SW38A-082222	1043535	6.96	792197	10.17	408286	12.17
240-171981-6	MSA-SW38B-082222	1050723	6.96	808538	10.17	418502	12.17
240-171981-7	MSA-SW38C-082222	1051795	6.95	795543	10.17	416304	12.17
240-171981-8	MSA-SW38D-082222	1054783	6.96	818013	10.17	431009	12.17
240-171981-9	MSA-SW40A-082222	1031648	6.96	782921	10.17	409455	12.17
240-171981-10	MSA-SW40B-082222	1039614	6.96	801312	10.17	394707	12.17
240-171981-11	MSA-SW40C-082222	1047102	6.96	802763	10.17	407778	12.17
240-171981-12	MSA-SW40D-082222	1049982	6.96	796242	10.17	415744	12.17
240-171981-13	MSA-SW41A-082222	1055060	6.96	808128	10.17	426682	12.17
240-171981-14	MSA-SW41B-082222	1045814	6.96	797396	10.17	419524	12.17
240-171981-15	MSA-SW41C-082222	1053774	6.96	800491	10.17	425012	12.17
240-171981-16	MSA-SW41D-082222	1059525	6.96	804281	10.17	428012	12.17
240-171981-17	MSA-SW42A-082222	1032171	6.96	795217	10.17	395222	12.17
240-171981-18	MSA-SW42B-082222	1021261	6.96	778535	10.17	400380	12.17
240-171981-19	MSA-SW42C-082222	1033523	6.96	793404	10.17	417321	12.17

FB = Fluorobenzene

CBNZd5 = Chlorobenzene-d5

DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Sample No.: CCVIS 240-540740/3 Date Analyzed: 08/30/2022 14:10

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): 228006.D Heated Purge: (Y/N) N

Calibration ID: 65475

		FB		CBNZc	15	DCBd.	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		691024	6.96	556964	10.17	287841	12.17
UPPER LIMIT		1382048	7.46	1113928	10.67	575682	12.67
LOWER LIMIT		345512	6.46	278482	9.67	143921	11.67
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCV 240-540740/4		700105	6.96	537693	10.17	281020	12.17
LCS 240-540740/5		717755	6.95	538931	10.17	297318	12.17
LCS 240-540740/6		758674	6.96	576012	10.17	287673	12.17
MB 240-540740/8		670858	6.96	556544	10.17	274427	12.17
240-171981-25	TB-082222	733884	6.96	548489	10.17	280800	12.17
240-171981-30	MSA-SWEQB-082222	725060	6.96	548030	10.17	272574	12.17
240-171981-20	MSA-SW42D-082222	721141	6.95	561563	10.17	288675	12.17
240-171981-21	MSA-SW43A-082222	707179	6.96	544388	10.17	274851	12.17
240-171981-22	MSA-SW43B-082222	737860	6.96	559445	10.17	289208	12.17
240-171981-23	MSA-SW43C-082222	727046	6.95	553553	10.17	284155	12.17
240-171981-24	MSA-SW43D-082222	725838	6.95	559788	10.17	283659	12.17
240-171981-26	MSA-SW46A-082222	733468	6.96	568431	10.17	293142	12.17
240-171981-27	MSA-SW47A-082222	731473	6.96	562277	10.17	284944	12.17
240-171981-28	MSA-SW48A-082222	722685	6.96	553511	10.17	278879	12.17
240-171981-29	MSA-SW49A-082222	725792	6.96	559301	10.17	287992	12.17

FB = Fluorobenzene

CBNZd5 = Chlorobenzene-d5

DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37A-082222 Lab Sample ID: 240-171981-1

Matrix: Water Lab File ID: 227982.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:40

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 13:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37A-082222 Lab Sample ID: 240-171981-1

Matrix: Water Lab File ID: 227982.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:40

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 13:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37A-082222 Lab Sample ID: 240-171981-1

Matrix: Water Lab File ID: 227982.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:40

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 13:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	106		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		62-137
2037-26-5	Toluene-d8 (Surr)	102		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW37A-082222 Lab Sample ID: 240-171981-1 Matrix: Water Lab File ID: 227982.D Analysis Method: 8260C Date Collected: 08/22/2022 12:40 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 13:53 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37B-082222 Lab Sample ID: 240-171981-2

Matrix: Water Lab File ID: 227983.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:42

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 14:17

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37B-082222 Lab Sample ID: 240-171981-2

Matrix: Water Lab File ID: 227983.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:42

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 14:17

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37B-082222 Lab Sample ID: 240-171981-2

Matrix: Water Lab File ID: 227983.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:42

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 14:17

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	97		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		62-137
2037-26-5	Toluene-d8 (Surr)	104		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW37B-082222 Lab Sample ID: 240-171981-2 Matrix: Water Lab File ID: 227983.D Analysis Method: 8260C Date Collected: 08/22/2022 12:42 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 14:17 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37C-082222 Lab Sample ID: 240-171981-3

Matrix: Water Lab File ID: 227984.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:44

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 14:40

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: _____ GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37C-082222 Lab Sample ID: 240-171981-3

Matrix: Water Lab File ID: 227984.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:44

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 14:40

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37C-082222 Lab Sample ID: 240-171981-3

Matrix: Water Lab File ID: 227984.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:44

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 14:40

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	103		62-137
2037-26-5	Toluene-d8 (Surr)	102		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW37C-082222 Lab Sample ID: 240-171981-3 Matrix: Water Lab File ID: 227984.D Analysis Method: 8260C Date Collected: 08/22/2022 12:44 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 14:40 ___ Dilution Factor: 1 Soil Aliquot Vol: GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37D-082222 Lab Sample ID: 240-171981-4

Matrix: Water Lab File ID: 227985.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:47

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:04

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

			1		
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	Ū	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37D-082222 Lab Sample ID: 240-171981-4

Matrix: Water Lab File ID: 227985.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:47

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:04

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW37D-082222 Lab Sample ID: 240-171981-4

Matrix: Water Lab File ID: 227985.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:47

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:04

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	99		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	103		62-137
2037-26-5	Toluene-d8 (Surr)	103		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW37D-082222 Lab Sample ID: 240-171981-4 Matrix: Water Lab File ID: 227985.D Analysis Method: 8260C Date Collected: 08/22/2022 12:47 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:04 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227986.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:53

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:27

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227986.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:53

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:27

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227986.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:53

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:27

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

Purge Volume: $5.0 \, (\text{mL})$ Heated Purge: $(Y/N) \, N$ pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		62-137
2037-26-5	Toluene-d8 (Surr)	103		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW38A-082222 Lab Sample ID: 240-171981-5 Matrix: Water Lab File ID: 227986.D Analysis Method: 8260C Date Collected: 08/22/2022 11:53 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:27 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38B-082222 Lab Sample ID: 240-171981-6

Matrix: Water Lab File ID: 227987.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:55

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:51

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227987.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:55

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:51

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227987.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:55

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 15:51

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	97		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	103		62-137
2037-26-5	Toluene-d8 (Surr)	102		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW38B-082222 Lab Sample ID: 240-171981-6 Matrix: Water Lab File ID: 227987.D Analysis Method: 8260C Date Collected: 08/22/2022 11:55 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 15:51 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38C-082222 Lab Sample ID: 240-171981-7

Matrix: Water Lab File ID: 227988.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:58

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 16:15

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38C-082222 Lab Sample ID: 240-171981-7

Matrix: Water Lab File ID: 227988.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:58

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 16:15

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38C-082222 Lab Sample ID: 240-171981-7

Matrix: Water Lab File ID: 227988.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:58

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 16:15

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		62-137
2037-26-5	Toluene-d8 (Surr)	102		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW38C-082222 Lab Sample ID: 240-171981-7 Matrix: Water Lab File ID: 227988.D Analysis Method: 8260C Date Collected: 08/22/2022 11:58 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 16:15 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38D-082222 Lab Sample ID: 240-171981-8

Matrix: Water Lab File ID: 227989.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:00

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 16:38

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38D-082222 Lab Sample ID: 240-171981-8

Matrix: Water Lab File ID: 227989.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:00

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 16:38

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

		· I			
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW38D-082222

Matrix: Water

Lab Sample ID: 240-171981-8

Lab File ID: 227989.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:00

Sample wt/vol: 5 (mL)

Date Analyzed: 08/29/2022 16:38

Soil Aliquot Vol:

Dilution Factor: 1

Soil Extract Vol.:

GC Column: DB-624

ID: 0.18 (mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540508 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		62-137
2037-26-5	Toluene-d8 (Surr)	100		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW38D-082222 Lab Sample ID: 240-171981-8 Matrix: Water Lab File ID: 227989.D Analysis Method: 8260C Date Collected: 08/22/2022 12:00 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 16:38 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40A-082222 Lab Sample ID: 240-171981-9

Matrix: Water Lab File ID: 227990.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:11

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 17:02

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40A-082222 Lab Sample ID: 240-171981-9

Matrix: Water Lab File ID: 227990.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:11

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 17:02

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227990.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:11

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:02

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	95		56-136
1868-53-7	Dibromofluoromethane (Surr)	104		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	101		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW40A-082222 Lab Sample ID: 240-171981-9 Matrix: Water Lab File ID: 227990.D Analysis Method: 8260C Date Collected: 08/22/2022 12:11 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 17:02 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227991.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:14

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:26

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40B-082222 Lab Sample ID: 240-171981-10

Matrix: Water Lab File ID: 227991.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:14

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:26

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) $\underline{\text{Low}}$ Analysis Batch No.: 540508 Units: ug/L

			1		
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40B-082222 Lab Sample ID: 240-171981-10

Matrix: Water Lab File ID: 227991.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:14

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:26

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	92		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		62-137
2037-26-5	Toluene-d8 (Surr)	101		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW40B-082222 Lab Sample ID: 240-171981-10 Matrix: Water Lab File ID: 227991.D Analysis Method: 8260C Date Collected: 08/22/2022 12:14 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 17:26 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40C-082222 Lab Sample ID: 240-171981-11

Matrix: Water Lab File ID: 227992.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:17

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:49

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40C-082222 Lab Sample ID: 240-171981-11

Matrix: Water Lab File ID: 227992.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:17

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:49

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40C-082222

Matrix: Water

Lab Sample ID: 240-171981-11

Lab File ID: 227992.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:17

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 17:49

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540508 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	94		56-136
1868-53-7	Dibromofluoromethane (Surr)	105		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		62-137
2037-26-5	Toluene-d8 (Surr)	99		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW40C-082222 Lab Sample ID: 240-171981-11 Matrix: Water Lab File ID: 227992.D Analysis Method: 8260C Date Collected: 08/22/2022 12:17 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 17:49 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40D-082222 Lab Sample ID: 240-171981-12

Matrix: Water Lab File ID: 227993.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:20

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 18:13

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40D-082222 Lab Sample ID: 240-171981-12

Matrix: Water Lab File ID: 227993.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:20

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 18:13

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW40D-082222 Lab Sample ID: 240-171981-12

Matrix: Water Lab File ID: 227993.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:20

Date Analyzed: 08/29/2022 18:13 Sample wt/vol: 5(mL)

Soil Aliquot Vol: Dilution Factor: 1

GC Column: DB-624 ID: 0.18(mm) Soil Extract Vol.:

Purge Volume: 5.0(mL) Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	103		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	100		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW40D-082222 Lab Sample ID: 240-171981-12 Matrix: Water Lab File ID: 227993.D Analysis Method: 8260C Date Collected: 08/22/2022 12:20 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 18:13 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41A-082222 Lab Sample ID: 240-171981-13

Matrix: Water Lab File ID: 227994.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:34

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 18:37

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227994.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:34

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 18:37

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227994.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:34

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 18:37

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	94		56-136
1868-53-7	Dibromofluoromethane (Surr)	105		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		62-137
2037-26-5	Toluene-d8 (Surr)	99		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW41A-082222 Lab Sample ID: 240-171981-13 Matrix: Water Lab File ID: 227994.D Analysis Method: 8260C Date Collected: 08/22/2022 11:34 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 18:37 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41B-082222 Lab Sample ID: 240-171981-14

Matrix: Water Lab File ID: 227995.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:38

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 19:01

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41B-082222 Lab Sample ID: 240-171981-14

Matrix: Water Lab File ID: 227995.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:38

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:01

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41B-082222 Lab Sample ID: 240-171981-14

Matrix: Water Lab File ID: 227995.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:38

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:01

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	93		56-136
1868-53-7	Dibromofluoromethane (Surr)	104		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	98		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW41B-082222 Lab Sample ID: 240-171981-14 Matrix: Water Lab File ID: 227995.D Analysis Method: 8260C Date Collected: 08/22/2022 11:38 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 19:01 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227996.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:40

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:24

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Analysis Batch No.: 540508

Client Sample ID: MSA-SW41C-082222 Lab Sample ID: 240-171981-15

Matrix: Water Lab File ID: 227996.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:40

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:24

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Soil Extract Vol.: _____ GC Column: DB-624 ID: 0.18(mm)

Units: ug/L

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	Ū	1.0	0.41

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41C-082222

Matrix: Water

Lab Sample ID: 240-171981-15

Lab File ID: 227996.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:40

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:24

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540508 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	95		56-136
1868-53-7	Dibromofluoromethane (Surr)	105		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		62-137
2037-26-5	Toluene-d8 (Surr)	99		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW41C-082222 Lab Sample ID: 240-171981-15 Matrix: Water Lab File ID: 227996.D Analysis Method: 8260C Date Collected: 08/22/2022 11:40 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 19:24 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227997.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:43

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:48

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	Ū	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227997.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:43

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 19:48

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW41D-082222 Lab Sample ID: 240-171981-16

Matrix: Water Lab File ID: 227997.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:43

Date Analyzed: 08/29/2022 19:48 Sample wt/vol: 5(mL)

Soil Aliquot Vol: Dilution Factor: 1

GC Column: DB-624 ID: 0.18(mm) Soil Extract Vol.:

Purge Volume: 5.0(mL) Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	93		56-136
1868-53-7	Dibromofluoromethane (Surr)	102		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		62-137
2037-26-5	Toluene-d8 (Surr)	98		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW41D-082222 Lab Sample ID: 240-171981-16 Matrix: Water Lab File ID: 227997.D Analysis Method: 8260C Date Collected: 08/22/2022 11:43 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 19:48 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227998.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:26

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 20:11

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Sample ID: 240-171981-17
Lab File ID: 227998.D
Date Collected: 08/22/2022 12:26

Date Analyzed: 08/29/2022 20:11

Soil Aliquot Vol: _____ Dilution Factor: 1____

Lab Name: Eurofins Canton Job No.: 240-171981-1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

% Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u>

Analysis Batch No.: 540508 Units: ug/L

Sample wt/vol: 5(mL)

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42A-082222 Lab Sample ID: 240-171981-17

Matrix: Water Lab File ID: 227998.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:26

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:11

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	92		56-136
1868-53-7	Dibromofluoromethane (Surr)	104		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		62-137
2037-26-5	Toluene-d8 (Surr)	97		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW42A-082222 Lab Sample ID: 240-171981-17 Matrix: Water Lab File ID: 227998.D Analysis Method: 8260C Date Collected: 08/22/2022 12:26 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 20:11 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42B-082222 Lab Sample ID: 240-171981-18

Matrix: Water Lab File ID: 227999.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:28

Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 20:35

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

			1		
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	Ū	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 227999.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:28

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:35

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42B-082222 Lab Sample ID: 240-171981-18

Matrix: Water Lab File ID: 227999.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:28

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:35

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	93		56-136
1868-53-7	Dibromofluoromethane (Surr)	104		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		62-137
2037-26-5	Toluene-d8 (Surr)	98		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW42B-082222 Lab Sample ID: 240-171981-18 Matrix: Water Lab File ID: 227999.D Analysis Method: 8260C Date Collected: 08/22/2022 12:28 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 20:35 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228000.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:31

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:59

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228000.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:31

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:59

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228000.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:31

Sample wt/vol: 5 (mL) Date Analyzed: 08/29/2022 20:59

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	91		56-136
1868-53-7	Dibromofluoromethane (Surr)	103		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	96		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW42C-082222 Lab Sample ID: 240-171981-19 Matrix: Water Lab File ID: 228000.D Analysis Method: 8260C Date Collected: 08/22/2022 12:31 Sample wt/vol: 5(mL) Date Analyzed: 08/29/2022 20:59 Soil Aliquot Vol: _____ Dilution Factor: 1____ GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228015.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:35

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 17:44

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW42D-082222 Lab Sample ID: 240-171981-20

Matrix: Water Lab File ID: 228015.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:35

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 17:44

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228015.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:35

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 17:44

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	97		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		62-137
2037-26-5	Toluene-d8 (Surr)	101		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW42D-082222 Lab Sample ID: 240-171981-20 Matrix: Water Lab File ID: 228015.D Analysis Method: 8260C Date Collected: 08/22/2022 12:35 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 17:44 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43A-082222 Lab Sample ID: 240-171981-21

Matrix: Water Lab File ID: 228016.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:12

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:08

Soil Aliquot Vol: ____ Dilution Factor: 1____

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek	
Client Sample ID: MSA-SW43A-082222	Lab Sample ID: 240-171981-21
Matrix: Water	
Analysis Method: 8260C	Date Collected: 08/22/2022 11:12
Sample wt/vol: 5(mL)	Date Analyzed: 08/30/2022 18:08
Soil Aliquot Vol:	Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

Purge Volume: 5.0 (mL) Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

Analysis Batch No.: 540740 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Job No.: 240-171981-1

 SDG No.: MSA Frog Mortar Creek

 Client Sample ID: MSA-SW43A-082222
 Lab Sample ID: 240-171981-21

 Matrix: Water
 Lab File ID: 228016.D

 Analysis Method: 8260C
 Date Collected: 08/22/2022 11:12

Sample wt/vol: 5 (mL)

Date Collected: 08/30/2022 11:12

Date Analyzed: 08/30/2022 18:08

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: DB-624 ID: 0.18(mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540740 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		62-137
2037-26-5	Toluene-d8 (Surr)	103		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW43A-082222 Lab Sample ID: 240-171981-21 Matrix: Water Lab File ID: 228016.D Analysis Method: 8260C Date Collected: 08/22/2022 11:12 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 18:08 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228017.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:17

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:31

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228017.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:17

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:31

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43B-082222 Lab Sample ID: 240-171981-22

Matrix: Water Lab File ID: 228017.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:17

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:31

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	106		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		62-137
2037-26-5	Toluene-d8 (Surr)	100		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW43B-082222 Lab Sample ID: 240-171981-22 Matrix: Water Lab File ID: 228017.D Analysis Method: 8260C Date Collected: 08/22/2022 11:17 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 18:31 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43C-082222 Lab Sample ID: 240-171981-23

Matrix: Water Lab File ID: 228018.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:19

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:55

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228018.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:19

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:55

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228018.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:19

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 18:55

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		62-137
2037-26-5	Toluene-d8 (Surr)	102		78-122

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW43C-082222 Lab Sample ID: 240-171981-23 Matrix: Water Lab File ID: 228018.D Analysis Method: 8260C Date Collected: 08/22/2022 11:19 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 18:55 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228019.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:25

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 19:18

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Analysis Batch No.: 540740

Client Sample ID: MSA-SW43D-082222 Lab Sample ID: 240-171981-24

Matrix: Water Lab File ID: 228019.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:25

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 19:18

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

Units: ug/L

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW43D-082222 Lab Sample ID: 240-171981-24

Matrix: Water Lab File ID: 228019.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:25

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 19:18

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		62-137
2037-26-5	Toluene-d8 (Surr)	100		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW43D-082222 Lab Sample ID: 240-171981-24 Matrix: Water Lab File ID: 228019.D Analysis Method: 8260C Date Collected: 08/22/2022 11:25 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 19:18 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624 ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: ____ Level: (low/med) Low Analysis Batch No.: 540740 Units: ug/L MATCH

RT

RESULT

Q

1.0 U

QUALITY

COMPOUND NAME

Chlorodifluoromethane TIC

CAS NO.

75-45-6

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: TB-082222 Lab Sample ID: 240-171981-25

Matrix: Water Lab File ID: 228013.D

Analysis Method: 8260C Date Collected: 08/22/2022 00:00

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 16:57

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: TB-082222 Lab Sample ID: 240-171981-25

Matrix: Water Lab File ID: 228013.D

Analysis Method: 8260C Date Collected: 08/22/2022 00:00

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 16:57

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

Purge Volume: $5.0 \, (\text{mL})$ Heated Purge: $(Y/N) \, N$ pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: TB-082222 Lab Sample ID: 240-171981-25

Matrix: Water Lab File ID: 228013.D

Analysis Method: 8260C Date Collected: 08/22/2022 00:00

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 16:57

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	106		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	94		62-137
2037-26-5	Toluene-d8 (Surr)	104		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: TB-082222 Lab Sample ID: 240-171981-25 Matrix: Water Lab File ID: 228013.D Analysis Method: 8260C Date Collected: 08/22/2022 00:00 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 16:57 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624 _____ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228020.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:22

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 19:42

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW46A-082222

Lab Sample ID: 240-171981-26

Matrix: Water

Lab File ID: 228020.D

Analysis Method: 8260C

Date Collected: 08/22/2022 12:22

Sample wt/vol: 5(mL)

Date Analyzed: 08/30/2022 19:42

Soil Aliquot Vol:

Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

Lab Name: Eurofins Canton Job No.: 240-171981-1

% Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW46A-082222 Lab Sample ID: 240-171981-26

Matrix: Water Lab File ID: 228020.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:22

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 19:42

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	95		56-136
1868-53-7	Dibromofluoromethane (Surr)	106		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		62-137
2037-26-5	Toluene-d8 (Surr)	99		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW46A-082222 Lab Sample ID: 240-171981-26 Matrix: Water Lab File ID: 228020.D Analysis Method: 8260C Date Collected: 08/22/2022 12:22 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 19:42 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW47A-082222 Lab Sample ID: 240-171981-27

Matrix: Water Lab File ID: 228021.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:05

Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 20:06

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228021.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:05

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:06

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW47A-082222 Lab Sample ID: 240-171981-27

Matrix: Water Lab File ID: 228021.D

Analysis Method: 8260C Date Collected: 08/22/2022 12:05

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:06

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	101		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW47A-082222 Lab Sample ID: 240-171981-27 Matrix: Water Lab File ID: 228021.D Analysis Method: 8260C Date Collected: 08/22/2022 12:05 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 20:06 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW48A-082222 Lab Sample ID: 240-171981-28

Matrix: Water Lab File ID: 228022.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:48

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:29

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW48A-082222 Lab Sample ID: 240-171981-28

Matrix: Water Lab File ID: 228022.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:48

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:29

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	Ū	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW48A-082222 Lab Sample ID: 240-171981-28

Matrix: Water Lab File ID: 228022.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:48

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:29

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	95		56-136
1868-53-7	Dibromofluoromethane (Surr)	107		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		62-137
2037-26-5	Toluene-d8 (Surr)	100		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW48A-082222 Lab Sample ID: 240-171981-28 Matrix: Water Lab File ID: 228022.D Analysis Method: 8260C Date Collected: 08/22/2022 11:48 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 20:29 Soil Aliquot Vol: ___ Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228023.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:30

Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 20:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name:	Eurofins	Canton	Job	No.:	240-171981-1
			-		

SDG No.: MSA Frog Mortar Creek

Matrix: Water Lab File ID: 228023.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:30

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	Ū	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SW49A-082222 Lab Sample ID: 240-171981-29

Matrix: Water Lab File ID: 228023.D

Analysis Method: 8260C Date Collected: 08/22/2022 11:30

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 20:53

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		56-136
1868-53-7	Dibromofluoromethane (Surr)	106		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	99		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SW49A-082222 Lab Sample ID: 240-171981-29 Matrix: Water Lab File ID: 228023.D Analysis Method: 8260C Date Collected: 08/22/2022 11:30 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 20:53 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SWEQB-082222 Lab Sample ID: 240-171981-30

Matrix: Water Lab File ID: 228014.D

Analysis Method: 8260C Date Collected: 08/22/2022 00:00

Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 17:20

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U *+	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SWEQB-082222 Lab Sample ID: 240-171981-30

Matrix: Water Lab File ID: 228014.D

Analysis Method: 8260C Date Collected: 08/22/2022 00:00

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 17:20

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U *+	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Client Sample ID: MSA-SWEQB-082222 Lab Sample ID: 240-171981-30

Matrix: Water Lab File ID: 228014.D

Analysis Method: 8260C Date Collected: 08/22/2022 00:00

Sample wt/vol: 5 (mL) Date Analyzed: 08/30/2022 17:20

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm)

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 540740 Units: ug/L

Lab Name: Eurofins Canton

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	97		56-136
1868-53-7	Dibromofluoromethane (Surr)	108		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		62-137
2037-26-5	Toluene-d8 (Surr)	103		78-122

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Job No.: 240-171981-1 Lab Name: Eurofins Canton SDG No.: MSA Frog Mortar Creek Client Sample ID: MSA-SWEQB-082222 Lab Sample ID: 240-171981-30 Matrix: Water Lab File ID: 228014.D Analysis Method: 8260C Date Collected: 08/22/2022 00:00 Sample wt/vol: 5(mL) Date Analyzed: 08/30/2022 17:20 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624______ ID: 0.18(mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
75-45-6	Chlorodifluoromethane TIC		1.0	U	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/07/2022 15:46 Calibration End Date: 04/07/2022 18:55 Calibration ID: 65265

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 240-522080/3	225035.D
Level 2	IC 240-522080/4	225036.D
Level 3	IC 240-522080/5	225037.D
Level 4	IC 240-522080/6	225038.D
Level 5	IC 240-522080/7	225039.D
Level 6	ICIS 240-522080/8	225040.D
Level 7	IC 240-522080/9	225041.D
Level 8	IC 240-522080/10	225042.D
Level 9	IC 240-522080/11	225043.D

ANALYTE			RRF			CURVE		COEFFICI	ENT #	MIN RRF	%RSD		IAX	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	TYPE	В	М1	M2			%	RSD	OR COD		OR COD
Dichlorodifluoromethane	0.2715	0.2879	0.3039	0.2782	0.2750	7		0 0 0 0 0		0.1000	5.6		20.0			
Dichiorodifiuoromechane	0.2713	0.2652	0.2560	0.2762	0.2730	Ave		0.273		0.1000	3.0	-	20.0			
Chloromethane	+++++	0.3508	0.2691	0.2618	0.2552	Lin1	0.086	0.247		0.1000	4.1			0.9990		0.9900
	0.2402	0.2497	0.2465	0.2543			Δ	1								
Vinyl chloride	0.3778	0.3822		0.3267	0.3216	Ave		0.326		0.1000	10.5	2	20.0			
Butadiene	0.3641	0.3639	0.3664 0.2711	0.3166 0.2773	0.3002	Ave		0.314			12.8		20.0			
Bromomethane	+++++	0.3322		0.1475 0.1146	0.1392	Lin1	0.244	0.109		0.0500	11.0			0.9980		0.9900
Chloroethane	+++++	0.2797	0.2380 0.1154	0.2107 0.1126	0.2029	Qua	0.387	0.136	-0.000510	0.0500	83.8			0.9900		0.9900
Trichlorofluoromethane	0.4264 0.3894	0.5081		0.4303 0.3903	0.4337	Ave	7	0.423		0.1000	9.3	2	20.0			
Dichlorofluoromethane	+++++	0.7893 0.4854		0.5581 0.4782	0.5204	Lin1	0.351	0.472			4.4			1.0000		0.9900
Ethyl ether	0.2361 0.1885	0.2342		0.2068 0.1932	0.1971	Ave	O	0.205			9.4		20.0			
1,1,2-Trichloro-1,2,2-trifluoroeth	0.2263 0.2261	0.2544		0.2426 0.2302	0.2376	Ave		0.236		0.0500	6.8	2	20.0			
Acrolein	0.0677 0.0536	0.0569 0.0561	0.0587 0.0550	0.0569 0.0560	0.0551	Ave		0.057			7.2	-	20.0			
1,1-Dichloroethene	0.2758 0.2240			0.2415 0.2297	0.2344	Ave		0.241		0.1000	8.9	1	20.0			

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFIC	IENT	# MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COD
Iodomethane	+++++ 0.0909	0.1202 0.1139	0.0894	0.0761 0.1545	0.0806	Qua	0.078	0.050	0.0016662		9.2		0.9990	0.9900
Acetone	0.4976 0.1230	0.3189 0.1245		0.1422 0.1273	0.1321	Lin1	0.372	0.120		0.0100	5.5		0.9990	0.9900
Carbon disulfide	0.7791 0.6814	0.8179 0.6778		0.7387 0.6917	0.7208	Ave		0.728		0.1000	7.4	20.0		
3-Chloro-1-propene	0.4014 0.3286	0.4232 0.3254		0.3593 0.3356	0.3456	Ave		0.361			10.6	20.0		
Methyl acetate	0.2784 0.2474	0.2708 0.2543		0.2501 0.2654	0.2544	Ave		0.259		0.1000	3.9	20.0		
Methylene Chloride	+++++ 0.2688	0.7211 0.2665		0.3577 0.2644	0.3076	Lin1	0.515	0.255		0.1000	9.9		0.9990	0.9900
2-Methyl-2-propanol	0.0688 0.0625	0.0669 0.0638		0.0638 0.0675	0.0633	Ave		0.064			3.5	20.0		
Methyl tert-butyl ether	0.7472 0.7287	0.7258 0.7323		0.7442 0.7584	0.7382	Ave		0.739		0.1000	1.4	20.0		
trans-1,2-Dichloroethene	0.3415 0.2511	0.3137 0.2476	0.2898 0.2470	0.2634 0.2529	0.2717	Ave		0.275		0.1000	12.1	20.0		
Acrylonitrile	0.1558 0.1432	0.1563 0.1442		0.1505 0.1490	0.1486	Ave		0.148			3.1	20.0		
Hexane	0.2854 0.3128	0.3130 0.3223		0.2960 0.3474	0.3016	Ave		0.312			5.8	20.0		
1,1-Dichloroethane	0.5579 0.4405	0.5226 0.4398		0.4809 0.4501	0.4684	Ave		0.477		0.2000	8.7	20.0		
Vinyl acetate	0.4749 0.4597	0.4596 0.5233		0.4647 0.4743	0.4527	Ave		0.474			4.8	20.0		
2,2-Dichloropropane	+++++ 0.0842	0.1252 0.0794		0.0942 0.0797	0.0882	Lin1	0.053	0.079			6.1		0.9990	0.9900
cis-1,2-Dichloroethene	0.3909 0.2766	0.3434	0.3083 0.2735	0.3087 0.2777	0.2946	Ave		0.304		0.1000	13.1	20.0		
2-Butanone (MEK)	0.0548 0.0520	0.0527 0.0521	0.0512 0.0536	0.0513 0.0548	0.0525	Ave		0.052		0.0100	2.5	20.0		
Chlorobromomethane	0.2371 0.1880	0.2237	0.2236	0.2108 0.1771	0.2032	Ave		0.201			11.6	20.0		
Tetrahydrofuran	0.1376 0.1179	0.1443 0.1205		0.1236 0.1255	0.1218	Ave		0.126			6.9	20.0		

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	TYPE	В	M1	М2				%RSD	OR COD	OR COD
Chloroform	0.5039 0.4476	0.5300 0.4398	0.4434	0.4954 0.4515				0.479			0.2000	7.2			
Cyclohexane	0.4862 0.3896	0.4486 0.3878		0.4240 0.4013	0.4090	Ave		0.417			0.1000	8.1	20.0		
1,1,1-Trichloroethane	0.4256 0.4055	0.4507 0.3994		0.4445 0.4082	0.4266	Ave		0.426			0.1000	6.2	20.0		
Carbon tetrachloride	0.3582 0.3325	0.3759		0.3609 0.3364	0.3513	Ave		0.349			0.1000	5.5	20.0		
1,1-Dichloropropene	0.3140 0.3527	0.3553 0.3482		0.3509 0.3604	0.3535	Ave		0.348				3.9	20.0		
Benzene	1.1290 1.0085	1.0511 1.0062	1.0602 1.0137	1.0405 1.0396	1.0459	Ave		1.043			0.5000	3.6	20.0		
Isobutyl alcohol	0.0167 0.0154	0.0131 0.0159		0.0147 0.0170	0.0149	Ave		0.015				8.8	20.0		
1,2-Dichloroethane	0.3730 0.3288	0.3621		0.3498 0.3315	0.3476	Ave		0.345			0.1000	5.3	20.0		
n-Heptane	0.0618 0.0679	0.0774		0.0724	0.0680	Ave		0.070				6.1	20.0		
Trichloroethene	0.2373 0.2612	0.2520 0.2569		0.2634	0.2696	Ave		0.259			0.1500	3.8	20.0		
Methylcyclohexane	0.3910 0.4273	0.4143 0.4287		0.4505 0.4502	0.4337	Ave		0.429			0.1000	4.3	20.0		
1,2-Dichloropropane	0.2888 0.2455	0.2582		0.2555 0.2522	0.2554	Ave		0.256			0.1000	5.2	20.0		
Dibromomethane	0.1842 0.1557	0.1727 0.1545		0.1747 0.1578	0.1680	Ave		0.167				7.4	20.0		
1,4-Dioxane	0.0079 0.0067	0.0072 0.0067		0.0071 0.0070	0.0067	Ave		0.007				5.4	20.0		
Dichlorobromomethane	0.4519 0.3390	0.4011 0.3353		0.3650 0.3454	0.3642	Ave		0.368			0.1500	10.3	20.0		
2-Chloroethyl vinyl ether	0.1957 0.1830	0.1902 0.1883	0.1746 0.1926	0.1822 0.1973	0.1811	Ave		0.187				4.0	20.0		
cis-1,3-Dichloropropene	0.4250 0.4180		0.4151	0.4239	0.4222	Ave		0.420			0.1500	1.0	20.0		
4-Methyl-2-pentanone (MIBK)	0.3149 0.3151	0.3140	0.3145	0.3212	0.3220	Ave		0.320			0.0500	2.0	20.0		

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICIE	ENT #	MIN RRF	%RSD		AX	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			%F	RSD	OR COD		OR COD
Toluene	1.7095	1.6082 1.4376	1.4974	1.5128	1.4827	Ave		1.517		0.4000	5.7	2	0.0			
trans-1,3-Dichloropropene	0.4777	0.4834	0.4781	0.5022	0.5067	Ave		0.507		0.1000	5.0	2	0.0			
Ethyl methacrylate	0.5298 0.4925	0.4825	0.4883	0.4950	0.5021	Ave		0.497			2.8	2	0.0			
1,1,2-Trichloroethane	0.2977 0.3105	0.2932	0.2888	0.3070	0.3082	Ave		0.306		0.1000	3.8	2	0.0			
Tetrachloroethene	0.2967 0.3373	0.3210	0.3305	0.3291	0.3280	Ave		0.326		0.1500	3.8	2	0.0			
1,3-Dichloropropane	0.5182 0.5373	0.5135 0.5425	0.5162	0.5262	0.5329	Ave		0.534			3.5	2	0.0			
2-Hexanone	0.3549	0.3183	0.3234	0.3380	0.3429	Ave		0.340		0.0500	3.7	2	0.0			
Chlorodibromomethane	0.3527 0.3314	0.3368	0.3326	0.3284	0.3305	Ave		0.336			2.5	2	0.0			
Ethylene Dibromide	0.3026 0.3415	0.3548	0.3372	0.3290	0.3326	Ave		0.336			4.5	2	0.0			
Chlorobenzene	0.9446	0.9306	0.9278	0.9263	0.9090	Ave		0.914		0.3000	2.1	2	0.0			
Ethylbenzene	0.5104 0.5140	0.5434	0.5252	0.5200 0.5171	0.5201	Ave		0.517			2.3	2	0.0			
1,1,1,2-Tetrachloroethane	0.2913 0.3244	0.2981	0.3117	0.3185	0.3212	Ave		0.315			4.4	2	0.0			
m-Xylene & p-Xylene	0.6400 0.6452	0.6586 0.6270		0.6543 0.6357	0.6579	Ave		0.647			2.7	2	0.0			
o-Xylene	0.6409 0.6152	0.6471 0.6093		0.6312 0.6193	0.6399	Ave		0.626			2.4	2	0.0			
Styrene	1.0984 1.0649	1.0483 1.0505		1.0765 1.0708	1.0734	Ave		1.066		0.3000	1.6	2	0.0			
Bromoform	0.2359 0.2429	0.2206		0.2356 0.2539	0.2364	Ave		0.237		0.1000	3.8	2	0.0			
Isopropylbenzene	1.5693 1.6512	1.6810 1.6095		1.6862 1.6275	1.6710	Ave		1.643		0.1000	2.5	2	0.0			
Bromobenzene	0.7372 0.6934	0.6748 0.6835		0.7033	0.6863	Ave		0.695			2.7	2	0.0			

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
1,1,2,2-Tetrachloroethane	1.0151 0.9393	0.9681 0.9721	0.9795	0.9497 1.0092	0.9477			0.968			0.3000	3.0	20.0		
N-Propylbenzene	0.8335 0.8512	0.8560 0.8344		0.8321 0.8738	0.8461	Ave		0.847				1.6	20.0		
1,2,3-Trichloropropane	0.3025 0.3065	0.2861 0.3081		0.3110 0.3289	0.3123	Ave		0.308				3.7	20.0		
trans-1,4-Dichloro-2-butene	0.3788 0.3059	0.3239		0.3111	0.3071	Ave		0.320				7.5	20.0		
2-Chlorotoluene	0.7024 0.7091	0.7485 0.7047		0.7264 0.7367	0.7166	Ave		0.718				2.2	20.0		
1,3,5-Trimethylbenzene	2.3876 2.6457	2.6368 2.6331		2.6626 2.7287				2.619				3.6	20.0		
4-Chlorotoluene	0.6716 0.7319	0.7210 0.7185		0.7378 0.7462	0.7311	Ave		0.723				3.0	20.0		
tert-Butylbenzene	2.1667 2.2349	2.1970 2.1754		2.2345 2.2795	2.2343	Ave		2.221				1.8	20.0		
1,2,4-Trimethylbenzene	2.6660 2.7066	2.6219 2.6450		2.7004 2.7545	2.6793	Ave		2.682				1.4	20.0		
sec-Butylbenzene	3.1672 3.3309	3.1923 3.2997		3.3389 3.4455	3.3581	Ave		3.313				2.6	20.0		
1,3-Dichlorobenzene	1.2509 1.3517	1.3586 1.3586		1.3708 1.4068	1.3823	Ave		1.361			0.6000	3.3	20.0		
4-Isopropyltoluene	2.6660 2.8461	2.7519 2.8392		2.8532 2.9458	2.8383	Ave		2.824				2.7	20.0		
1,4-Dichlorobenzene	1.3632 1.3552	1.3507 1.3639	1.3787 1.3847	1.3561 1.4120	1.3820	Ave		1.371			0.5000	1.4	20.0		
n-Butylbenzene	2.1616 2.6468	2.4748 2.6647		2.6003 2.7914	2.6146	Ave		2.570				7.0	20.0		
1,2-Dichlorobenzene	1.2938 1.2930	1.2990 1.2935		1.2870 1.3468	1.3209	Ave		1.306			0.4000	1.7	20.0		
1,2-Dibromo-3-Chloropropane	0.3164 0.2969	0.3134		0.3016 0.3107	0.3000	Ave		0.306			0.0500	2.9	20.0		
1,2,4-Trichlorobenzene	0.7857 0.8392		0.8288	0.8383	0.8301	Ave		0.837			0.2000	3.8	20.0		
Hexachlorobutadiene	0.2771 0.3407	0.3345	0.3167	0.3244	0.3293	Ave		0.330				7.2	20.0		

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/07/2022 15:46 Calibration End Date: 04/07/2022 18:55 Calibration ID: 65265

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	#	MAX	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2					%RSD	OR COD		OR COD
Naphthalene	2.9834 2.9655	2.9528 2.9639	2.9508 3.0323		3.0223	Ave		3.001				2.1		20.0			
1,2,3-Trichlorobenzene	0.7503 0.7955	0.7582 0.8224	0.8277	0.8568	0.8143			0.804				4.2		20.0			
Dibromofluoromethane (Surr)	+++++ 0.2729	0.2976 0.2755	0.2788 0.2759	0.2226 0.2724	0.2738	Ave		0.271				7.9		20.0			
1,2-Dichloroethane-d4 (Surr)	+++++ 0.2918	0.3595 0.2931	0.3175 0.2927	0.2442	0.2895	Ave		0.297				10.8		20.0			
Toluene-d8 (Surr)	1.4238 1.3862	1.3174 1.4210		1.0632 1.4189	1.3166	Ave		1.330				9.5		20.0			
4-Bromofluorobenzene (Surr)	+++++ 0.5202	0.5370 0.5382	0.4601 0.5389	0.4140 0.5329	0.4977	Ave		0.504				9.1		20.0			

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA

RESPONSE AND CONCENTRATION

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/07/2022 15:46 Calibration End Date: 04/07/2022 18:55 Calibration ID: 65265

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 240-522080/3	225035.D	
Level 2	IC 240-522080/4	225036.D	
Level 3	IC 240-522080/5	225037.D	
Level 4	IC 240-522080/6	225038.D	
Level 5	IC 240-522080/7	225039.D	
Level 6	ICIS 240-522080/8	225040.D	
Level 7	IC 240-522080/9	225041.D	
Level 8	IC 240-522080/10	225042.D	
Level 9	IC 240-522080/11	225043.D	

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
Dichlorodifluoromethane	FB	Ave	4343	9370	25276	59863	120973	0.500	1.00	2.50		12.5
			248034	381358	492765	642501		25.0	37.5	50.0	62.5	
Chloromethane	FB	Lin1	+++++	11420	22378	56329	112277	+++++	1.00	2.50	6.25	12.5
			230845	359037	474566	616519		25.0	37.5	50.0	62.5	
Vinyl chloride	FB	Ave	6044	12441	28527	70297	141468	0.500	1.00	2.50	6.25	12.5
			285490	433351	566594	722915		25.0	37.5	50.0	62.5	
Butadiene	FB	Ave	5824	11846	30470	68113	132060	0.500	1.00	2.50	6.25	12.5
			269901	411957	521992	672429		25.0	37.5	50.0	62.5	
Bromomethane	FB	Lin1	+++++	10812	18584	31741	61241	+++++	1.00	2.50	6.25	12.5
			113824	166522	212172	277839		25.0	37.5	50.0	62.5	
Chloroethane	FB	Qua	+++++	9105	19795	45345	89274	+++++	1.00	2.50	6.25	12.5
			130106	175983	222215	272897		25.0	37.5	50.0	62.5	
Trichlorofluoromethane	FB	Ave	6820	16539	37201	92581	190772	0.500	1.00	2.50	6.25	12.5
			374287	573527	737940	946406		25.0	37.5	50.0	62.5	
Dichlorofluoromethane	FB	Lin1	+++++	25694	50633	120073	228912	+++++	1.00	2.50	6.25	12.5
			463920	697877	908587	1159470		25.0	37.5	50.0	62.5	
Ethyl ether	FB	Ave	3777	7625	18056	44491	86697	0.500	1.00	2.50	6.25	12.5
			181211	271596	362874	468320		25.0	37.5	50.0	62.5	
1,1,2-Trichloro-1,2,2-trifluoroe thane	FB	Ave	3620	8280	22190	52203	104499	0.500	1.00	2.50	6.25	12.5
			217258	319029	422002	558236		25.0	37.5	50.0	62.5	
Acrolein	FB	Ave	5416	9269	24413	61201	121279	2.50	5.00	12.5	31.3	62.5
			257498	403422	529387	679199		125	188	250	313	
1,1-Dichloroethene	FB	Ave	4411	8888	21198	51954	103096	0.500	1.00	2.50	6.25	12.5
			215239	318336	425666	556932		25.0	37.5	50.0	62.5	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
Iodomethane	FB	Qua	+++++	3914	7431	16372	35457	+++++	1.00	2.50	6.25	12.5
			87326	163718	266877	374567		25.0	37.5	50.0	62.5	
Acetone	FB	Lin1	15919	20760	31830	61178	116248	1.00	2.00	5.00	12.5	25.0
			236335	357914	479666	617494		50.0	75.0	100	125	
Carbon disulfide	FB	Ave	12462	26624	65163	158940	317085	0.500	1.00	2.50	6.25	12.5
			654896	974491	1288020	1677168		25.0	37.5	50.0	62.5	
3-Chloro-1-propene	FB	Ave	6421	13777	33844	77312	152030	0.500	1.00	2.50	6.25	12.5
			315814	467883	636536	813674		25.0	37.5	50.0	62.5	
Methyl acetate	FB	Ave	8908	17628	42922	107616	223785	1.00	2.00	5.00	12.5	25.0
			475508	731354	991987	1286990		50.0	75.0	100	125	
Methylene Chloride	FB	Lin1	++++	23474	40711	76960	135301	++++	1.00	2.50	6.25	12.5
			258337	383201	507288	641148		25.0	37.5	50.0	62.5	
2-Methyl-2-propanol	FB	Ave	11011	21780	52045	137309	278528	5.00	10.0	25.0	62.5	125
			600263	917913	1253907	1635944		250	375	500	625	
Methyl tert-butyl ether	FB	Ave	11952	23627	61031	160117	324730	0.500	1.00	2.50	6.25	12.5
			700358	1052838	1434583	1838853		25.0	37.5	50.0	62.5	
trans-1,2-Dichloroethene	FB	Ave	5463	10211	24099	56683	119526	0.500	1.00	2.50	6.25	12.5
			241347	356027	475497	613152		25.0	37.5	50.0	62.5	
Acrylonitrile	FB	Ave	24918	50865	122104	323809	653601	5.00	10.0	25.0	62.5	125
			1376712	2073942	2800155	3612149		250	375	500	625	
Hexane	FB	Ave	4565	10188	25813	63681	132671	0.500	1.00	2.50	6.25	12.5
			300671	463423	628963	842269		25.0	37.5	50.0	62.5	
1,1-Dichloroethane	FB	Ave	8924	17011	41377	103467	206040	0.500	1.00	2.50	6.25	12.5
			423366	632291	851100	1091341		25.0	37.5	50.0	62.5	
Vinyl acetate	FB	Ave	7596	14960	38198	99991	199124	0.500	1.00	2.50	6.25	12.5
			441827	752420	957402	1149854		25.0	37.5	50.0	62.5	
2,2-Dichloropropane	FB	Lin1	+++++	4077	8129	20261	38809	+++++	1.00	2.50	6.25	12.5
			80915	114088	151913	193138		25.0	37.5	50.0	62.5	
cis-1,2-Dichloroethene	FB	Ave	6253	11178	25640	66426	129600	0.500	1.00	2.50	6.25	12.5
			265825	389149	526538	673322		25.0	37.5	50.0	62.5	
2-Butanone (MEK)	FB	Ave	1752	3433	8517	22065	46148	1.00	2.00	5.00	12.5	25.0
			100032	149747	206507	265513		50.0	75.0	100	125	
Chlorobromomethane	FB	Ave	3793	7283	18595	45362	89372	0.500	1.00	2.50	6.25	12.5
			180719	256414	336092	429318		25.0	37.5	50.0	62.5	
Tetrahydrofuran	FB	Ave	4401	9397	21026	53189	107176	1.00	2.00	5.00	12.5	25.0
			226598	346402	469138	608684		50.0	75.0	100	125	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/07/2022 15:46 Calibration End Date: 04/07/2022 18:55 Calibration ID: 65265

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
Chloroform	FB	Ave	8061	17252	43037	106592	212604	0.500	1.00	2.50	6.25	12.5
			430181	632295	853569	1094645		25.0	37.5	50.0	62.5	
Cyclohexane	FB	Ave	7777	14603	35709	91238	179926	0.500	1.00	2.50	6.25	12.5
			374469	557503	737137	972923		25.0	37.5	50.0	62.5	
1,1,1-Trichloroethane	FB	Ave	6808	14670	39547	95633	187681	0.500	1.00	2.50	6.25	12.5
			389680	574184	768070	989745		25.0	37.5	50.0	62.5	
Carbon tetrachloride	FB	Ave	5729	12237	30974	77654	154541	0.500	1.00	2.50	6.25	12.5
			319586	472037	625908	815608		25.0	37.5	50.0	62.5	
1,1-Dichloropropene	FB	Ave	5022	11565	28780	75502	155483	0.500	1.00	2.50	6.25	12.5
			339004	500627	677966	873889		25.0	37.5	50.0	62.5	
Benzene	FB	Ave	18060	34216	88173	223875	460105	0.500	1.00	2.50	6.25	12.5
			969292	1446716	1951495	2520668		25.0	37.5	50.0	62.5	
Isobutyl alcohol	FB	Ave	6683	10684	28445	79048	164209	12.5	25.0	62.5	156	313
			369581	571488	796836	1030772		625	938	1250	1563	
1,2-Dichloroethane	FB	Ave	5966	11787	30291	75260	152916	0.500	1.00	2.50	6.25	12.5
			316031	466296	626655	803843		25.0	37.5	50.0	62.5	
n-Heptane	FB	Ave	988	2521	5918	15577	29926	0.500	1.00	2.50	6.25	12.5
			65296	101852	134141	176897		25.0	37.5	50.0	62.5	
Trichloroethene	FB	Ave	3796	8203	21697	56682	118589	0.500	1.00	2.50	6.25	12.5
			251067	369355	502425	652291		25.0	37.5	50.0	62.5	
Methylcyclohexane	FB	Ave	6254	13485	36511	96937	190771	0.500	1.00	2.50	6.25	12.5
			410691	616402	825602	1091473		25.0	37.5	50.0	62.5	
1,2-Dichloropropane	FB	Ave	4620	8404	21764	54966	112333	0.500	1.00	2.50	6.25	12.5
			235964	350995	476804	611537		25.0	37.5	50.0	62.5	
Dibromomethane	FB	Ave	2946	5622	15452	37589	73884	0.500	1.00	2.50	6.25	12.5
			149637	222063	299204	382649		25.0	37.5	50.0	62.5	
1,4-Dioxane	FB	Ave	2538	4674	11728	30519	59297	10.0	20.0	50.0	125	250
			129325	193633	262222	338279		500	750	1000	1250	
Dichlorobromomethane	FB	Ave	7228	13056	31418	78531	160197	0.500	1.00	2.50	6.25	12.5
			325838	482060	651930	837352		25.0	37.5	50.0	62.5	
2-Chloroethyl vinyl ether	FB	Ave	6260	12382	29050	78387	159298	1.00	2.00	5.00	12.5	25.0
			351769	541355	741746	956533		50.0	75.0	100	125	
cis-1,3-Dichloropropene	FB	Ave	6799	13738	34524	91201	185736	0.500	1.00	2.50	6.25	12.5
			401702	593277	812248	1024996		25.0	37.5	50.0	62.5	
4-Methyl-2-pentanone (MIBK)	FB	Ave	10073	20441	52312	138241	283334	1.00	2.00	5.00	12.5	25.0
			605633	919701	1258473	1610526		50.0	75.0	100	125	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
Toluene	CBNZ	Ave	22050	41949	99961	252879	500906	0.500	1.00	2.50	6.25	12.5
	d5		1032117	1514016	2045914	2607669		25.0	37.5	50.0	62.5	
trans-1,3-Dichloropropene	CBNZ	Ave	6161	12610	31915	83952	171168	0.500	1.00	2.50	6.25	12.5
	d5		363099	554032	748366	961678		25.0	37.5	50.0	62.5	
Ethyl methacrylate	CBNZ	Ave	6834	12585	32597	82749	169613	0.500	1.00	2.50	6.25	12.5
	d5											
			346830	516282	693984	888871		25.0	37.5	50.0	62.5	
1,1,2-Trichloroethane	CBNZ d5	Ave	3840	7647	19281	51317	104122	0.500	1.00	2.50	6.25	12.5
			218637	328575	442109	572234		25.0	37.5	50.0	62.5	
Tetrachloroethene	CBNZ d5	Ave	3827	8372	22066	55008	110817	0.500	1.00	2.50	6.25	12.5
			237505	346518	461246	593867		25.0	37.5	50.0	62.5	
1,3-Dichloropropane	CBNZ d5	Ave	6684	13393	34462	87952	180028	0.500	1.00	2.50	6.25	12.5
			378356	571339	777827	997701		25.0	37.5	50.0	62.5	
2-Hexanone	CBNZ d5	Ave	9155	16603	43180	112989	231668	1.00	2.00	5.00	12.5	25.0
			484099	723277	967895	1249086		50.0	75.0	100	125	
Chlorodibromomethane	CBNZ d5	Ave	4549	8786	22200	54895	111649	0.500	1.00	2.50	6.25	12.5
			233345	349455	473162	610219		25.0	37.5	50.0	62.5	
Ethylene Dibromide	CBNZ d5	Ave	3903	9254	22513	54999	112374	0.500	1.00	2.50	6.25	12.5
			240501	354889	481228	617216		25.0	37.5	50.0	62.5	
Chlorobenzene	CBNZ d5	Ave	12184	24273	61939	154840	307082	0.500	1.00	2.50	6.25	12.5
	43		633089	936592	1254836	1596147		25.0	37.5	50.0	62.5	
Ethylbenzene	CBNZ d5	Ave	6584	14175	35060	86923	175691	0.500	1.00	2.50	6.25	12.5
			361982	530614	712358	905569		25.0	37.5	50.0	62.5	
1,1,1,2-Tetrachloroethane	CBNZ d5	Ave	3757	7776	20810	53239	108521	0.500	1.00	2.50	6.25	12.5
			228427	332699	459529	586642		25.0	37.5	50.0	62.5	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
m-Xylene & p-Xylene	CBNZ	Ave	8255	17179	45317	109374	222247	0.500	1.00	2.50	6.25	12.5
	d5		454356	660386	879859	1113308		25.0	37.5	50.0	62.5	
o-Xylene	CBNZ d5	Ave	8267	16878	42199	105505	216157	0.500	1.00	2.50	6.25	12.5
	as		433217	641682	852509	1084559		25.0	37.5	50.0	62.5	
Styrene	CBNZ d5	Ave	14168	27343	71371	179940	362606	0.500	1.00	2.50	6.25	12.5
			749897	1106317	1468841	1875300		25.0	37.5	50.0	62.5	
Bromoform	CBNZ d5	Ave	3043	5753	15552	39374	79848	0.500	1.00	2.50	6.25	12.5
			171040	252805	341067	444595		25.0	37.5	50.0	62.5	
Isopropylbenzene	CBNZ d5	Ave	20242	43848	112542	281862	564497	0.500	1.00	2.50	6.25	12.5
			1162760	1695067	2264840	2850261		25.0	37.5	50.0	62.5	
Bromobenzene	DCBd 4	Ave	5174	9607	24541	63417	123913	0.500	1.00	2.50	6.25	12.5
		<u> </u>	259382	378136	503955	636486	45444	25.0	37.5	50.0	62.5	40.5
1,1,2,2-Tetrachloroethane	DCBd 4	Ave	7125	13782	33616	85634	171114	0.500	1.00	2.50	6.25	12.5
			351378	537774	716913	909885		25.0	37.5	50.0	62.5	
N-Propylbenzene	DCBd 4	Ave	5850	12187	30775	75031	152768	0.500	1.00	2.50	6.25	12.5
			318418	461618	619182	787794	5.6000	25.0	37.5	50.0	62.5	10.5
1,2,3-Trichloropropane	DCBd 4	Ave	2123	4073	10876	28044	56392	0.500	1.00	2.50	6.25	12.5
		_	114655	170463	230385	296524	55.54	25.0	37.5	50.0	62.5	40.5
trans-1,4-Dichloro-2-butene	DCBd 4	Ave	2659	4611	10711	28053	55451	0.500	1.00	2.50	6.25	12.5
			114422	170830	233944	300436	100000	25.0	37.5	50.0	62.5	10.5
2-Chlorotoluene	DCBd 4	Ave	4930	10656	25550	65501	129383	0.500	1.00	2.50	6.25	12.5
1.2.5.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		12	265237	389875	516606	664153	470.005	25.0	37.5	50.0	62.5	10 -
1,3,5-Trimethylbenzene	DCBd 4	Ave	16758	37540	94971	240075	470695	0.500	1.00	2.50	6.25	12.5
			989681	1456680	1919229	2460074		25.0	37.5	50.0	62.5	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/07/2022 15:46 Calibration End Date: 04/07/2022 18:55 Calibration ID: 65265

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
4-Chlorotoluene	DCBd 4	Ave	4714	10265	26249	66526	132010	0.500	1.00	2.50	6.25	12.5
	-		273765	397510	527560	672715		25.0	37.5	50.0	62.5	
tert-Butylbenzene	DCBd 4	Ave	15208	31278	81387	201481	403437	0.500	1.00	2.50	6.25	12.5
			836003	1203460	1613764	2055129		25.0	37.5	50.0	62.5	
1,2,4-Trimethylbenzene	DCBd 4	Ave	18712	37328	96437	243488	483780	0.500	1.00	2.50	6.25	12.5
			1012465	1463284	1961593	2483333		25.0	37.5	50.0	62.5	
sec-Butylbenzene	DCBd 4	Ave	22230	45449	119800	301057	606346	0.500	1.00	2.50	6.25	12.5
			1245969	1825503	2446619	3106304		25.0	37.5	50.0	62.5	
1,3-Dichlorobenzene	DCBd 4	Ave	8780	19342	50184	123600	249586	0.500	1.00	2.50	6.25	12.5
			505609	751628	1002284	1268349		25.0	37.5	50.0	62.5	
4-Isopropyltoluene	DCBd 4	Ave	18712	39179	101246	257259	512493	0.500	1.00	2.50	6.25	12.5
			1064644	1570734	2091115	2655855		25.0	37.5	50.0	62.5	
1,4-Dichlorobenzene	DCBd 4	Ave	9568	19230	49426	122279	249533	0.500	1.00	2.50	6.25	12.5
			506952	754547	1013492	1272987		25.0	37.5	50.0	62.5	
n-Butylbenzene	DCBd 4	Ave	15172	35233	89585	234463	472090	0.500	1.00	2.50	6.25	12.5
			990074	1474165	1959705	2516576		25.0	37.5	50.0	62.5	
1,2-Dichlorobenzene	DCBd 4	Ave	9081	18494	47851	116047	238498	0.500	1.00	2.50	6.25	12.5
			483678	715607	946852	1214183		25.0	37.5	50.0	62.5	
1,2-Dibromo-3-Chloropropane	DCBd 4	Ave	2221	4462	11479	27198	54171	0.500	1.00	2.50	6.25	12.5
			111060	164082	221189	280146		25.0	37.5	50.0	62.5	
1,2,4-Trichlorobenzene	DCBd 4	Ave	5515	11466	29711	75583	149884	0.500	1.00	2.50	6.25	12.5
			313917	470303	631441	808997		25.0	37.5	50.0	62.5	
Hexachlorobutadiene	DCBd 4	Ave	1945	4762	11355	29250	59459	0.500	1.00	2.50	6.25	12.5
			127441	189622	249940	326909		25.0	37.5	50.0	62.5	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: $0.18 \, (mm)$ Heated Purge: (Y/N) N

Calibration End Date: 04/07/2022 18:55 Calibration Start Date: 04/07/2022 15:46 Calibration ID: 65265

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
Naphthalene	DCBd	Ave	20940	42039	105784	269897	545713	0.500	1.00	2.50	6.25	12.5
	4											
			1109290	1639686	2219512	2837518		25.0	37.5	50.0	62.5	
1,2,3-Trichlorobenzene	DCBd	Ave	5266	10794	29371	71608	147028	0.500	1.00	2.50	6.25	12.5
	4											
			297567	454956	605811	772447		25.0	37.5	50.0	62.5	
Dibromofluoromethane (Surr)	FB	Ave	++++	9688	23189	44286	107131	+++++	1.00	2.50	5.78	11.1
			303249	488384	613966	794087		28.9	46.2	57.8	75.1	
1,2-Dichloroethane-d4 (Surr)	FB	Ave	++++	11701	26406	48591	113286	+++++	1.00	2.50	5.78	11.1
			324164	519626	651425	846304		28.9	46.2	57.8	75.1	
Toluene-d8 (Surr)	CBNZ	Ave	18365	34362	80041	164365	395679	0.500	1.00	2.50	5.78	11.1
	d5											
			1128409	1845317	2324281	2987507		28.9	46.2	57.8	75.1	
4-Bromofluorobenzene (Surr)	CBNZ	Ave	+++++	14006	30716	64004	149563	+++++	1.00	2.50	5.78	11.1
	d5											
			423427	698968	876656	1122028		28.9	46.2	57.8	75.1	

Curve Type Legend
Ave = Average ISTD

Lin1 = Linear 1/conc ISTD

Qua = Quadratic ISTD

FORM VI

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

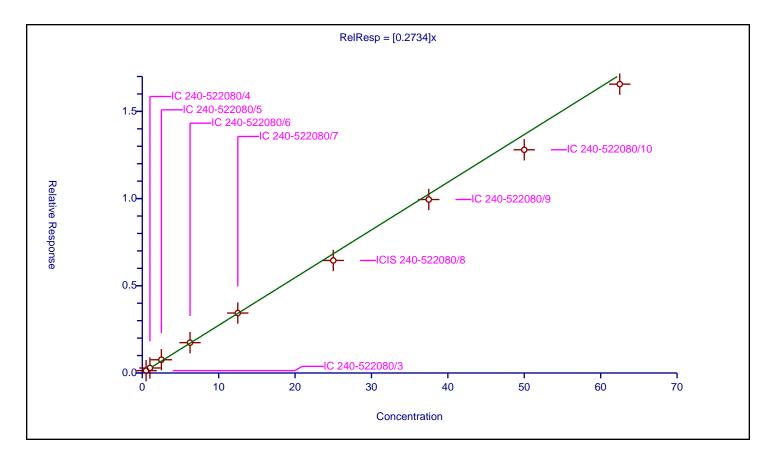
Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 240-522080/3	225035.D	
Level 2	IC 240-522080/4	225036.D	
Level 3	IC 240-522080/5	225037.D	
Level 4	IC 240-522080/6	225038.D	
Level 5	IC 240-522080/7	225039.D	
Level 6	ICIS 240-522080/8	225040.D	
Level 7	IC 240-522080/9	225041.D	
Level 8	IC 240-522080/10	225042.D	
Level 9	IC 240-522080/11	225043.D	

ANALYTE			PERCEN'	r error		PERCENT ERROR LIMIT							
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2 LVL 8	LVL 3 LVL 9	LVL 4	LVL 5	LVL 6	
Chloromethane	+++++	7.0						50					
Bromomethane	+++++	-20.1						50					
Chloroethane	++++	-179.3 *						50					
Dichlorofluoromethane	++++	-7.4						50					
Iodomethane	++++	-18.6						50					
Acetone	4.0						50						
Methylene Chloride	++++	-19.4						50					
2,2-Dichloropropane	+++++	-9.5						50					

Calibration / Dichlorodifluoromethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2734

Curve Coefficients

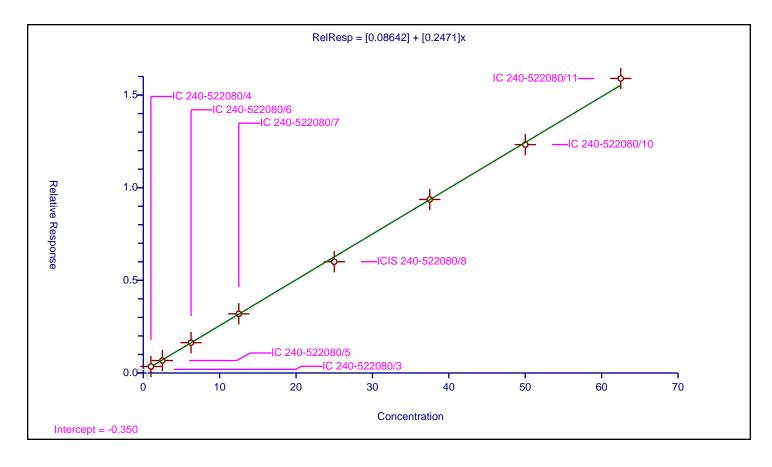
Error Coefficients

Standard Error:332000Relative Standard Error:5.6Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.135754	28.9	924557.0	0.271509	Υ
2	IC 240-522080/4	1.0	0.287853	28.9	940735.0	0.287853	Υ
3	IC 240-522080/5	2.5	0.759799	28.9	961407.0	0.30392	Υ
4	IC 240-522080/6	6.25	1.738888	28.9	994912.0	0.278222	Υ
5	IC 240-522080/7	12.5	3.437517	28.9	1017048.0	0.275001	Υ
6	ICIS 240-522080/8	25.0	6.451922	28.9	1111015.0	0.258077	Υ
7	IC 240-522080/9	37.5	9.946776	28.9	1108022.0	0.265247	Υ
8	IC 240-522080/10	50.0	12.798171	28.9	1112730.0	0.255963	Υ
9	IC 240-522080/11	62.5	16.562229	28.9	1121122.0	0.264996	Υ

Calibration / Chloromethane

Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0.08642
Slope:	0.2471

Curve Coefficients

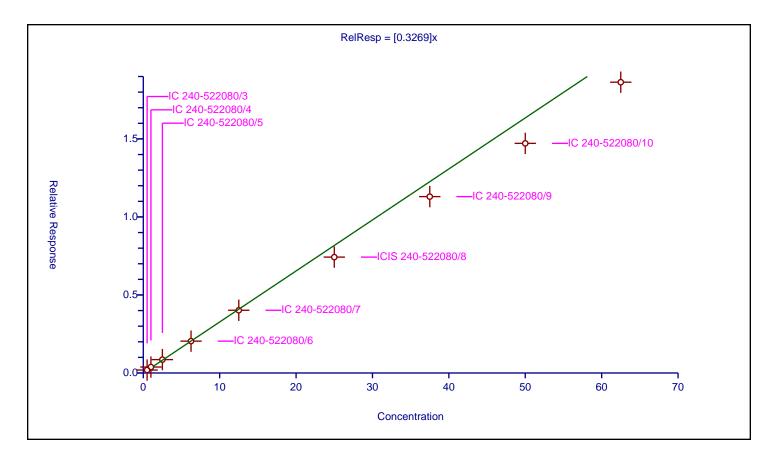
Error Coefficients

Standard Error:366000Relative Standard Error:4.1Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.196239	28.9	924557.0	0.392478	N
2	IC 240-522080/4	1.0	0.35083	28.9	940735.0	0.35083	Υ
3	IC 240-522080/5	2.5	0.672685	28.9	961407.0	0.269074	Υ
4	IC 240-522080/6	6.25	1.636233	28.9	994912.0	0.261797	Υ
5	IC 240-522080/7	12.5	3.190415	28.9	1017048.0	0.255233	Υ
6	ICIS 240-522080/8	25.0	6.004798	28.9	1111015.0	0.240192	Υ
7	IC 240-522080/9	37.5	9.364588	28.9	1108022.0	0.249722	Υ
8	IC 240-522080/10	50.0	12.325503	28.9	1112730.0	0.24651	Υ
9	IC 240-522080/11	62.5	15.892471	28.9	1121122.0	0.25428	Υ

Calibration / Vinyl chloride

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3269

Curve Coefficients

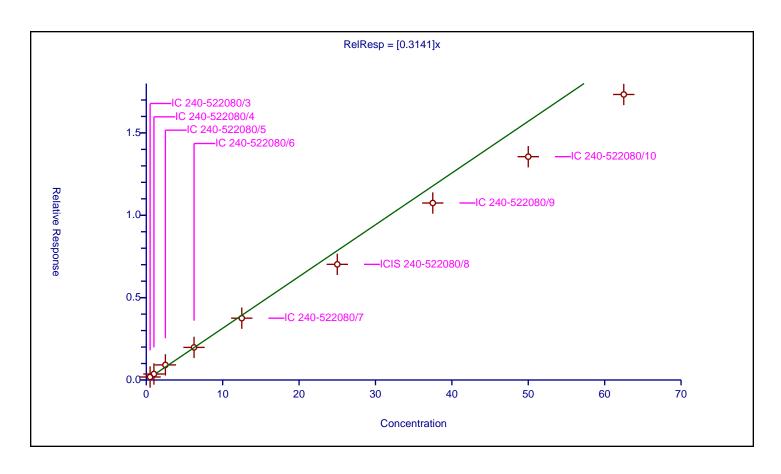
Error Coefficients

377000
10.5
1.000
0.984

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.188925	28.9	924557.0	0.377849	Υ
2	IC 240-522080/4	1.0	0.382196	28.9	940735.0	0.382196	Υ
3	IC 240-522080/5	2.5	0.857525	28.9	961407.0	0.34301	Υ
4	IC 240-522080/6	6.25	2.041973	28.9	994912.0	0.326716	Υ
5	IC 240-522080/7	12.5	4.019894	28.9	1017048.0	0.321592	Υ
6	ICIS 240-522080/8	25.0	7.426237	28.9	1111015.0	0.297049	Υ
7	IC 240-522080/9	37.5	11.302884	28.9	1108022.0	0.30141	Υ
8	IC 240-522080/10	50.0	14.715669	28.9	1112730.0	0.294313	Υ
9	IC 240-522080/11	62.5	18.63512	28.9	1121122.0	0.298162	Υ

Calibration / Butadiene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3141

Curve Coefficients

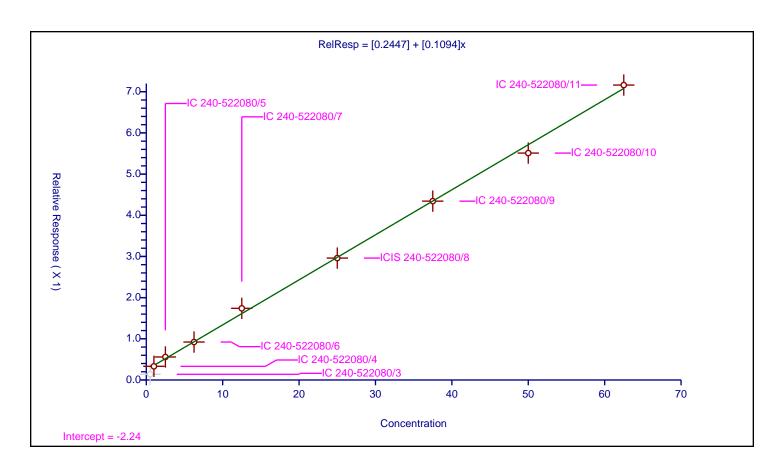
Error Coefficients

Standard Error:352000Relative Standard Error:12.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.977

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.182048	28.9	924557.0	0.364096	Υ
2	IC 240-522080/4	1.0	0.363917	28.9	940735.0	0.363917	Υ
3	IC 240-522080/5	2.5	0.915932	28.9	961407.0	0.366373	Υ
4	IC 240-522080/6	6.25	1.978532	28.9	994912.0	0.316565	Υ
5	IC 240-522080/7	12.5	3.75256	28.9	1017048.0	0.300205	Υ
6	ICIS 240-522080/8	25.0	7.020732	28.9	1111015.0	0.280829	Υ
7	IC 240-522080/9	37.5	10.744874	28.9	1108022.0	0.28653	Υ
8	IC 240-522080/10	50.0	13.557259	28.9	1112730.0	0.271145	Υ
9	IC 240-522080/11	62.5	17.333705	28.9	1121122.0	0.277339	Υ

Calibration / Bromomethane

Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0.2447
Slope:	0.1094

Curve Coefficients

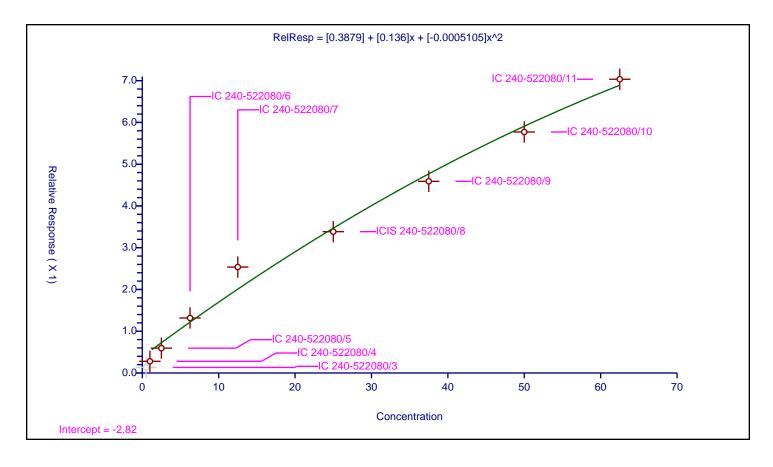
Error Coefficients

167000
11.0
0.999
0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.13838	28.9	924557.0	0.27676	N
2	IC 240-522080/4	1.0	0.332152	28.9	940735.0	0.332152	Υ
3	IC 240-522080/5	2.5	0.558637	28.9	961407.0	0.223455	Υ
4	IC 240-522080/6	6.25	0.922006	28.9	994912.0	0.147521	Υ
5	IC 240-522080/7	12.5	1.740198	28.9	1017048.0	0.139216	Υ
6	ICIS 240-522080/8	25.0	2.960818	28.9	1111015.0	0.118433	Υ
7	IC 240-522080/9	37.5	4.343312	28.9	1108022.0	0.115822	Υ
8	IC 240-522080/10	50.0	5.510565	28.9	1112730.0	0.110211	Υ
9	IC 240-522080/11	62.5	7.162064	28.9	1121122.0	0.114593	Υ

Calibration / Chloroethane

Curve Type:	Quadratic
Weighting:	None
Origin:	None
Dependency:	Response
Calib Mode:	ISTD
Response Base:	AREA
RF Rounding:	0


Intercept:	0.3879
Slope:	0.136
Second Order:	-0.0005105

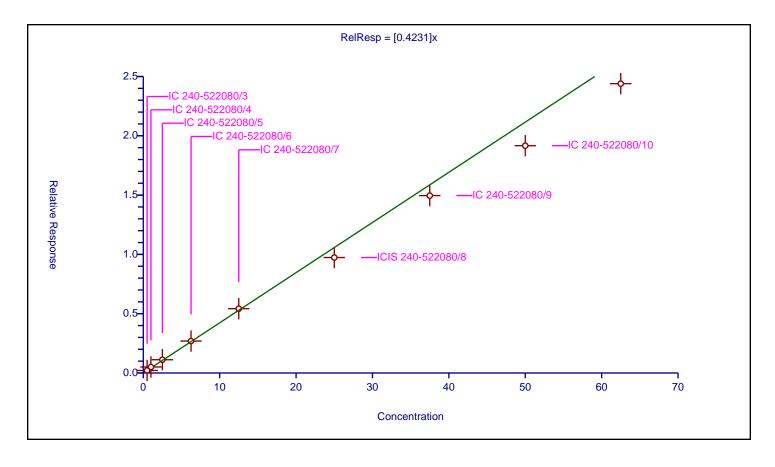
Curve Coefficients

Error Coefficients

Standard Error:191000Relative Standard Error:83.8Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.13341	28.9	924557.0	0.26682	N
2	IC 240-522080/4	1.0	0.279712	28.9	940735.0	0.279712	Υ
3	IC 240-522080/5	2.5	0.59504	28.9	961407.0	0.238016	Υ
4	IC 240-522080/6	6.25	1.317172	28.9	994912.0	0.210748	Υ
5	IC 240-522080/7	12.5	2.536772	28.9	1017048.0	0.202942	Υ
6	ICIS 240-522080/8	25.0	3.38435	28.9	1111015.0	0.135374	Υ
7	IC 240-522080/9	37.5	4.590079	28.9	1108022.0	0.122402	Υ
8	IC 240-522080/10	50.0	5.771403	28.9	1112730.0	0.115428	Υ
9	IC 240-522080/11	62.5	7.03467	28.9	1121122.0	0.112555	Υ

Calibration / Trichlorofluoromethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

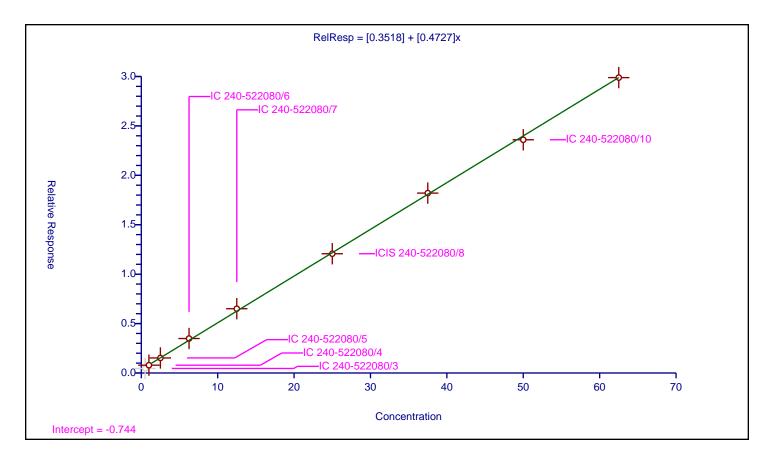
Curve Co	pefficients
Intercept:	0
Slope:	0.4231

Error Coefficients

Standard Error:494000Relative Standard Error:9.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.989

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.213181	28.9	924557.0	0.426362	Υ
2	IC 240-522080/4	1.0	0.508089	28.9	940735.0	0.508089	Υ
3	IC 240-522080/5	2.5	1.118266	28.9	961407.0	0.447306	Υ
4	IC 240-522080/6	6.25	2.689274	28.9	994912.0	0.430284	Υ
5	IC 240-522080/7	12.5	5.420895	28.9	1017048.0	0.433672	Υ
6	ICIS 240-522080/8	25.0	9.736047	28.9	1111015.0	0.389442	Υ
7	IC 240-522080/9	37.5	14.959026	28.9	1108022.0	0.398907	Υ
8	IC 240-522080/10	50.0	19.165895	28.9	1112730.0	0.383318	Υ
9	IC 240-522080/11	62.5	24.396215	28.9	1121122.0	0.390339	Υ

Calibration / Dichlorofluoromethane


Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0.3518
Slope:	0.4727

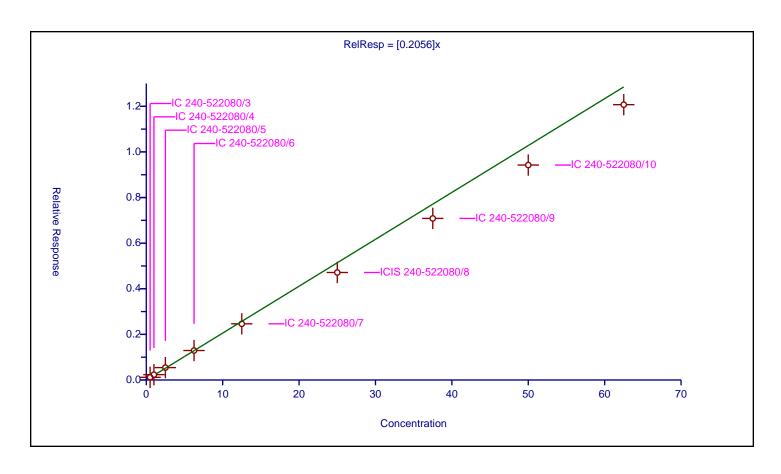
Error Coefficients

Standard Error:700000Relative Standard Error:4.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.458214	28.9	924557.0	0.916428	N
2	IC 240-522080/4	1.0	0.789337	28.9	940735.0	0.789337	Υ
3	IC 240-522080/5	2.5	1.522034	28.9	961407.0	0.608813	Υ
4	IC 240-522080/6	6.25	3.487856	28.9	994912.0	0.558057	Υ
5	IC 240-522080/7	12.5	6.504665	28.9	1017048.0	0.520373	Υ
6	ICIS 240-522080/8	25.0	12.067603	28.9	1111015.0	0.482704	Υ
7	IC 240-522080/9	37.5	18.202387	28.9	1108022.0	0.485397	Υ
8	IC 240-522080/10	50.0	23.597966	28.9	1112730.0	0.471959	Υ
9	IC 240-522080/11	62.5	29.888525	28.9	1121122.0	0.478216	Υ

Calibration / Ethyl ether

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2056

Curve Coefficients

Error Coefficients

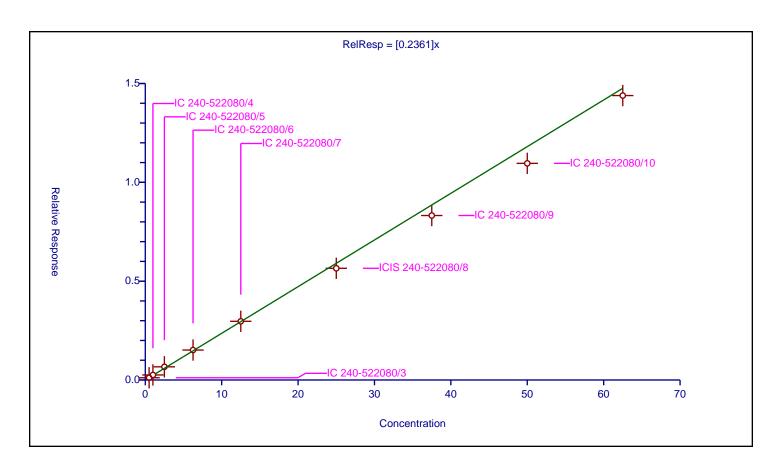
Standard Error:242000Relative Standard Error:9.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.988

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.118062	28.9	924557.0	0.236125	Υ
2	IC 240-522080/4	1.0	0.234245	28.9	940735.0	0.234245	Υ
3	IC 240-522080/5	2.5	0.542765	28.9	961407.0	0.217106	Υ
4	IC 240-522080/6	6.25	1.292365	28.9	994912.0	0.206778	Υ
5	IC 240-522080/7	12.5	2.463545	28.9	1017048.0	0.197084	Υ
6	ICIS 240-522080/8	25.0	4.713706	28.9	1111015.0	0.188548	Υ
7	IC 240-522080/9	37.5	7.083907	28.9	1108022.0	0.188904	Υ
8	IC 240-522080/10	50.0	9.424621	28.9	1112730.0	0.188492	Υ
9	IC 240-522080/11	62.5	12.072235	28.9	1121122.0	0.193156	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients


 Intercept:
 0

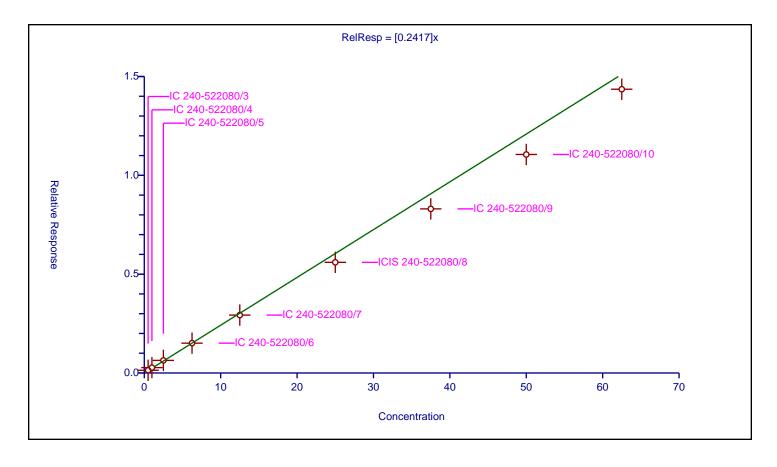
 Slope:
 0.2361

Error Coefficients

Standard Error:286000Relative Standard Error:6.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.113155	28.9	924557.0	0.226309	Υ
2	IC 240-522080/4	1.0	0.254367	28.9	940735.0	0.254367	Υ
3	IC 240-522080/5	2.5	0.667034	28.9	961407.0	0.266814	Υ
4	IC 240-522080/6	6.25	1.516382	28.9	994912.0	0.242621	Υ
5	IC 240-522080/7	12.5	2.969399	28.9	1017048.0	0.237552	Υ
6	ICIS 240-522080/8	25.0	5.651369	28.9	1111015.0	0.226055	Υ
7	IC 240-522080/9	37.5	8.321079	28.9	1108022.0	0.221895	Υ
8	IC 240-522080/10	50.0	10.960303	28.9	1112730.0	0.219206	Υ
9	IC 240-522080/11	62.5	14.390067	28.9	1121122.0	0.230241	Υ

Calibration / 1,1-Dichloroethene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	fficients
Intercept:	0
Slope:	0.2417

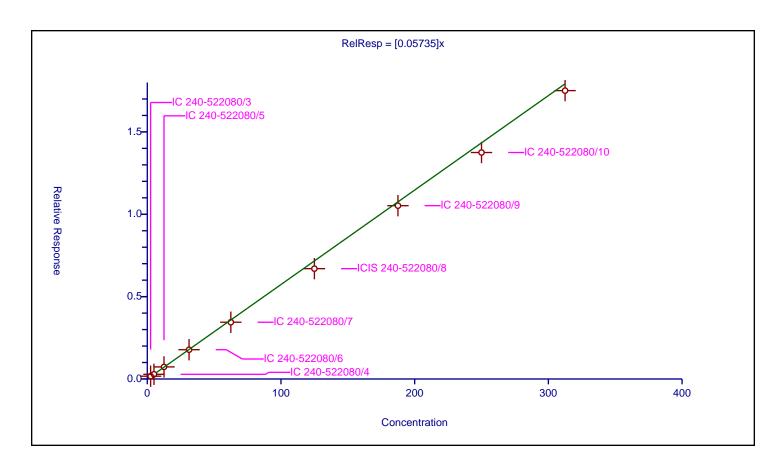
Error Coefficients

Standard Error:286000Relative Standard Error:8.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.989

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.13788	28.9	924557.0	0.27576	Υ
2	IC 240-522080/4	1.0	0.273045	28.9	940735.0	0.273045	Υ
3	IC 240-522080/5	2.5	0.637214	28.9	961407.0	0.254886	Υ
4	IC 240-522080/6	6.25	1.509149	28.9	994912.0	0.241464	Υ
5	IC 240-522080/7	12.5	2.929532	28.9	1017048.0	0.234363	Υ
6	ICIS 240-522080/8	25.0	5.598851	28.9	1111015.0	0.223954	Υ
7	IC 240-522080/9	37.5	8.303003	28.9	1108022.0	0.221413	Υ
8	IC 240-522080/10	50.0	11.055465	28.9	1112730.0	0.221109	Υ
9	IC 240-522080/11	62.5	14.356453	28.9	1121122.0	0.229703	Υ

Calibration / Acrolein

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.05735

Curve Coefficients

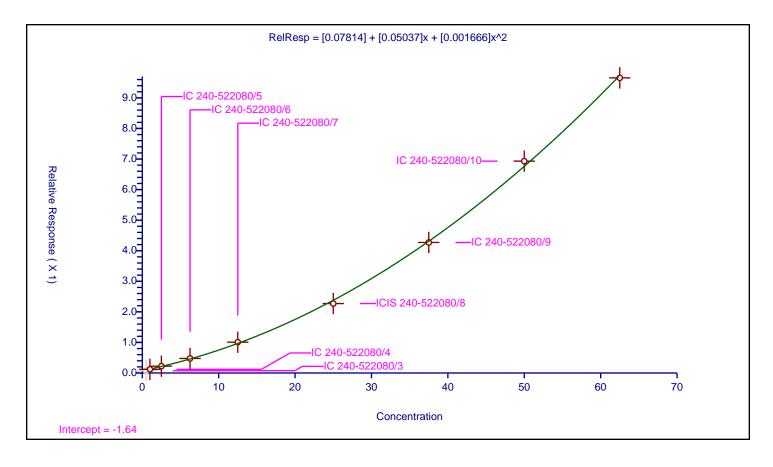
Error Coefficients

Standard Error:352000Relative Standard Error:7.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	2.5	0.169294	28.9	924557.0	0.067718	Υ
2	IC 240-522080/4	5.0	0.28475	28.9	940735.0	0.05695	Υ
3	IC 240-522080/5	12.5	0.733857	28.9	961407.0	0.058709	Υ
4	IC 240-522080/6	31.25	1.777754	28.9	994912.0	0.056888	Υ
5	IC 240-522080/7	62.5	3.446212	28.9	1017048.0	0.055139	Υ
6	ICIS 240-522080/8	125.0	6.698102	28.9	1111015.0	0.053585	Υ
7	IC 240-522080/9	187.5	10.52226	28.9	1108022.0	0.056119	Υ
8	IC 240-522080/10	250.0	13.749323	28.9	1112730.0	0.054997	Υ
9	IC 240-522080/11	312.5	17.50822	28.9	1121122.0	0.056026	Υ

Calibration / Iodomethane

Curve Type:	Quadratic
Weighting:	None
Origin:	None
Dependency:	Response
Calib Mode:	ISTD
Response Base:	AREA
RF Rounding:	Λ


Intercept:	0.07814
Slope:	0.05037
Second Order:	0.001666

Curve Coefficients

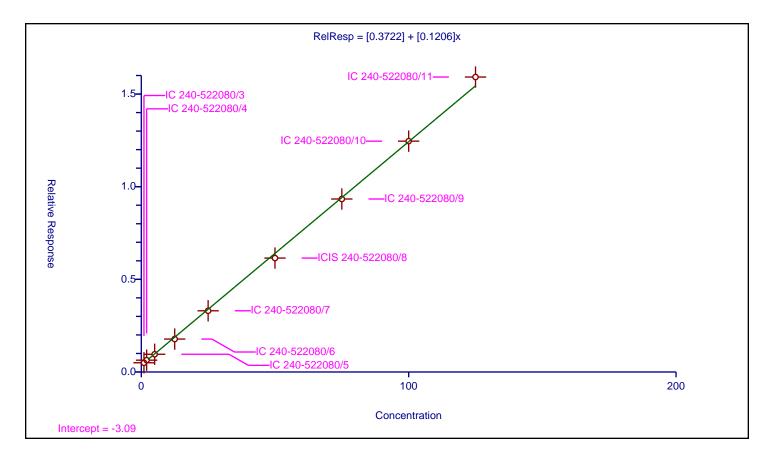
Error Coefficients

Standard Error:	223000
Relative Standard Error:	9.2
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.075864	28.9	924557.0	0.151727	N
2	IC 240-522080/4	1.0	0.120241	28.9	940735.0	0.120241	Υ
3	IC 240-522080/5	2.5	0.223377	28.9	961407.0	0.089351	Υ
4	IC 240-522080/6	6.25	0.475571	28.9	994912.0	0.076091	Υ
5	IC 240-522080/7	12.5	1.007531	28.9	1017048.0	0.080602	Υ
6	ICIS 240-522080/8	25.0	2.271546	28.9	1111015.0	0.090862	Υ
7	IC 240-522080/9	37.5	4.270177	28.9	1108022.0	0.113871	Υ
8	IC 240-522080/10	50.0	6.931372	28.9	1112730.0	0.138627	Υ
9	IC 240-522080/11	62.5	9.655494	28.9	1121122.0	0.154488	Υ

Calibration / Acetone

Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0.3722
Slope:	0.1206

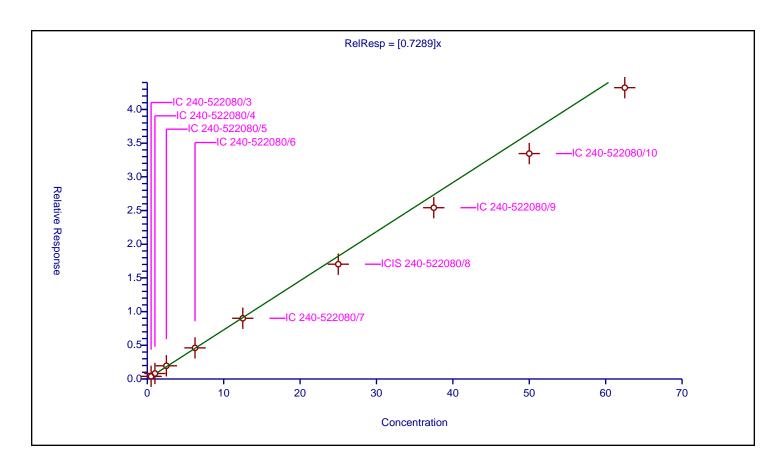
Curve Coefficients

Error Coefficients

Standard Error:	341000
Relative Standard Error:	5.5
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	1.0	0.497599	28.9	924557.0	0.497599	Υ
2	IC 240-522080/4	2.0	0.637761	28.9	940735.0	0.31888	Υ
3	IC 240-522080/5	5.0	0.956813	28.9	961407.0	0.191363	Υ
4	IC 240-522080/6	12.5	1.777086	28.9	994912.0	0.142167	Υ
5	IC 240-522080/7	25.0	3.303253	28.9	1017048.0	0.13213	Υ
6	ICIS 240-522080/8	50.0	6.147605	28.9	1111015.0	0.122952	Υ
7	IC 240-522080/9	75.0	9.335297	28.9	1108022.0	0.124471	Υ
8	IC 240-522080/10	100.0	12.457961	28.9	1112730.0	0.12458	Υ
9	IC 240-522080/11	125.0	15.917605	28.9	1121122.0	0.127341	Υ

Calibration / Carbon disulfide


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

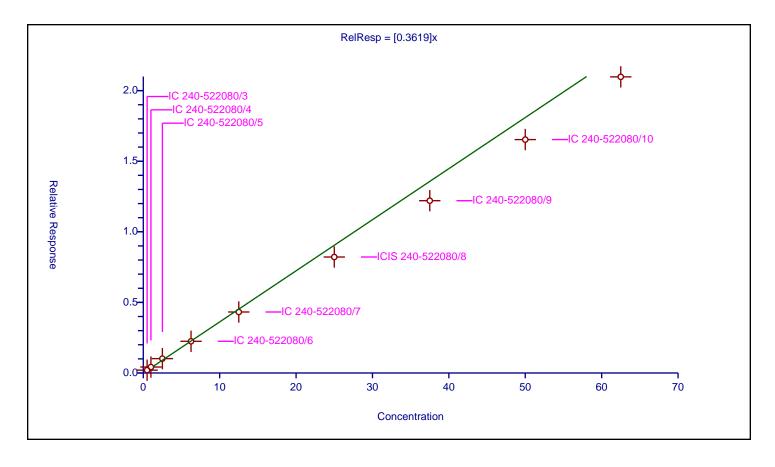
	Curve Coefficients	
Intercept: Slope:		0 0.7289

Error Coefficients

Standard Error:865000Relative Standard Error:7.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.38954	28.9	924557.0	0.77908	Υ
2	IC 240-522080/4	1.0	0.817907	28.9	940735.0	0.817907	Υ
3	IC 240-522080/5	2.5	1.958807	28.9	961407.0	0.783523	Υ
4	IC 240-522080/6	6.25	4.616857	28.9	994912.0	0.738697	Υ
5	IC 240-522080/7	12.5	9.010151	28.9	1017048.0	0.720812	Υ
6	ICIS 240-522080/8	25.0	17.035319	28.9	1111015.0	0.681413	Υ
7	IC 240-522080/9	37.5	25.417176	28.9	1108022.0	0.677791	Υ
8	IC 240-522080/10	50.0	33.45266	28.9	1112730.0	0.669053	Υ
9	IC 240-522080/11	62.5	43.233613	28.9	1121122.0	0.691738	Υ

Calibration /3-Chloro-1-propene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	efficients
Intercept:	0
Slope:	0.3619

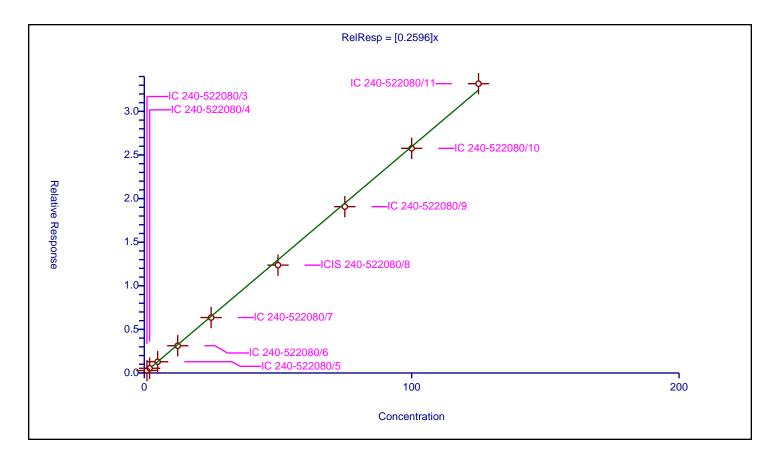
Error Coefficients

Standard Error:421000Relative Standard Error:10.6Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.984

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.200709	28.9	924557.0	0.401418	Υ
2	IC 240-522080/4	1.0	0.423239	28.9	940735.0	0.423239	Υ
3	IC 240-522080/5	2.5	1.017354	28.9	961407.0	0.406942	Υ
4	IC 240-522080/6	6.25	2.245743	28.9	994912.0	0.359319	Υ
5	IC 240-522080/7	12.5	4.320019	28.9	1017048.0	0.345602	Υ
6	ICIS 240-522080/8	25.0	8.215033	28.9	1111015.0	0.328601	Υ
7	IC 240-522080/9	37.5	12.203565	28.9	1108022.0	0.325428	Υ
8	IC 240-522080/10	50.0	16.532214	28.9	1112730.0	0.330644	Υ
9	IC 240-522080/11	62.5	20.974683	28.9	1121122.0	0.335595	Υ

Calibration / Methyl acetate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2596

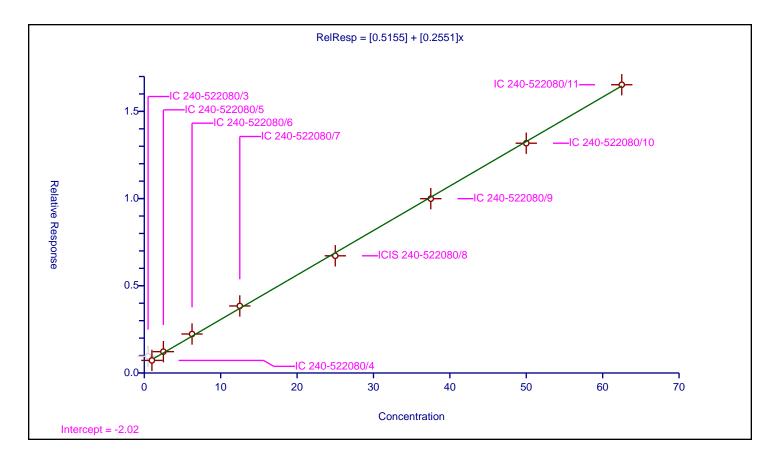
Curve Coefficients

Error Coefficients

Standard Error:658000Relative Standard Error:3.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	1.0	0.278448	28.9	924557.0	0.278448	Υ
2	IC 240-522080/4	2.0	0.541544	28.9	940735.0	0.270772	Υ
3	IC 240-522080/5	5.0	1.29024	28.9	961407.0	0.258048	Υ
4	IC 240-522080/6	12.5	3.126008	28.9	994912.0	0.250081	Υ
5	IC 240-522080/7	25.0	6.358979	28.9	1017048.0	0.254359	Υ
6	ICIS 240-522080/8	50.0	12.369033	28.9	1111015.0	0.247381	Υ
7	IC 240-522080/9	75.0	19.075551	28.9	1108022.0	0.254341	Υ
8	IC 240-522080/10	100.0	25.764044	28.9	1112730.0	0.25764	Υ
9	IC 240-522080/11	125.0	33.175703	28.9	1121122.0	0.265406	Υ

Calibration / Methylene Chloride


Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

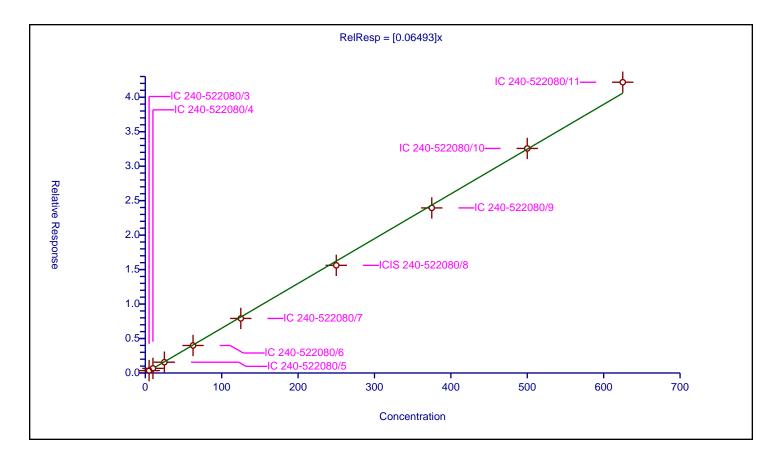
	Curve Coefficients	
Intercept: Slope:		0.5155 0.2551

Error Coefficients

Standard Error:389000Relative Standard Error:9.9Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.958189	28.9	924557.0	1.916379	N
2	IC 240-522080/4	1.0	0.721137	28.9	940735.0	0.721137	Υ
3	IC 240-522080/5	2.5	1.223777	28.9	961407.0	0.489511	Υ
4	IC 240-522080/6	6.25	2.235518	28.9	994912.0	0.357683	Υ
5	IC 240-522080/7	12.5	3.844655	28.9	1017048.0	0.307572	Υ
6	ICIS 240-522080/8	25.0	6.719927	28.9	1111015.0	0.268797	Υ
7	IC 240-522080/9	37.5	9.994846	28.9	1108022.0	0.266529	Υ
8	IC 240-522080/10	50.0	13.175364	28.9	1112730.0	0.263507	Υ
9	IC 240-522080/11	62.5	16.527351	28.9	1121122.0	0.264438	Υ

Calibration / 2-Methyl-2-propanol


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	cients
Intercept:	0
Slope:	0.06493

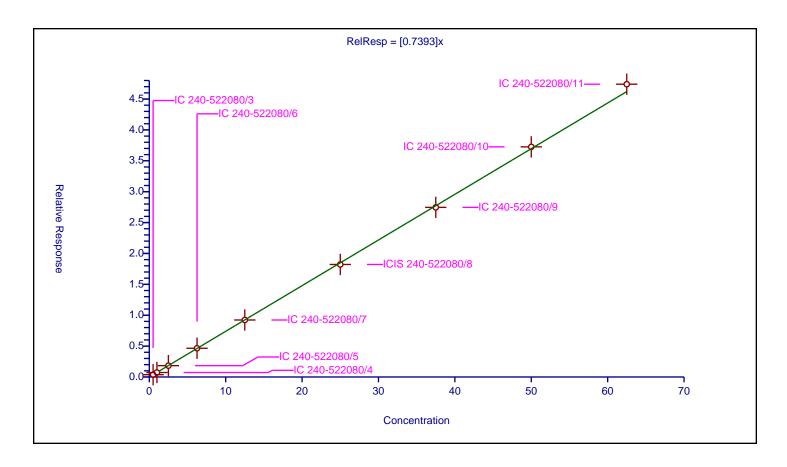
Error Coefficients

Standard Error:833000Relative Standard Error:3.5Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	5.0	0.344184	28.9	924557.0	0.068837	Υ
2	IC 240-522080/4	10.0	0.669096	28.9	940735.0	0.06691	Υ
3	IC 240-522080/5	25.0	1.564478	28.9	961407.0	0.062579	Υ
4	IC 240-522080/6	62.5	3.988524	28.9	994912.0	0.063816	Υ
5	IC 240-522080/7	125.0	7.914532	28.9	1017048.0	0.063316	Υ
6	ICIS 240-522080/8	250.0	15.614191	28.9	1111015.0	0.062457	Υ
7	IC 240-522080/9	375.0	23.941479	28.9	1108022.0	0.063844	Υ
8	IC 240-522080/10	500.0	32.566671	28.9	1112730.0	0.065133	Υ
9	IC 240-522080/11	625.0	42.170952	28.9	1121122.0	0.067474	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

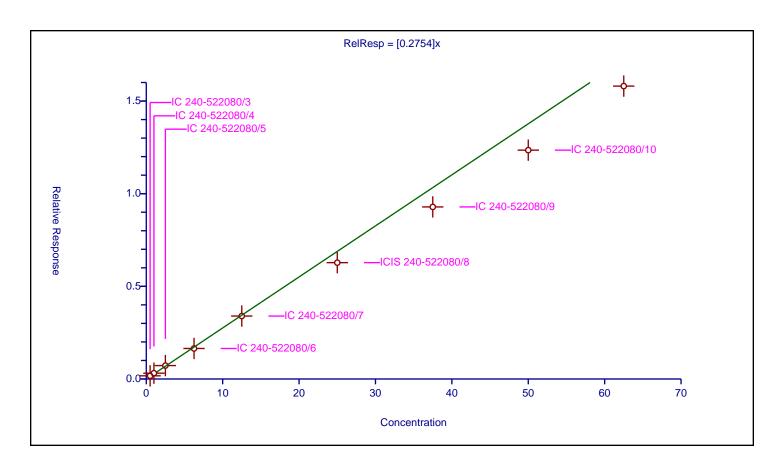

C	urv	е (ငစ	effi	cie	nts
_		-		•		

Intercept:	0
Slope:	0.7393

Error Coefficients

Standard Error:	947000
Relative Standard Error:	1.4
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.373598	28.9	924557.0	0.747196	Υ
2	IC 240-522080/4	1.0	0.725837	28.9	940735.0	0.725837	Υ
3	IC 240-522080/5	2.5	1.834599	28.9	961407.0	0.733839	Υ
4	IC 240-522080/6	6.25	4.651046	28.9	994912.0	0.744167	Υ
5	IC 240-522080/7	12.5	9.227388	28.9	1017048.0	0.738191	Υ
6	ICIS 240-522080/8	25.0	18.217887	28.9	1111015.0	0.728715	Υ
7	IC 240-522080/9	37.5	27.460663	28.9	1108022.0	0.732284	Υ
8	IC 240-522080/10	50.0	37.259217	28.9	1112730.0	0.745184	Υ
9	IC 240-522080/11	62.5	47.401489	28.9	1121122.0	0.758424	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.2754

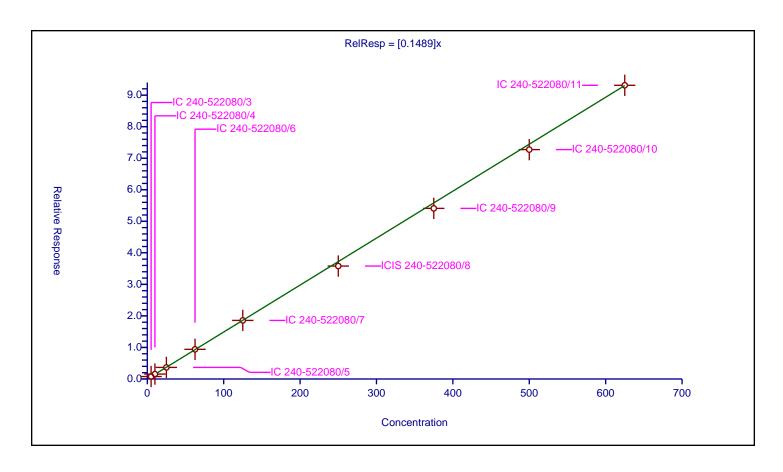
Error Coefficients

Standard Error:317000Relative Standard Error:12.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.979

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.170764	28.9	924557.0	0.341527	Υ
2	IC 240-522080/4	1.0	0.313689	28.9	940735.0	0.313689	Υ
3	IC 240-522080/5	2.5	0.724419	28.9	961407.0	0.289767	Υ
4	IC 240-522080/6	6.25	1.646516	28.9	994912.0	0.263443	Υ
5	IC 240-522080/7	12.5	3.3964	28.9	1017048.0	0.271712	Υ
6	ICIS 240-522080/8	25.0	6.277979	28.9	1111015.0	0.251119	Υ
7	IC 240-522080/9	37.5	9.286079	28.9	1108022.0	0.247629	Υ
8	IC 240-522080/10	50.0	12.349683	28.9	1112730.0	0.246994	Υ
9	IC 240-522080/11	62.5	15.805678	28.9	1121122.0	0.252891	Υ

Calibration / Acrylonitrile

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1489

Curve Coefficients

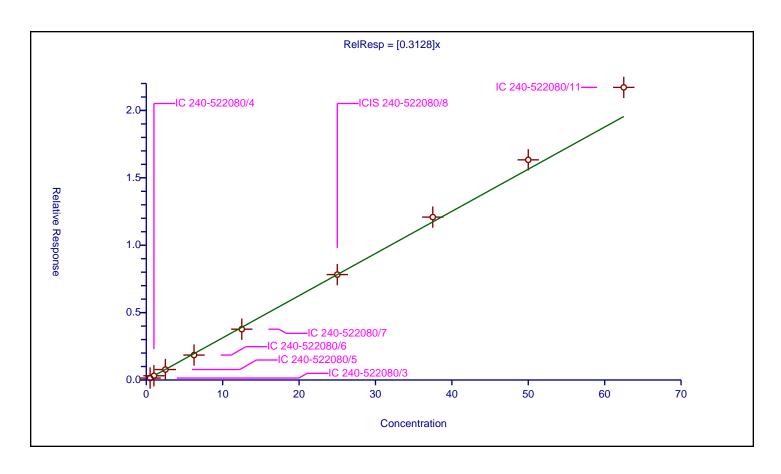
Error Coefficients

Standard Error:1860000Relative Standard Error:3.1Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	5.0	0.778892	28.9	924557.0	0.155778	Υ
2	IC 240-522080/4	10.0	1.562606	28.9	940735.0	0.156261	Υ
3	IC 240-522080/5	25.0	3.67046	28.9	961407.0	0.146818	Υ
4	IC 240-522080/6	62.5	9.405938	28.9	994912.0	0.150495	Υ
5	IC 240-522080/7	125.0	18.572446	28.9	1017048.0	0.14858	Υ
6	ICIS 240-522080/8	250.0	35.811377	28.9	1111015.0	0.143246	Υ
7	IC 240-522080/9	375.0	54.093623	28.9	1108022.0	0.14425	Υ
8	IC 240-522080/10	500.0	72.72607	28.9	1112730.0	0.145452	Υ
9	IC 240-522080/11	625.0	93.113065	28.9	1121122.0	0.148981	Υ

Calibration / Hexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3128

Curve Coefficients

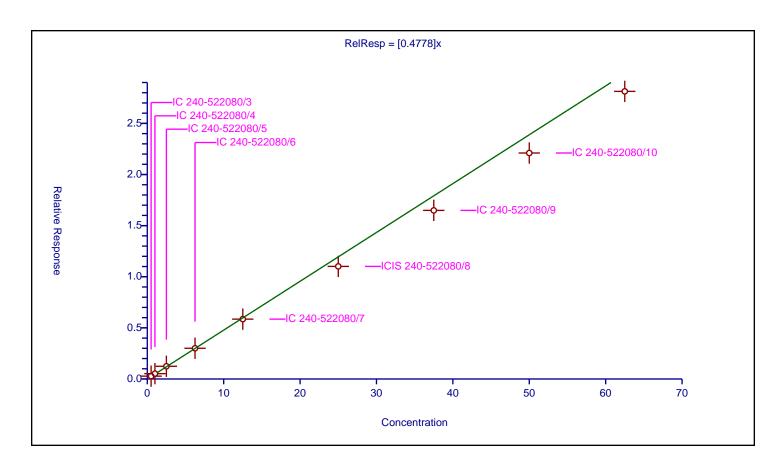
Error Coefficients

Standard Error:423000Relative Standard Error:5.8Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.142694	28.9	924557.0	0.285387	Υ
2	IC 240-522080/4	1.0	0.312982	28.9	940735.0	0.312982	Υ
3	IC 240-522080/5	2.5	0.775942	28.9	961407.0	0.310377	Υ
4	IC 240-522080/6	6.25	1.849793	28.9	994912.0	0.295967	Υ
5	IC 240-522080/7	12.5	3.769922	28.9	1017048.0	0.301594	Υ
6	ICIS 240-522080/8	25.0	7.821129	28.9	1111015.0	0.312845	Υ
7	IC 240-522080/9	37.5	12.087237	28.9	1108022.0	0.322326	Υ
8	IC 240-522080/10	50.0	16.335527	28.9	1112730.0	0.326711	Υ
9	IC 240-522080/11	62.5	21.711798	28.9	1121122.0	0.347389	Υ

Calibration / 1,1-Dichloroethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.4778

Curve Coefficients

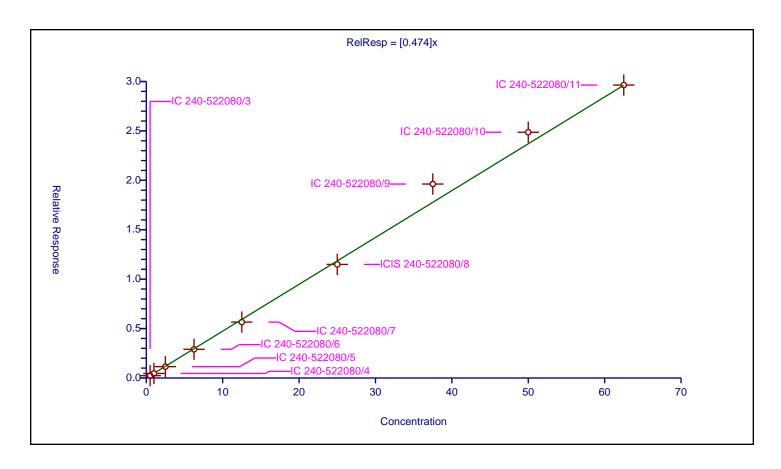
Error Coefficients

Standard Error:565000Relative Standard Error:8.7Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.989

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.278948	28.9	924557.0	0.557897	Υ
2	IC 240-522080/4	1.0	0.522589	28.9	940735.0	0.522589	Υ
3	IC 240-522080/5	2.5	1.243797	28.9	961407.0	0.497519	Υ
4	IC 240-522080/6	6.25	3.005488	28.9	994912.0	0.480878	Υ
5	IC 240-522080/7	12.5	5.854744	28.9	1017048.0	0.46838	Υ
6	ICIS 240-522080/8	25.0	11.012702	28.9	1111015.0	0.440508	Υ
7	IC 240-522080/9	37.5	16.491739	28.9	1108022.0	0.43978	Υ
8	IC 240-522080/10	50.0	22.104904	28.9	1112730.0	0.442098	Υ
9	IC 240-522080/11	62.5	28.132313	28.9	1121122.0	0.450117	Υ

Calibration / Vinyl acetate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.474

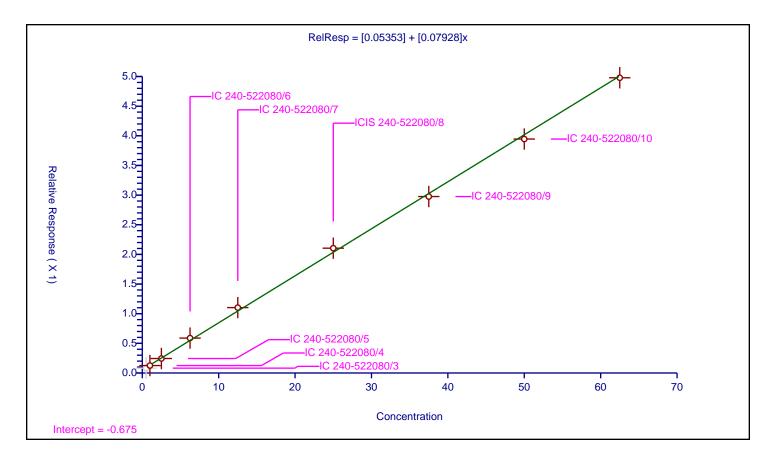
Curve Coefficients

Error Coefficients

Standard Error:618000Relative Standard Error:4.8Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.237437	28.9	924557.0	0.474875	Υ
2	IC 240-522080/4	1.0	0.459581	28.9	940735.0	0.459581	Υ
3	IC 240-522080/5	2.5	1.148236	28.9	961407.0	0.459294	Υ
4	IC 240-522080/6	6.25	2.904518	28.9	994912.0	0.464723	Υ
5	IC 240-522080/7	12.5	5.658222	28.9	1017048.0	0.452658	Υ
6	ICIS 240-522080/8	25.0	11.492914	28.9	1111015.0	0.459717	Υ
7	IC 240-522080/9	37.5	19.625006	28.9	1108022.0	0.523333	Υ
8	IC 240-522080/10	50.0	24.865797	28.9	1112730.0	0.497316	Υ
9	IC 240-522080/11	62.5	29.640646	28.9	1121122.0	0.47425	Υ

Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Calibration

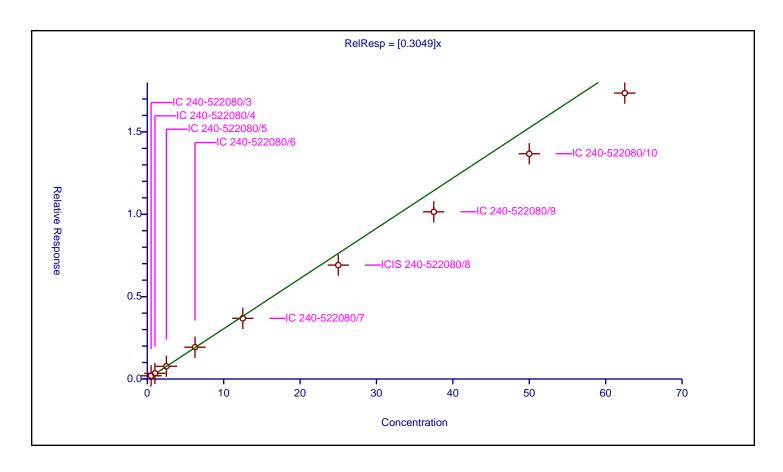
	Curve Coefficients	
Intercept: Slope:		0.05353 0.07928

Error Coefficients

Standard Error:117000Relative Standard Error:6.1Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.081646	28.9	924557.0	0.163293	N
2	IC 240-522080/4	1.0	0.125248	28.9	940735.0	0.125248	Υ
3	IC 240-522080/5	2.5	0.244359	28.9	961407.0	0.097743	Υ
4	IC 240-522080/6	6.25	0.588537	28.9	994912.0	0.094166	Υ
5	IC 240-522080/7	12.5	1.10278	28.9	1017048.0	0.088222	Υ
6	ICIS 240-522080/8	25.0	2.104781	28.9	1111015.0	0.084191	Υ
7	IC 240-522080/9	37.5	2.975702	28.9	1108022.0	0.079352	Υ
8	IC 240-522080/10	50.0	3.945509	28.9	1112730.0	0.07891	Υ
9	IC 240-522080/11	62.5	4.978663	28.9	1121122.0	0.079659	Υ

Calibration / cis-1,2-Dichloroethene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	0.3049			

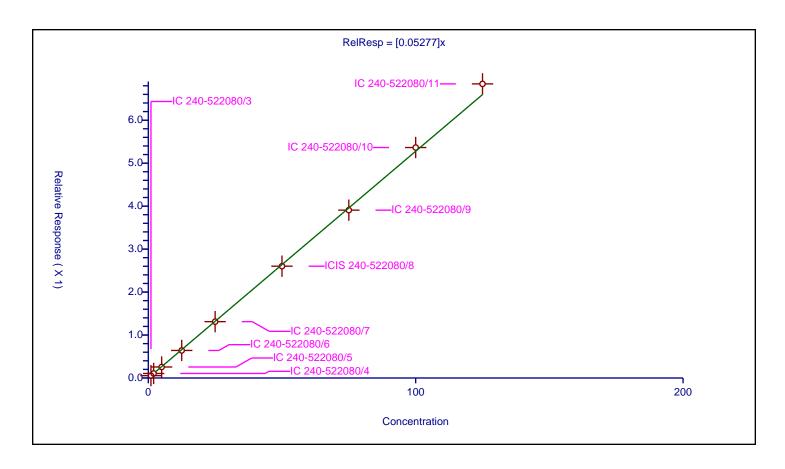
Error Coefficients

Standard Error:349000Relative Standard Error:13.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.975

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.195458	28.9	924557.0	0.390915	Υ
2	IC 240-522080/4	1.0	0.343396	28.9	940735.0	0.343396	Υ
3	IC 240-522080/5	2.5	0.770741	28.9	961407.0	0.308296	Υ
4	IC 240-522080/6	6.25	1.929529	28.9	994912.0	0.308725	Υ
5	IC 240-522080/7	12.5	3.682658	28.9	1017048.0	0.294613	Υ
6	ICIS 240-522080/8	25.0	6.914706	28.9	1111015.0	0.276588	Υ
7	IC 240-522080/9	37.5	10.149984	28.9	1108022.0	0.270666	Υ
8	IC 240-522080/10	50.0	13.675328	28.9	1112730.0	0.273507	Υ
9	IC 240-522080/11	62.5	17.356725	28.9	1121122.0	0.277708	Υ

Calibration / 2-Butanone (MEK)

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.05277

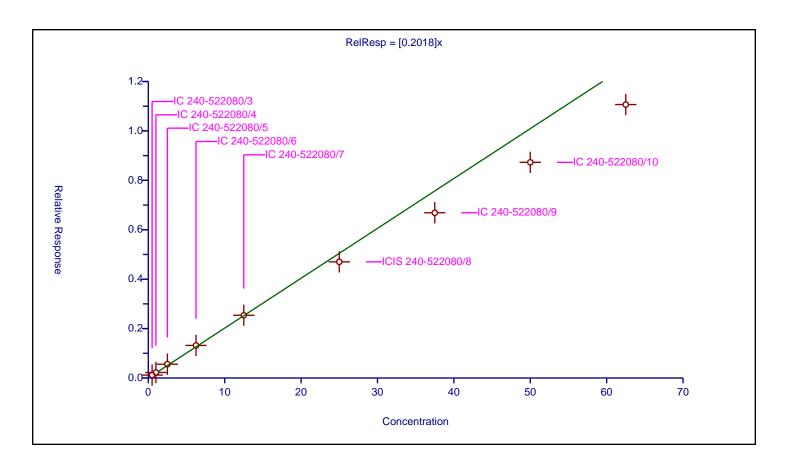
Curve Coefficients

Error Coefficients

Standard Error:136000Relative Standard Error:2.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	1.0	0.054764	28.9	924557.0	0.054764	Υ
2	IC 240-522080/4	2.0	0.105464	28.9	940735.0	0.052732	Υ
3	IC 240-522080/5	5.0	0.256022	28.9	961407.0	0.051204	Υ
4	IC 240-522080/6	12.5	0.64094	28.9	994912.0	0.051275	Υ
5	IC 240-522080/7	25.0	1.311322	28.9	1017048.0	0.052453	Υ
6	ICIS 240-522080/8	50.0	2.602057	28.9	1111015.0	0.052041	Υ
7	IC 240-522080/9	75.0	3.905778	28.9	1108022.0	0.052077	Υ
8	IC 240-522080/10	100.0	5.363433	28.9	1112730.0	0.053634	Υ
9	IC 240-522080/11	125.0	6.844327	28.9	1121122.0	0.054755	Υ

Calibration / Chlorobromomethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients			
Intercept:	0		
Slope:	0.2018		

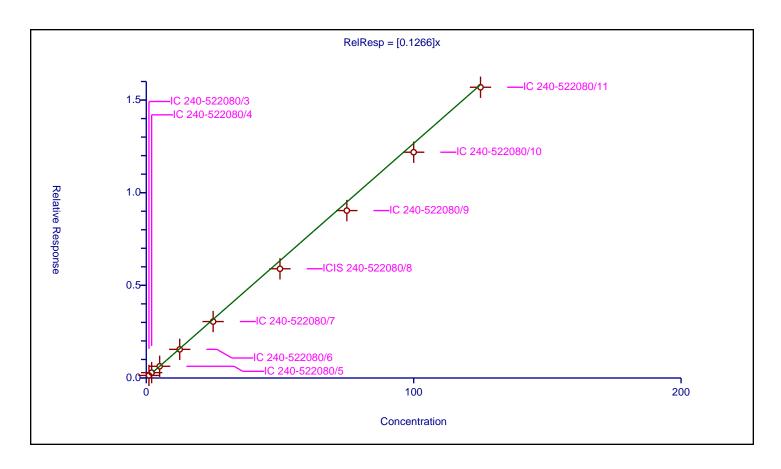
Error Coefficients

Standard Error:225000Relative Standard Error:11.6Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.981

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.118562	28.9	924557.0	0.237125	Υ
2	IC 240-522080/4	1.0	0.223739	28.9	940735.0	0.223739	Υ
3	IC 240-522080/5	2.5	0.558968	28.9	961407.0	0.223587	Υ
4	IC 240-522080/6	6.25	1.317666	28.9	994912.0	0.210827	Υ
5	IC 240-522080/7	12.5	2.539556	28.9	1017048.0	0.203165	Υ
6	ICIS 240-522080/8	25.0	4.700908	28.9	1111015.0	0.188036	Υ
7	IC 240-522080/9	37.5	6.687922	28.9	1108022.0	0.178345	Υ
8	IC 240-522080/10	50.0	8.729035	28.9	1112730.0	0.174581	Υ
9	IC 240-522080/11	62.5	11.066851	28.9	1121122.0	0.17707	Υ

Calibration / Tetrahydrofuran

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1266

Curve Coefficients

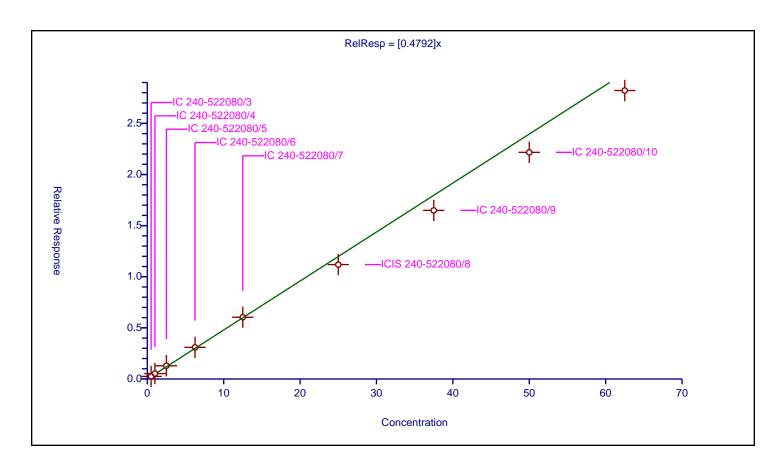
Error Coefficients

Standard Error:312000Relative Standard Error:6.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	1.0	0.137567	28.9	924557.0	0.137567	Υ
2	IC 240-522080/4	2.0	0.288682	28.9	940735.0	0.144341	Υ
3	IC 240-522080/5	5.0	0.632044	28.9	961407.0	0.126409	Υ
4	IC 240-522080/6	12.5	1.545023	28.9	994912.0	0.123602	Υ
5	IC 240-522080/7	25.0	3.045467	28.9	1017048.0	0.121819	Υ
6	ICIS 240-522080/8	50.0	5.894324	28.9	1111015.0	0.117886	Υ
7	IC 240-522080/9	75.0	9.035035	28.9	1108022.0	0.120467	Υ
8	IC 240-522080/10	100.0	12.184527	28.9	1112730.0	0.121845	Υ
9	IC 240-522080/11	125.0	15.690503	28.9	1121122.0	0.125524	Υ

Calibration / Chloroform

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.4792

Curve Coefficients

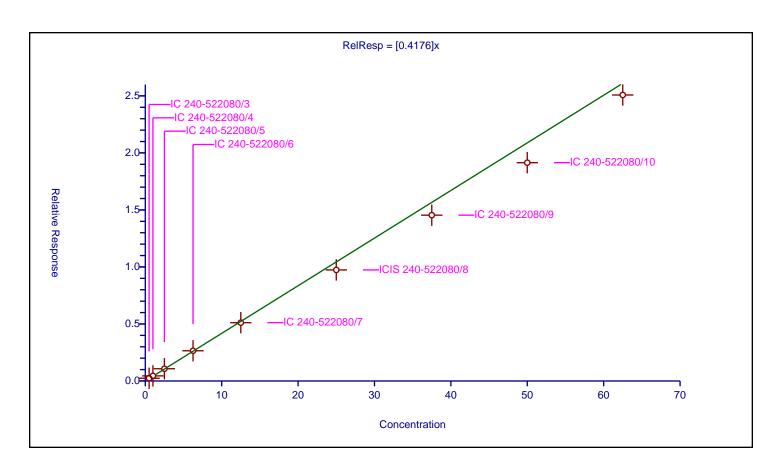
Error Coefficients

Standard Error:567000Relative Standard Error:7.2Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.251972	28.9	924557.0	0.503945	Υ
2	IC 240-522080/4	1.0	0.529993	28.9	940735.0	0.529993	Υ
3	IC 240-522080/5	2.5	1.293697	28.9	961407.0	0.517479	Υ
4	IC 240-522080/6	6.25	3.096263	28.9	994912.0	0.495402	Υ
5	IC 240-522080/7	12.5	6.041264	28.9	1017048.0	0.483301	Υ
6	ICIS 240-522080/8	25.0	11.189976	28.9	1111015.0	0.447599	Υ
7	IC 240-522080/9	37.5	16.491844	28.9	1108022.0	0.439782	Υ
8	IC 240-522080/10	50.0	22.169029	28.9	1112730.0	0.443381	Υ
9	IC 240-522080/11	62.5	28.217483	28.9	1121122.0	0.45148	Υ

Calibration / Cyclohexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.4176

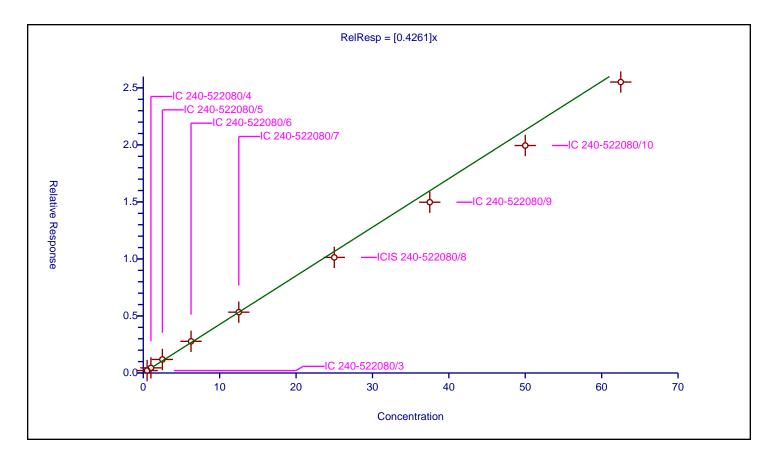
Curve Coefficients

Error Coefficients

Standard Error:498000Relative Standard Error:8.1Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.243095	28.9	924557.0	0.48619	Υ
2	IC 240-522080/4	1.0	0.448614	28.9	940735.0	0.448614	Υ
3	IC 240-522080/5	2.5	1.073416	28.9	961407.0	0.429367	Υ
4	IC 240-522080/6	6.25	2.650263	28.9	994912.0	0.424042	Υ
5	IC 240-522080/7	12.5	5.1127	28.9	1017048.0	0.409016	Υ
6	ICIS 240-522080/8	25.0	9.740781	28.9	1111015.0	0.389631	Υ
7	IC 240-522080/9	37.5	14.54108	28.9	1108022.0	0.387762	Υ
8	IC 240-522080/10	50.0	19.145039	28.9	1112730.0	0.382901	Υ
9	IC 240-522080/11	62.5	25.079764	28.9	1121122.0	0.401276	Υ

Calibration / 1,1,1-Trichloroethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients			
Intercept:	0		
Slope:	0.4261		

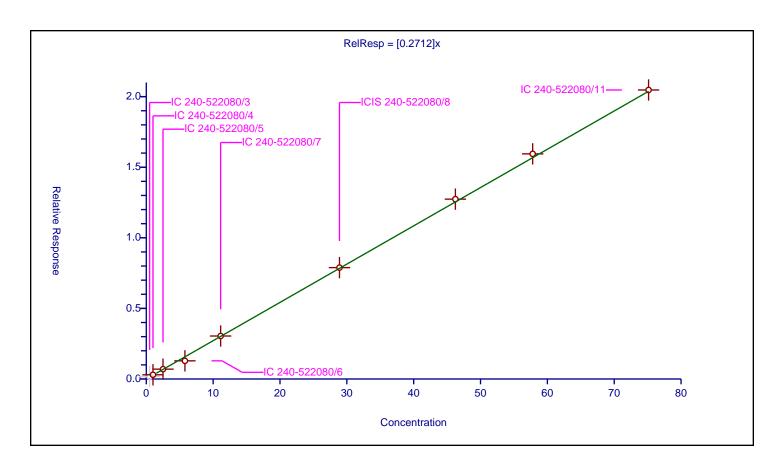
Error Coefficients

Standard Error:512000Relative Standard Error:6.2Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.212806	28.9	924557.0	0.425612	Υ
2	IC 240-522080/4	1.0	0.450672	28.9	940735.0	0.450672	Υ
3	IC 240-522080/5	2.5	1.188787	28.9	961407.0	0.475515	Υ
4	IC 240-522080/6	6.25	2.777928	28.9	994912.0	0.444468	Υ
5	IC 240-522080/7	12.5	5.333063	28.9	1017048.0	0.426645	Υ
6	ICIS 240-522080/8	25.0	10.136454	28.9	1111015.0	0.405458	Υ
7	IC 240-522080/9	37.5	14.976163	28.9	1108022.0	0.399364	Υ
8	IC 240-522080/10	50.0	19.948436	28.9	1112730.0	0.398969	Υ
9	IC 240-522080/11	62.5	25.513397	28.9	1121122.0	0.408214	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Curve Coefficients

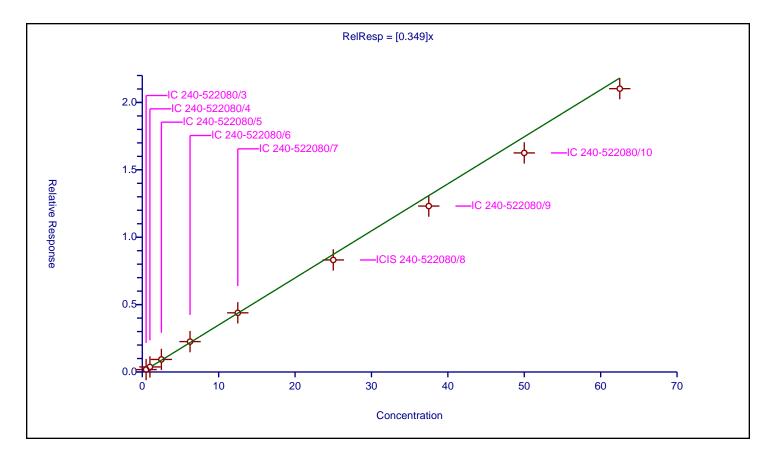
Intercept:	0
Slope:	0.2712

Error Coefficients

Standard Error:	439000
Relative Standard Error:	7.9
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.171576	28.9	924557.0	0.343153	N
2	IC 240-522080/4	1.0	0.297622	28.9	940735.0	0.297622	Υ
3	IC 240-522080/5	2.5	0.697064	28.9	961407.0	0.278826	Υ
4	IC 240-522080/6	5.78	1.286411	28.9	994912.0	0.222562	Υ
5	IC 240-522080/7	11.12	3.044189	28.9	1017048.0	0.273758	Υ
6	ICIS 240-522080/8	28.9	7.888189	28.9	1111015.0	0.272948	Υ
7	IC 240-522080/9	46.24	12.738283	28.9	1108022.0	0.275482	Υ
8	IC 240-522080/10	57.8	15.946022	28.9	1112730.0	0.275883	Υ
9	IC 240-522080/11	75.14	20.469774	28.9	1121122.0	0.272422	Υ

Calibration / Carbon tetrachloride


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

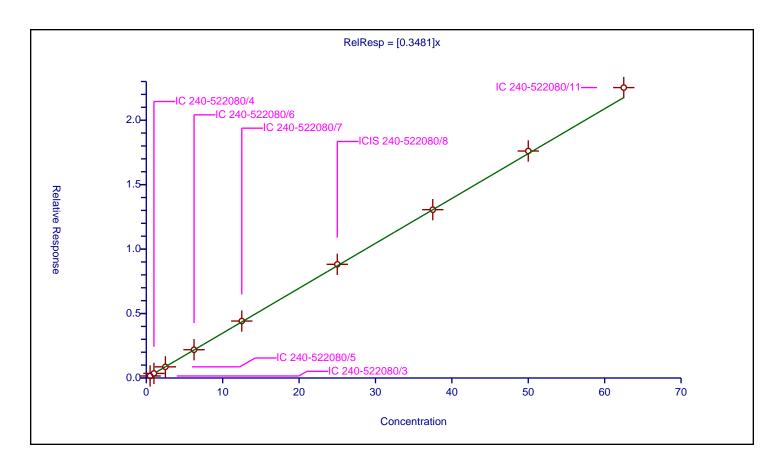
Curve Coefficients	
Intercept:	0
Slope:	0.349

Error Coefficients

Standard Error:420000Relative Standard Error:5.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.179078	28.9	924557.0	0.358157	Υ
2	IC 240-522080/4	1.0	0.375929	28.9	940735.0	0.375929	Υ
3	IC 240-522080/5	2.5	0.931082	28.9	961407.0	0.372433	Υ
4	IC 240-522080/6	6.25	2.255677	28.9	994912.0	0.360908	Υ
5	IC 240-522080/7	12.5	4.391371	28.9	1017048.0	0.35131	Υ
6	ICIS 240-522080/8	25.0	8.313151	28.9	1111015.0	0.332526	Υ
7	IC 240-522080/9	37.5	12.311912	28.9	1108022.0	0.328318	Υ
8	IC 240-522080/10	50.0	16.256182	28.9	1112730.0	0.325124	Υ
9	IC 240-522080/11	62.5	21.024537	28.9	1121122.0	0.336393	Υ

Calibration / 1,1-Dichloropropene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Co	efficients
Intercept:	0
Slope:	0.3481

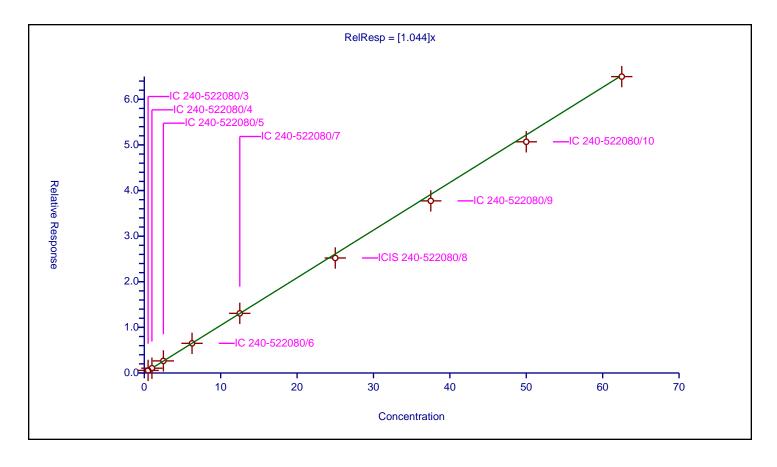
Error Coefficients

Standard Error:450000Relative Standard Error:3.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.156979	28.9	924557.0	0.313957	Υ
2	IC 240-522080/4	1.0	0.355284	28.9	940735.0	0.355284	Υ
3	IC 240-522080/5	2.5	0.86513	28.9	961407.0	0.346052	Υ
4	IC 240-522080/6	6.25	2.193167	28.9	994912.0	0.350907	Υ
5	IC 240-522080/7	12.5	4.418138	28.9	1017048.0	0.353451	Υ
6	ICIS 240-522080/8	25.0	8.818257	28.9	1111015.0	0.35273	Υ
7	IC 240-522080/9	37.5	13.057611	28.9	1108022.0	0.348203	Υ
8	IC 240-522080/10	50.0	17.60824	28.9	1112730.0	0.352165	Υ
9	IC 240-522080/11	62.5	22.52689	28.9	1121122.0	0.36043	Υ

Calibration / Benzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

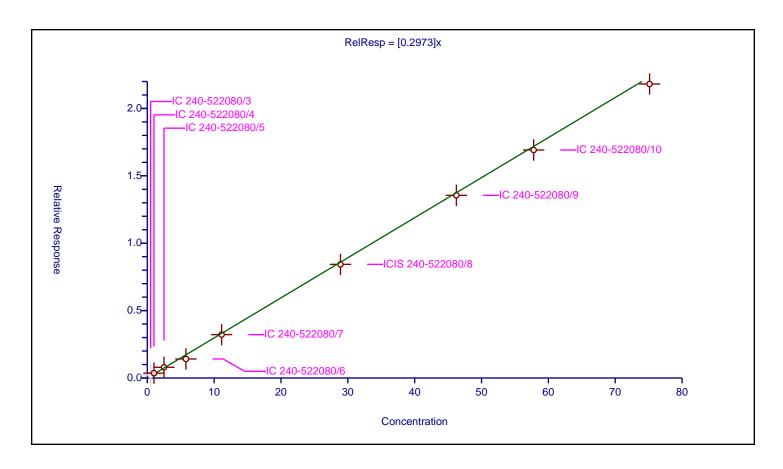

Intercept:	0
intercept.	O
Slope:	1.044

Curve Coefficients

Error Coefficients

Standard Error:1300000Relative Standard Error:3.6Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.564523	28.9	924557.0	1.129047	Υ
2	IC 240-522080/4	1.0	1.051138	28.9	940735.0	1.051138	Υ
3	IC 240-522080/5	2.5	2.65049	28.9	961407.0	1.060196	Υ
4	IC 240-522080/6	6.25	6.503075	28.9	994912.0	1.040492	Υ
5	IC 240-522080/7	12.5	13.074146	28.9	1017048.0	1.045932	Υ
6	ICIS 240-522080/8	25.0	25.213466	28.9	1111015.0	1.008539	Υ
7	IC 240-522080/9	37.5	37.733991	28.9	1108022.0	1.00624	Υ
8	IC 240-522080/10	50.0	50.684538	28.9	1112730.0	1.013691	Υ
9	IC 240-522080/11	62.5	64.977144	28.9	1121122.0	1.039634	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

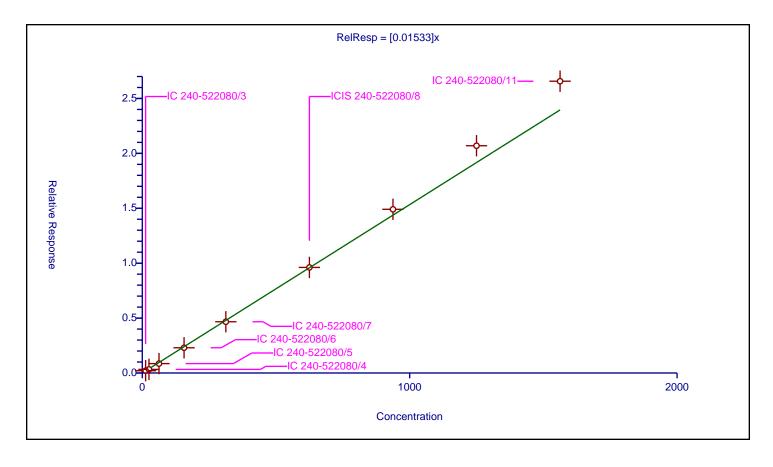
Curve Coefficients

Intercept:	0
Slope:	0.2973

Standard Error:	468000
Relative Standard Error:	10.8
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.983

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.227841	28.9	924557.0	0.455682	N
2	IC 240-522080/4	1.0	0.359462	28.9	940735.0	0.359462	Υ
3	IC 240-522080/5	2.5	0.793767	28.9	961407.0	0.317507	Υ
4	IC 240-522080/6	5.78	1.411461	28.9	994912.0	0.244197	Υ
5	IC 240-522080/7	11.12	3.219086	28.9	1017048.0	0.289486	Υ
6	ICIS 240-522080/8	28.9	8.432235	28.9	1111015.0	0.291773	Υ
7	IC 240-522080/9	46.24	13.553153	28.9	1108022.0	0.293105	Υ
8	IC 240-522080/10	57.8	16.918913	28.9	1112730.0	0.292715	Υ
9	IC 240-522080/11	75.14	21.815811	28.9	1121122.0	0.290336	Υ

Calibration / Isobutyl alcohol


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.01533

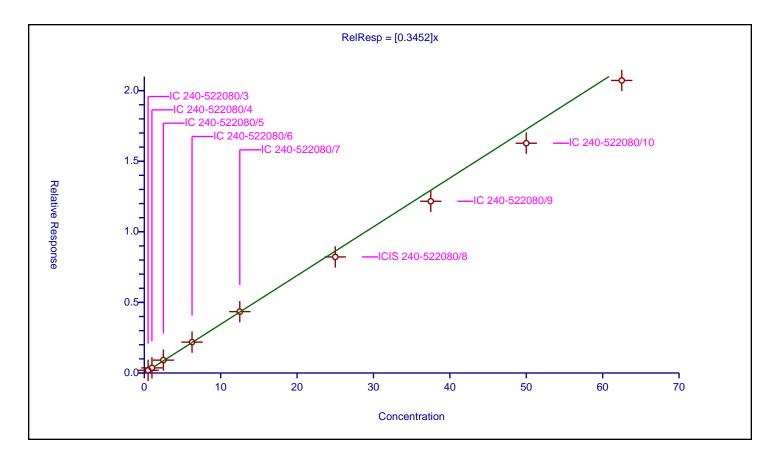
Error Coefficients

Standard Error:524000Relative Standard Error:8.8Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	12.5	0.208899	28.9	924557.0	0.016712	Υ
2	IC 240-522080/4	25.0	0.32822	28.9	940735.0	0.013129	Υ
3	IC 240-522080/5	62.5	0.85506	28.9	961407.0	0.013681	Υ
4	IC 240-522080/6	156.25	2.29617	28.9	994912.0	0.014695	Υ
5	IC 240-522080/7	312.5	4.666093	28.9	1017048.0	0.014931	Υ
6	ICIS 240-522080/8	625.0	9.613633	28.9	1111015.0	0.015382	Υ
7	IC 240-522080/9	937.5	14.905844	28.9	1108022.0	0.0159	Υ
8	IC 240-522080/10	1250.0	20.695551	28.9	1112730.0	0.016556	Υ
9	IC 240-522080/11	1562.5	26.57098	28.9	1121122.0	0.017005	Υ

Calibration / 1,2-Dichloroethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

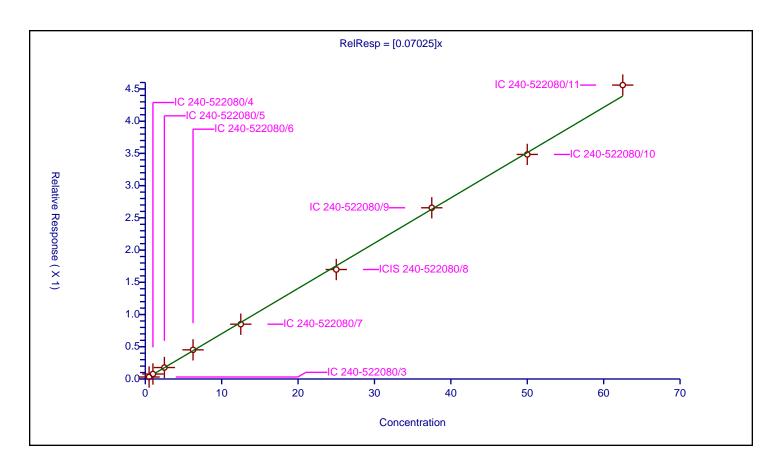

Intercept:	0
Slope:	0.3452

Curve Coefficients

Error Coefficients

Standard Error:416000Relative Standard Error:5.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.186487	28.9	924557.0	0.372973	Υ
2	IC 240-522080/4	1.0	0.362104	28.9	940735.0	0.362104	Υ
3	IC 240-522080/5	2.5	0.910551	28.9	961407.0	0.36422	Υ
4	IC 240-522080/6	6.25	2.186137	28.9	994912.0	0.349782	Υ
5	IC 240-522080/7	12.5	4.345196	28.9	1017048.0	0.347616	Υ
6	ICIS 240-522080/8	25.0	8.220677	28.9	1111015.0	0.328827	Υ
7	IC 240-522080/9	37.5	12.162172	28.9	1108022.0	0.324325	Υ
8	IC 240-522080/10	50.0	16.275583	28.9	1112730.0	0.325512	Υ
9	IC 240-522080/11	62.5	20.721262	28.9	1121122.0	0.33154	Υ


Calibration / n-Heptane

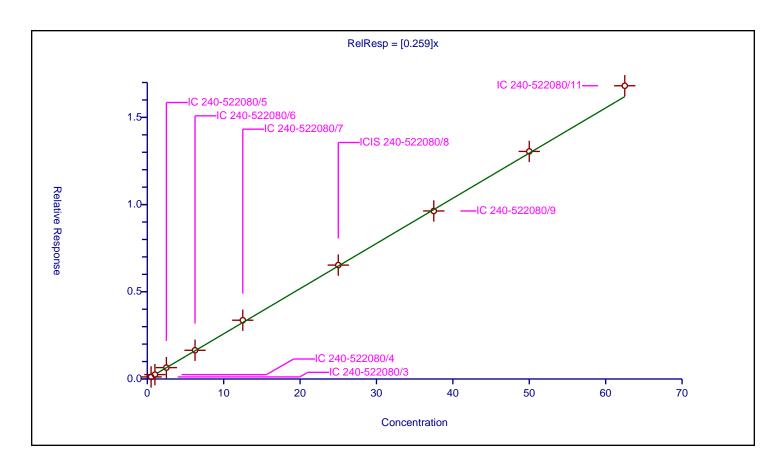
Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:	0 0.07025	

Standard Error:	90200
Relative Standard Error:	6.1
Correlation Coefficient:	0.998
Coefficient of Determination (Adjusted):	0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.030883	28.9	924557.0	0.061766	Υ
2	IC 240-522080/4	1.0	0.077447	28.9	940735.0	0.077447	Υ
3	IC 240-522080/5	2.5	0.177896	28.9	961407.0	0.071158	Υ
4	IC 240-522080/6	6.25	0.452478	28.9	994912.0	0.072396	Υ
5	IC 240-522080/7	12.5	0.850364	28.9	1017048.0	0.068029	Υ
6	ICIS 240-522080/8	25.0	1.698496	28.9	1111015.0	0.06794	Υ
7	IC 240-522080/9	37.5	2.656556	28.9	1108022.0	0.070842	Υ
8	IC 240-522080/10	50.0	3.483931	28.9	1112730.0	0.069679	Υ
9	IC 240-522080/11	62.5	4.560006	28.9	1121122.0	0.07296	Υ

Calibration / Trichloroethene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.259

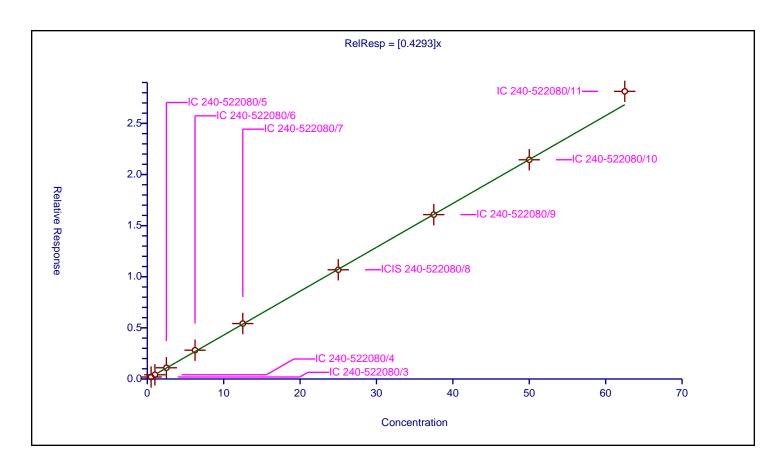
Curve Coefficients

Standard Error:	335000
Relative Standard Error:	3.8
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.118656	28.9	924557.0	0.237312	Υ
2	IC 240-522080/4	1.0	0.252002	28.9	940735.0	0.252002	Υ
3	IC 240-522080/5	2.5	0.652214	28.9	961407.0	0.260886	Υ
4	IC 240-522080/6	6.25	1.646487	28.9	994912.0	0.263438	Υ
5	IC 240-522080/7	12.5	3.369774	28.9	1017048.0	0.269582	Υ
6	ICIS 240-522080/8	25.0	6.530818	28.9	1111015.0	0.261233	Υ
7	IC 240-522080/9	37.5	9.633707	28.9	1108022.0	0.256899	Υ
8	IC 240-522080/10	50.0	13.049062	28.9	1112730.0	0.260981	Υ
9	IC 240-522080/11	62.5	16.814593	28.9	1121122.0	0.269033	Υ

Calibration / Methylcyclohexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

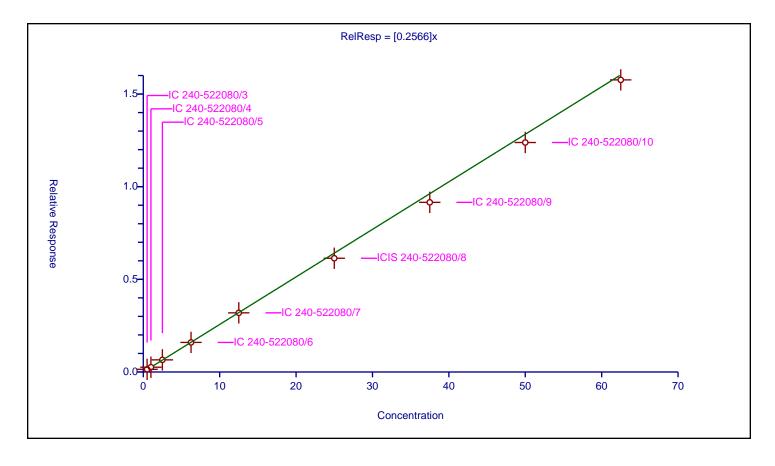

Intercept:	0
Slope:	0.4293

Curve Coefficients

Error Coefficients

Standard Error:556000Relative Standard Error:4.3Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.195489	28.9	924557.0	0.390978	Υ
2	IC 240-522080/4	1.0	0.414268	28.9	940735.0	0.414268	Υ
3	IC 240-522080/5	2.5	1.097525	28.9	961407.0	0.43901	Υ
4	IC 240-522080/6	6.25	2.815806	28.9	994912.0	0.450529	Υ
5	IC 240-522080/7	12.5	5.420867	28.9	1017048.0	0.433669	Υ
6	ICIS 240-522080/8	25.0	10.682997	28.9	1111015.0	0.42732	Υ
7	IC 240-522080/9	37.5	16.077314	28.9	1108022.0	0.428728	Υ
8	IC 240-522080/10	50.0	21.442666	28.9	1112730.0	0.428853	Υ
9	IC 240-522080/11	62.5	28.135716	28.9	1121122.0	0.450171	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 0.2566

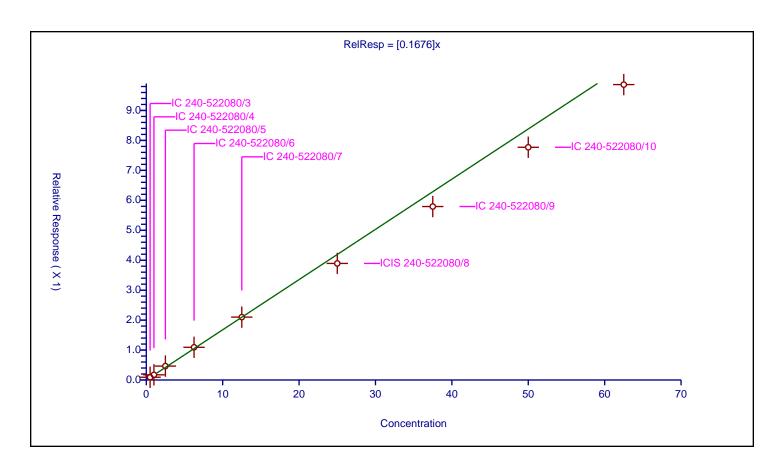
Error Coefficients

Standard Error:316000Relative Standard Error:5.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.144413	28.9	924557.0	0.288826	Υ
2	IC 240-522080/4	1.0	0.258176	28.9	940735.0	0.258176	Υ
3	IC 240-522080/5	2.5	0.654228	28.9	961407.0	0.261691	Υ
4	IC 240-522080/6	6.25	1.596641	28.9	994912.0	0.255463	Υ
5	IC 240-522080/7	12.5	3.192006	28.9	1017048.0	0.255361	Υ
6	ICIS 240-522080/8	25.0	6.137955	28.9	1111015.0	0.245518	Υ
7	IC 240-522080/9	37.5	9.154832	28.9	1108022.0	0.244129	Υ
8	IC 240-522080/10	50.0	12.383629	28.9	1112730.0	0.247673	Υ
9	IC 240-522080/11	62.5	15.764046	28.9	1121122.0	0.252225	Υ

Calibration / Dibromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1676

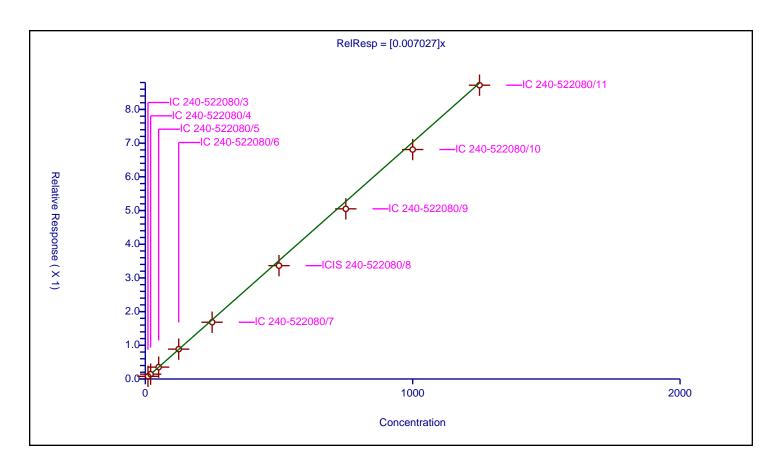
Curve Coefficients

Error Coefficients

Standard Error:198000Relative Standard Error:7.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.092087	28.9	924557.0	0.184173	Υ
2	IC 240-522080/4	1.0	0.172712	28.9	940735.0	0.172712	Υ
3	IC 240-522080/5	2.5	0.464489	28.9	961407.0	0.185796	Υ
4	IC 240-522080/6	6.25	1.091878	28.9	994912.0	0.1747	Υ
5	IC 240-522080/7	12.5	2.099456	28.9	1017048.0	0.167956	Υ
6	ICIS 240-522080/8	25.0	3.892395	28.9	1111015.0	0.155696	Υ
7	IC 240-522080/9	37.5	5.791961	28.9	1108022.0	0.154452	Υ
8	IC 240-522080/10	50.0	7.770974	28.9	1112730.0	0.155419	Υ
9	IC 240-522080/11	62.5	9.863829	28.9	1121122.0	0.157821	Υ

Calibration / 1,4-Dioxane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

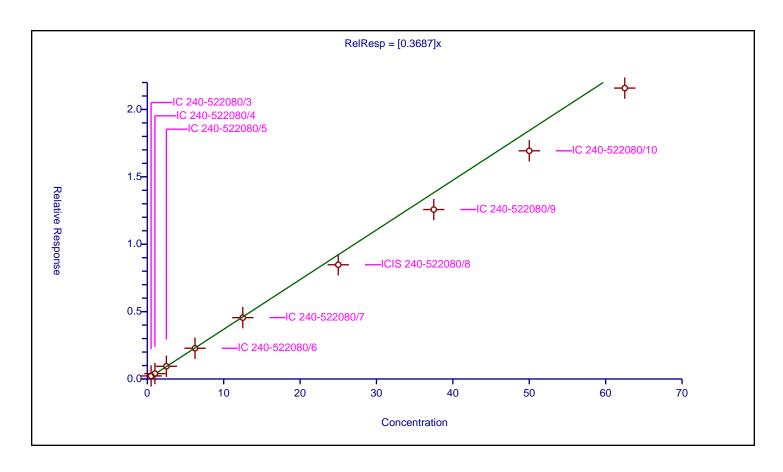
(Curve Coefficients
Intercept:	0
Slope:	0.007027

Error Coefficients

Standard Error:174000Relative Standard Error:5.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	10.0	0.079333	28.9	924557.0	0.007933	Υ
2	IC 240-522080/4	20.0	0.143588	28.9	940735.0	0.007179	Υ
3	IC 240-522080/5	50.0	0.352545	28.9	961407.0	0.007051	Υ
4	IC 240-522080/6	125.0	0.88651	28.9	994912.0	0.007092	Υ
5	IC 240-522080/7	250.0	1.684958	28.9	1017048.0	0.00674	Υ
6	ICIS 240-522080/8	500.0	3.364034	28.9	1111015.0	0.006728	Υ
7	IC 240-522080/9	750.0	5.050436	28.9	1108022.0	0.006734	Υ
8	IC 240-522080/10	1000.0	6.810471	28.9	1112730.0	0.00681	Υ
9	IC 240-522080/11	1250.0	8.720071	28.9	1121122.0	0.006976	Υ

Calibration / Dichlorobromomethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 0.3687

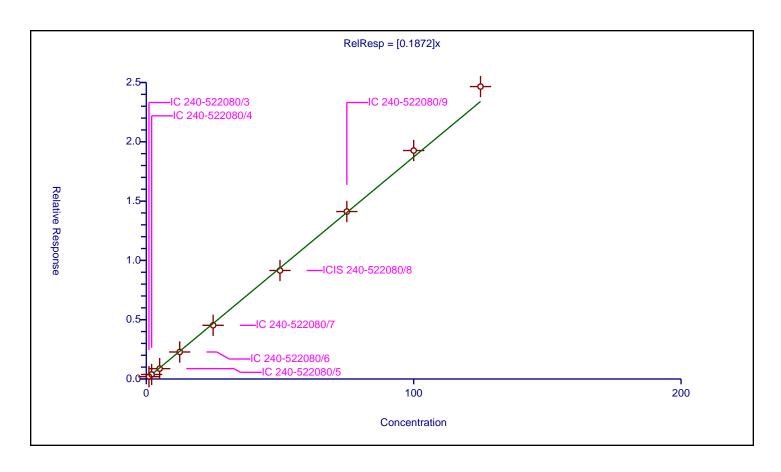
Error Coefficients

Standard Error:433000Relative Standard Error:10.3Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.985

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.225934	28.9	924557.0	0.451869	Υ
2	IC 240-522080/4	1.0	0.401089	28.9	940735.0	0.401089	Υ
3	IC 240-522080/5	2.5	0.944429	28.9	961407.0	0.377771	Υ
4	IC 240-522080/6	6.25	2.281152	28.9	994912.0	0.364984	Υ
5	IC 240-522080/7	12.5	4.552089	28.9	1017048.0	0.364167	Υ
6	ICIS 240-522080/8	25.0	8.47578	28.9	1111015.0	0.339031	Υ
7	IC 240-522080/9	37.5	12.573337	28.9	1108022.0	0.335289	Υ
8	IC 240-522080/10	50.0	16.932029	28.9	1112730.0	0.338641	Υ
9	IC 240-522080/11	62.5	21.585049	28.9	1121122.0	0.345361	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve	Coefficients
-------	--------------

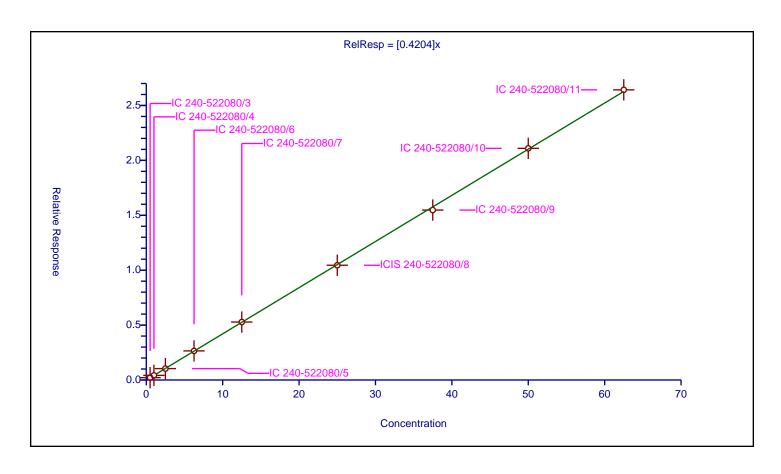

 Intercept:
 0

 Slope:
 0.1872

Error Coefficients

Standard Error:489000Relative Standard Error:4.0Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	1.0	0.195676	28.9	924557.0	0.195676	Υ
2	IC 240-522080/4	2.0	0.380383	28.9	940735.0	0.190192	Υ
3	IC 240-522080/5	5.0	0.873246	28.9	961407.0	0.174649	Υ
4	IC 240-522080/6	12.5	2.27697	28.9	994912.0	0.182158	Υ
5	IC 240-522080/7	25.0	4.526544	28.9	1017048.0	0.181062	Υ
6	ICIS 240-522080/8	50.0	9.150303	28.9	1111015.0	0.183006	Υ
7	IC 240-522080/9	75.0	14.1199	28.9	1108022.0	0.188265	Υ
8	IC 240-522080/10	100.0	19.264745	28.9	1112730.0	0.192647	Υ
9	IC 240-522080/11	125.0	24.657266	28.9	1121122.0	0.197258	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

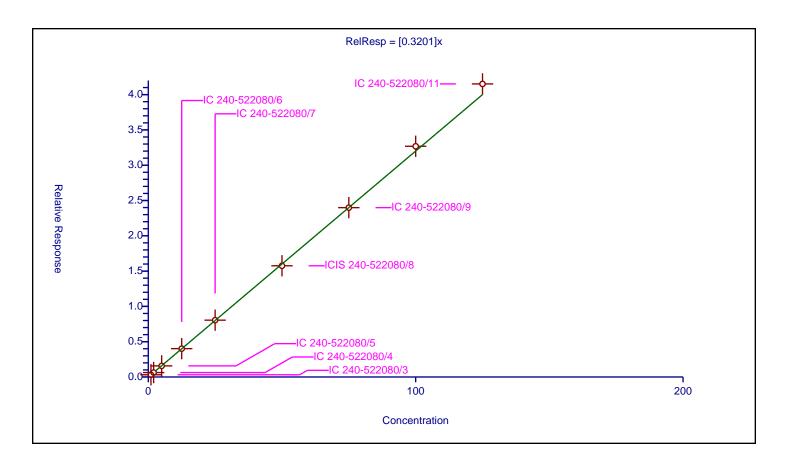
Curve Coefficients	fficients
--------------------	-----------

Intercept:	0
Slope:	0.4204

Standard Error:	532000
Relative Standard Error:	1.0
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.212525	28.9	924557.0	0.425049	Υ
2	IC 240-522080/4	1.0	0.42204	28.9	940735.0	0.42204	Υ
3	IC 240-522080/5	2.5	1.037795	28.9	961407.0	0.415118	Υ
4	IC 240-522080/6	6.25	2.649188	28.9	994912.0	0.42387	Υ
5	IC 240-522080/7	12.5	5.277795	28.9	1017048.0	0.422224	Υ
6	ICIS 240-522080/8	25.0	10.449173	28.9	1111015.0	0.417967	Υ
7	IC 240-522080/9	37.5	15.474156	28.9	1108022.0	0.412644	Υ
8	IC 240-522080/10	50.0	21.095834	28.9	1112730.0	0.421917	Υ
9	IC 240-522080/11	62.5	26.422088	28.9	1121122.0	0.422753	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Curve Coefficients

Intercept:	0
Slope:	0.3201

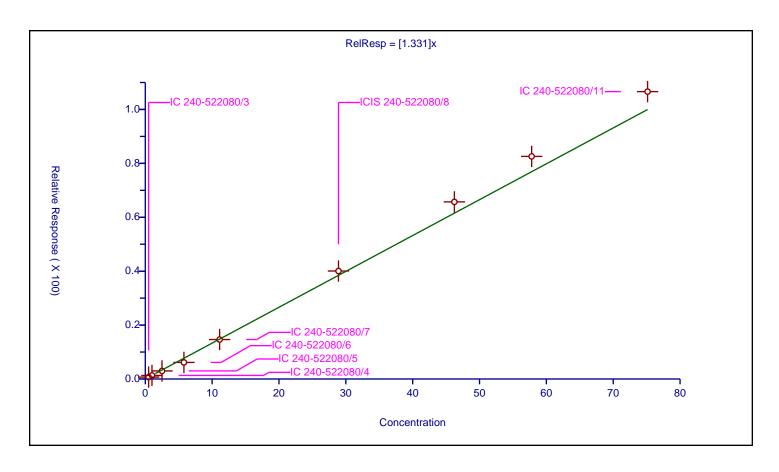
Error Coefficients

Standard Error:829000Relative Standard Error:2.0Correlation Coefficient:0.999Coefficient of Determination (Adjusted):1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	1.0	0.314864	28.9	924557.0	0.314864	Υ
2	IC 240-522080/4	2.0	0.627961	28.9	940735.0	0.313981	Υ
3	IC 240-522080/5	5.0	1.572504	28.9	961407.0	0.314501	Υ
4	IC 240-522080/6	12.5	4.015596	28.9	994912.0	0.321248	Υ
5	IC 240-522080/7	25.0	8.051097	28.9	1017048.0	0.322044	Υ
6	ICIS 240-522080/8	50.0	15.753877	28.9	1111015.0	0.315078	Υ
7	IC 240-522080/9	75.0	23.988115	28.9	1108022.0	0.319842	Υ
8	IC 240-522080/10	100.0	32.68526	28.9	1112730.0	0.326853	Υ
9	IC 240-522080/11	125.0	41.515733	28.9	1121122.0	0.332126	Υ

Calibration / Toluene-d8 (Surr)

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.331

Curve Coefficients

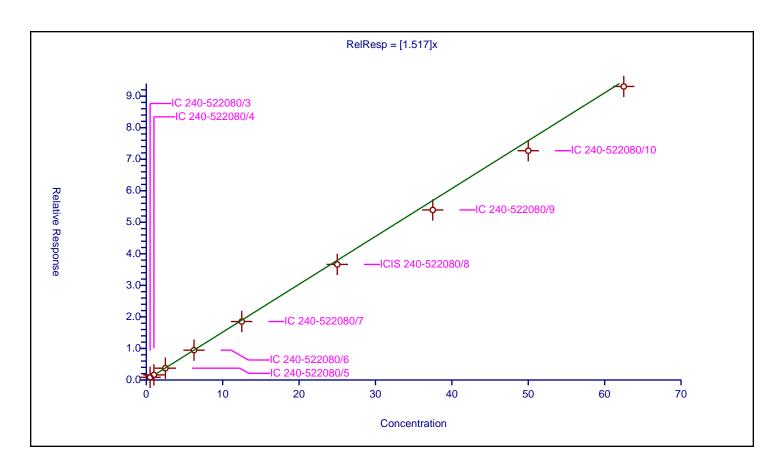
Error Coefficients

Standard Error:1550000Relative Standard Error:9.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.989

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.711904	28.9	745534.0	1.423808	Υ
2	IC 240-522080/4	1.0	1.317374	28.9	753819.0	1.317374	Υ
3	IC 240-522080/5	2.5	2.997534	28.9	771696.0	1.199014	Υ
4	IC 240-522080/6	5.78	6.145583	28.9	772937.0	1.06325	Υ
5	IC 240-522080/7	11.12	14.640706	28.9	781050.0	1.31661	Υ
6	ICIS 240-522080/8	28.9	40.060907	28.9	814036.0	1.386191	Υ
7	IC 240-522080/9	46.24	65.705973	28.9	811641.0	1.420977	Υ
8	IC 240-522080/10	57.8	82.580093	28.9	813413.0	1.428721	Υ
9	IC 240-522080/11	75.14	106.617624	28.9	809800.0	1.41892	Υ

Calibration / Toluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

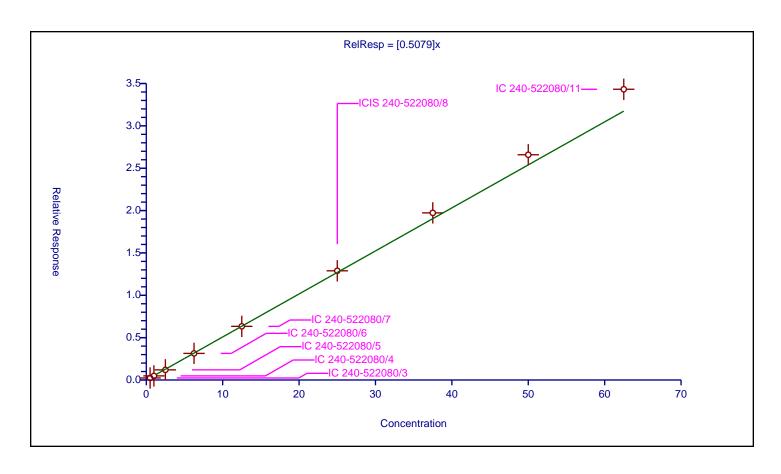

Intercept:	0
Slope:	1.517
Giopo.	1.017

Curve Coefficients

Error Coefficients

Standard Error:1350000Relative Standard Error:5.7Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.85475	28.9	745534.0	1.709499	Υ
2	IC 240-522080/4	1.0	1.608246	28.9	753819.0	1.608246	Υ
3	IC 240-522080/5	2.5	3.743537	28.9	771696.0	1.497415	Υ
4	IC 240-522080/6	6.25	9.455108	28.9	772937.0	1.512817	Υ
5	IC 240-522080/7	12.5	18.53426	28.9	781050.0	1.482741	Υ
6	ICIS 240-522080/8	25.0	36.642337	28.9	814036.0	1.465693	Υ
7	IC 240-522080/9	37.5	53.909379	28.9	811641.0	1.437583	Υ
8	IC 240-522080/10	50.0	72.689906	28.9	813413.0	1.453798	Υ
9	IC 240-522080/11	62.5	93.062033	28.9	809800.0	1.488993	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

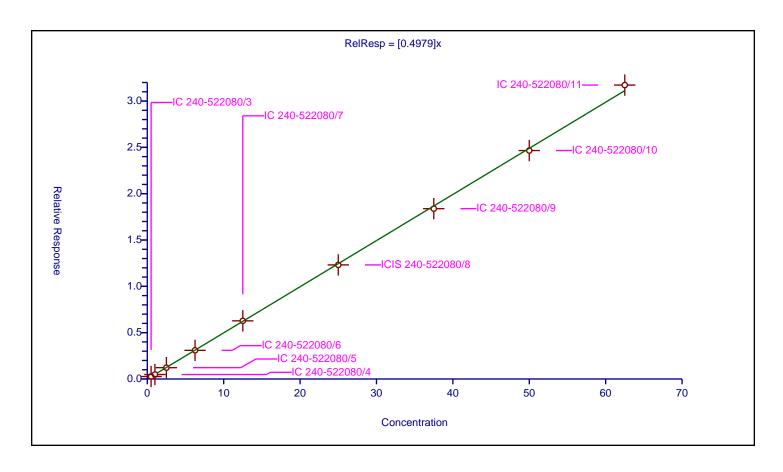
Curve	Coefficients
-------	--------------

Intercept:	0
Slope:	0.5079

Standard Error:	495000
Relative Standard Error:	5.0
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.238826	28.9	745534.0	0.477652	Υ
2	IC 240-522080/4	1.0	0.483444	28.9	753819.0	0.483444	Υ
3	IC 240-522080/5	2.5	1.195216	28.9	771696.0	0.478086	Υ
4	IC 240-522080/6	6.25	3.138953	28.9	772937.0	0.502232	Υ
5	IC 240-522080/7	12.5	6.333468	28.9	781050.0	0.506677	Υ
6	ICIS 240-522080/8	25.0	12.890783	28.9	814036.0	0.515631	Υ
7	IC 240-522080/9	37.5	19.727348	28.9	811641.0	0.526063	Υ
8	IC 240-522080/10	50.0	26.588925	28.9	813413.0	0.531779	Υ
9	IC 240-522080/11	62.5	34.320195	28.9	809800.0	0.549123	Υ

Calibration / Ethyl methacrylate


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

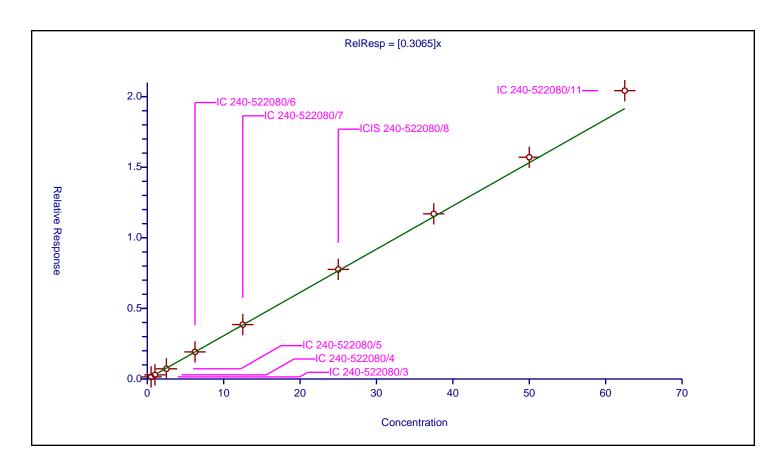
	Curve Coefficients	
Intercept: Slope:		0 0.4979

Error Coefficients

Standard Error:460000Relative Standard Error:2.8Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.264914	28.9	745534.0	0.529829	Υ
2	IC 240-522080/4	1.0	0.482485	28.9	753819.0	0.482485	Υ
3	IC 240-522080/5	2.5	1.220757	28.9	771696.0	0.488303	Υ
4	IC 240-522080/6	6.25	3.093973	28.9	772937.0	0.495036	Υ
5	IC 240-522080/7	12.5	6.275931	28.9	781050.0	0.502074	Υ
6	ICIS 240-522080/8	25.0	12.313199	28.9	814036.0	0.492528	Υ
7	IC 240-522080/9	37.5	18.383189	28.9	811641.0	0.490218	Υ
8	IC 240-522080/10	50.0	24.65677	28.9	813413.0	0.493135	Υ
9	IC 240-522080/11	62.5	31.721872	28.9	809800.0	0.50755	Υ

Calibration / 1,1,2-Trichloroethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

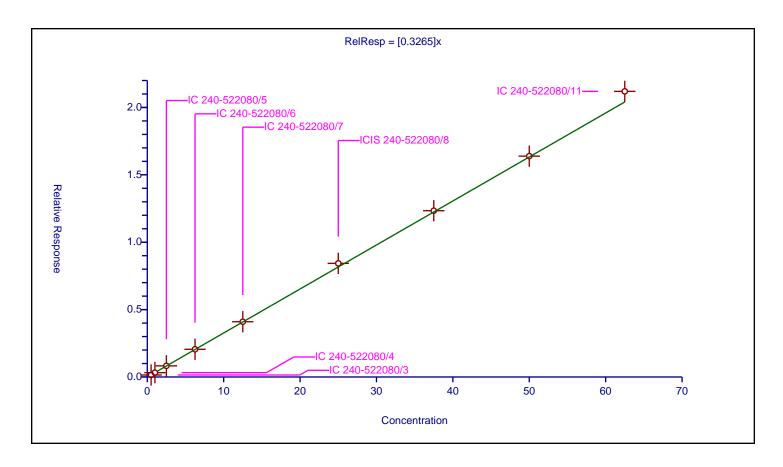
Curve Coefficients	
Intercept:	0
Slope:	0.3065

Error Coefficients

Standard Error:294000Relative Standard Error:3.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.148854	28.9	745534.0	0.297709	Υ
2	IC 240-522080/4	1.0	0.293172	28.9	753819.0	0.293172	Υ
3	IC 240-522080/5	2.5	0.722073	28.9	771696.0	0.288829	Υ
4	IC 240-522080/6	6.25	1.918735	28.9	772937.0	0.306998	Υ
5	IC 240-522080/7	12.5	3.852667	28.9	781050.0	0.308213	Υ
6	ICIS 240-522080/8	25.0	7.762076	28.9	814036.0	0.310483	Υ
7	IC 240-522080/9	37.5	11.699529	28.9	811641.0	0.311987	Υ
8	IC 240-522080/10	50.0	15.707826	28.9	813413.0	0.314157	Υ
9	IC 240-522080/11	62.5	20.421786	28.9	809800.0	0.326749	Υ

Calibration / Tetrachloroethene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

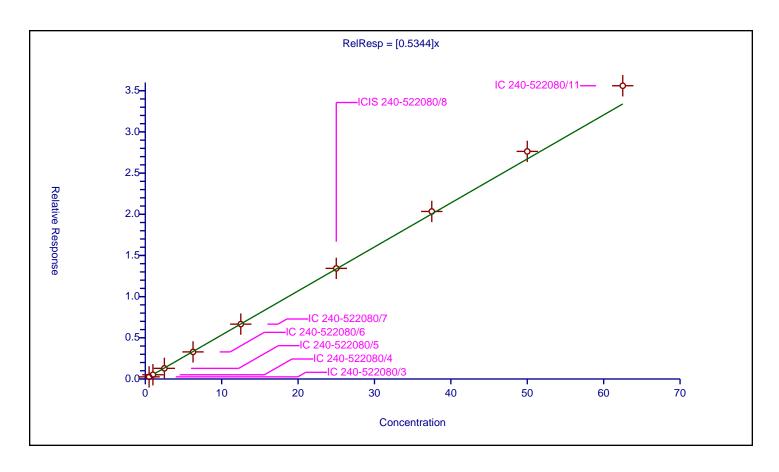
Curve Coefficients	
Intercept:	0
Slope:	0.3265

Error Coefficients

Standard Error:308000Relative Standard Error:3.8Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.14835	28.9	745534.0	0.296701	Υ
2	IC 240-522080/4	1.0	0.320967	28.9	753819.0	0.320967	Υ
3	IC 240-522080/5	2.5	0.826371	28.9	771696.0	0.330549	Υ
4	IC 240-522080/6	6.25	2.056741	28.9	772937.0	0.329079	Υ
5	IC 240-522080/7	12.5	4.100392	28.9	781050.0	0.328031	Υ
6	ICIS 240-522080/8	25.0	8.43193	28.9	814036.0	0.337277	Υ
7	IC 240-522080/9	37.5	12.338423	28.9	811641.0	0.329025	Υ
8	IC 240-522080/10	50.0	16.387751	28.9	813413.0	0.327755	Υ
9	IC 240-522080/11	62.5	21.193821	28.9	809800.0	0.339101	Υ

Calibration / 1,3-Dichloropropane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.5344

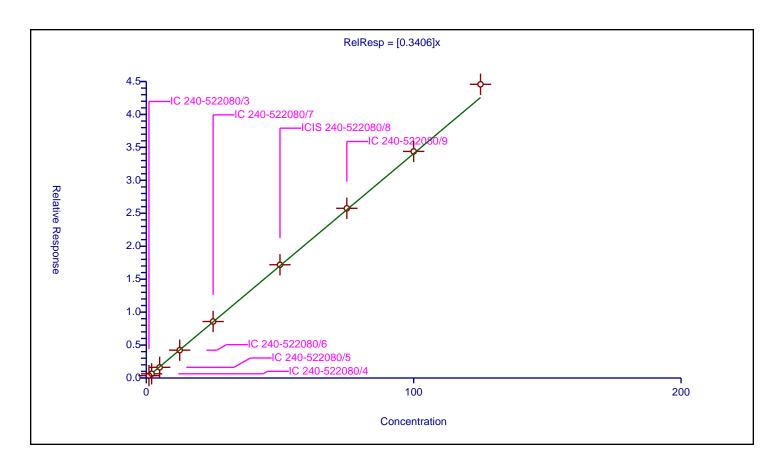
Error Coefficients

Standard Error:514000Relative Standard Error:3.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.2591	28.9	745534.0	0.518199	Υ
2	IC 240-522080/4	1.0	0.513462	28.9	753819.0	0.513462	Υ
3	IC 240-522080/5	2.5	1.290601	28.9	771696.0	0.51624	Υ
4	IC 240-522080/6	6.25	3.288512	28.9	772937.0	0.526162	Υ
5	IC 240-522080/7	12.5	6.661301	28.9	781050.0	0.532904	Υ
6	ICIS 240-522080/8	25.0	13.432438	28.9	814036.0	0.537298	Υ
7	IC 240-522080/9	37.5	20.343597	28.9	811641.0	0.542496	Υ
8	IC 240-522080/10	50.0	27.635654	28.9	813413.0	0.552713	Υ
9	IC 240-522080/11	62.5	35.605778	28.9	809800.0	0.569692	Υ

Calibration / 2-Hexanone

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3406

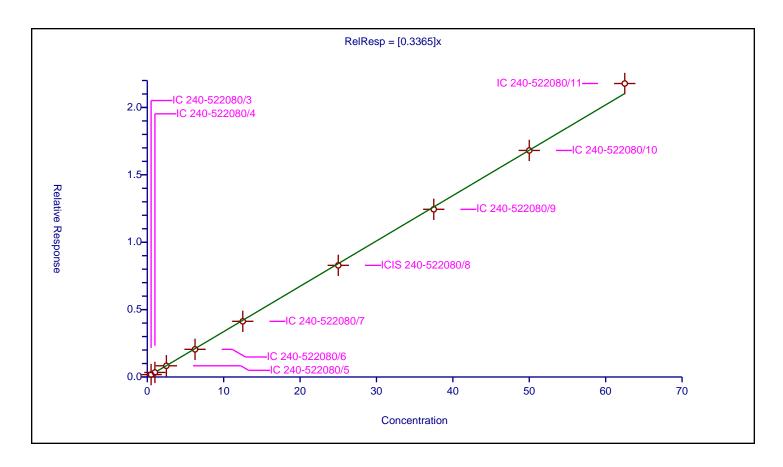
Curve Coefficients

Error Coefficients

Standard Error:644000Relative Standard Error:3.7Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	1.0	0.354886	28.9	745534.0	0.354886	Υ
2	IC 240-522080/4	2.0	0.636528	28.9	753819.0	0.318264	Υ
3	IC 240-522080/5	5.0	1.61709	28.9	771696.0	0.323418	Υ
4	IC 240-522080/6	12.5	4.224642	28.9	772937.0	0.337971	Υ
5	IC 240-522080/7	25.0	8.572057	28.9	781050.0	0.342882	Υ
6	ICIS 240-522080/8	50.0	17.186539	28.9	814036.0	0.343731	Υ
7	IC 240-522080/9	75.0	25.753634	28.9	811641.0	0.343382	Υ
8	IC 240-522080/10	100.0	34.388638	28.9	813413.0	0.343886	Υ
9	IC 240-522080/11	125.0	44.577162	28.9	809800.0	0.356617	Υ

Calibration / Chlorodibromomethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.3365

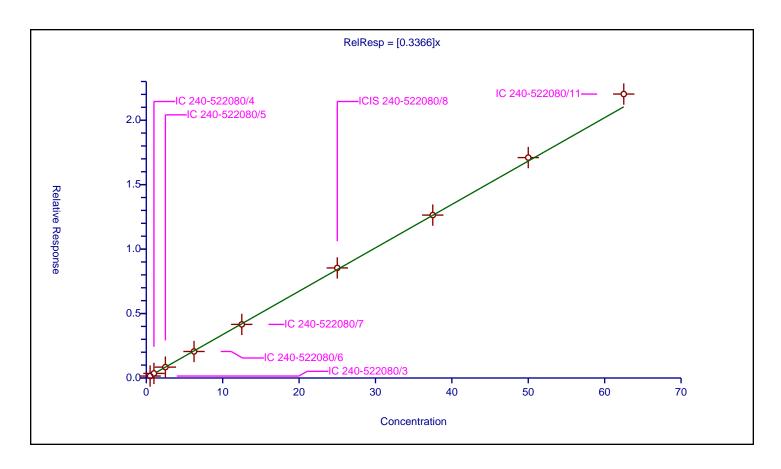
Error Coefficients

Standard Error:314000Relative Standard Error:2.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.176338	28.9	745534.0	0.352676	Υ
2	IC 240-522080/4	1.0	0.336839	28.9	753819.0	0.336839	Υ
3	IC 240-522080/5	2.5	0.83139	28.9	771696.0	0.332556	Υ
4	IC 240-522080/6	6.25	2.052516	28.9	772937.0	0.328403	Υ
5	IC 240-522080/7	12.5	4.131177	28.9	781050.0	0.330494	Υ
6	ICIS 240-522080/8	25.0	8.284241	28.9	814036.0	0.33137	Υ
7	IC 240-522080/9	37.5	12.443001	28.9	811641.0	0.331813	Υ
8	IC 240-522080/10	50.0	16.811118	28.9	813413.0	0.336222	Υ
9	IC 240-522080/11	62.5	21.777388	28.9	809800.0	0.348438	Υ

Calibration / Ethylene Dibromide

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3366

Curve Coefficients

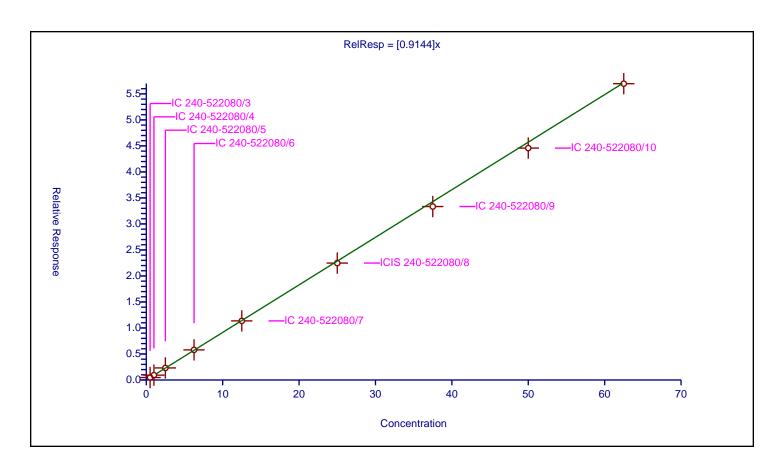
Error Coefficients

Standard Error:319000Relative Standard Error:4.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.151297	28.9	745534.0	0.302593	Υ
2	IC 240-522080/4	1.0	0.354781	28.9	753819.0	0.354781	Υ
3	IC 240-522080/5	2.5	0.843111	28.9	771696.0	0.337245	Υ
4	IC 240-522080/6	6.25	2.056404	28.9	772937.0	0.329025	Υ
5	IC 240-522080/7	12.5	4.158003	28.9	781050.0	0.33264	Υ
6	ICIS 240-522080/8	25.0	8.538294	28.9	814036.0	0.341532	Υ
7	IC 240-522080/9	37.5	12.636488	28.9	811641.0	0.336973	Υ
8	IC 240-522080/10	50.0	17.097697	28.9	813413.0	0.341954	Υ
9	IC 240-522080/11	62.5	22.027096	28.9	809800.0	0.352434	Υ

Calibration / Chlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.9144

Curve Coefficients

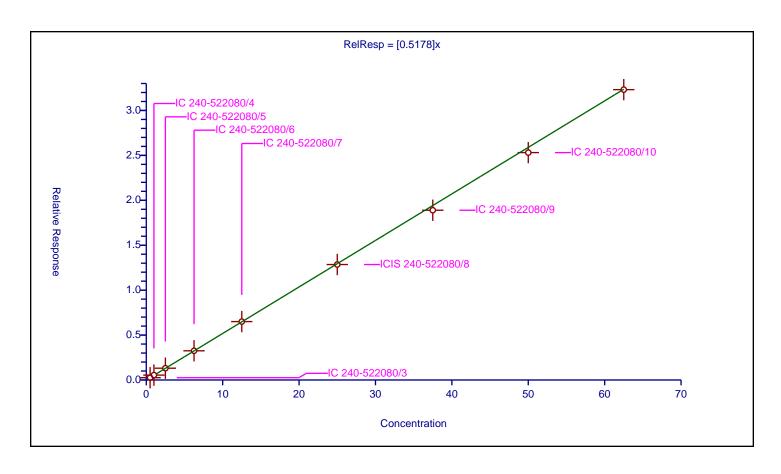
Error Coefficients

Standard Error:831000Relative Standard Error:2.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.472303	28.9	745534.0	0.944605	Υ
2	IC 240-522080/4	1.0	0.930581	28.9	753819.0	0.930581	Υ
3	IC 240-522080/5	2.5	2.319614	28.9	771696.0	0.927846	Υ
4	IC 240-522080/6	6.25	5.789445	28.9	772937.0	0.926311	Υ
5	IC 240-522080/7	12.5	11.362486	28.9	781050.0	0.908999	Υ
6	ICIS 240-522080/8	25.0	22.475999	28.9	814036.0	0.89904	Υ
7	IC 240-522080/9	37.5	33.349115	28.9	811641.0	0.88931	Υ
8	IC 240-522080/10	50.0	44.583453	28.9	813413.0	0.891669	Υ
9	IC 240-522080/11	62.5	56.963013	28.9	809800.0	0.911408	Υ

Calibration / Ethylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

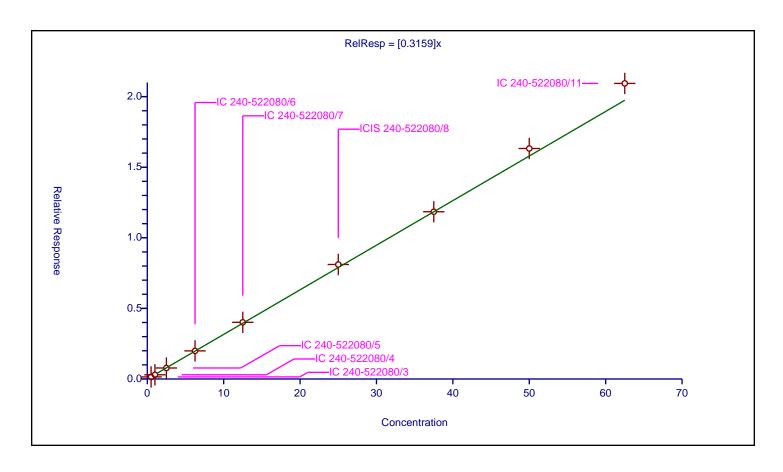

Intercept:	0
Slope:	0.5178

Curve Coefficients

Error Coefficients

Standard Error:472000Relative Standard Error:2.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.255223	28.9	745534.0	0.510446	Υ
2	IC 240-522080/4	1.0	0.543443	28.9	753819.0	0.543443	Υ
3	IC 240-522080/5	2.5	1.312996	28.9	771696.0	0.525199	Υ
4	IC 240-522080/6	6.25	3.250038	28.9	772937.0	0.520006	Υ
5	IC 240-522080/7	12.5	6.500826	28.9	781050.0	0.520066	Υ
6	ICIS 240-522080/8	25.0	12.851127	28.9	814036.0	0.514045	Υ
7	IC 240-522080/9	37.5	18.893507	28.9	811641.0	0.503827	Υ
8	IC 240-522080/10	50.0	25.309586	28.9	813413.0	0.506192	Υ
9	IC 240-522080/11	62.5	32.317787	28.9	809800.0	0.517085	Υ

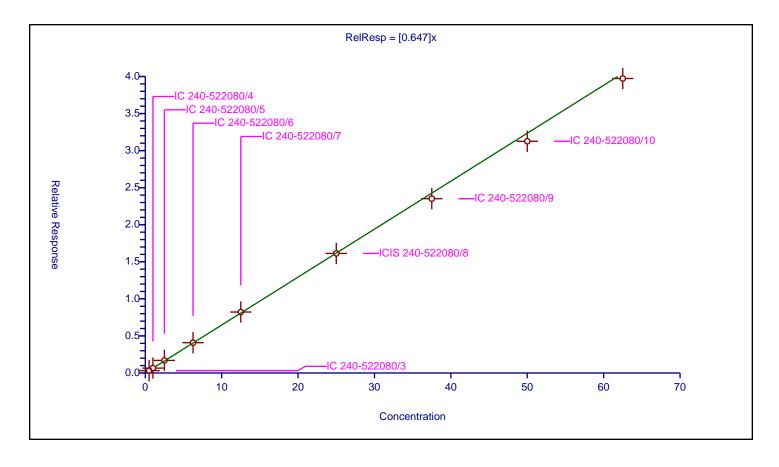

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	С	urve	e Co	oeffi	icie	ents	
--------------------	---	------	------	-------	------	------	--

Intercept:	0
Slope:	0.3159

Standard Error:	303000
Relative Standard Error:	4.4
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.145637	28.9	745534.0	0.291274	Υ
2	IC 240-522080/4	1.0	0.298117	28.9	753819.0	0.298117	Υ
3	IC 240-522080/5	2.5	0.779334	28.9	771696.0	0.311734	Υ
4	IC 240-522080/6	6.25	1.990598	28.9	772937.0	0.318496	Υ
5	IC 240-522080/7	12.5	4.015437	28.9	781050.0	0.321235	Υ
6	ICIS 240-522080/8	25.0	8.109642	28.9	814036.0	0.324386	Υ
7	IC 240-522080/9	37.5	11.846372	28.9	811641.0	0.315903	Υ
8	IC 240-522080/10	50.0	16.326747	28.9	813413.0	0.326535	Υ
9	IC 240-522080/11	62.5	20.935977	28.9	809800.0	0.334976	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients

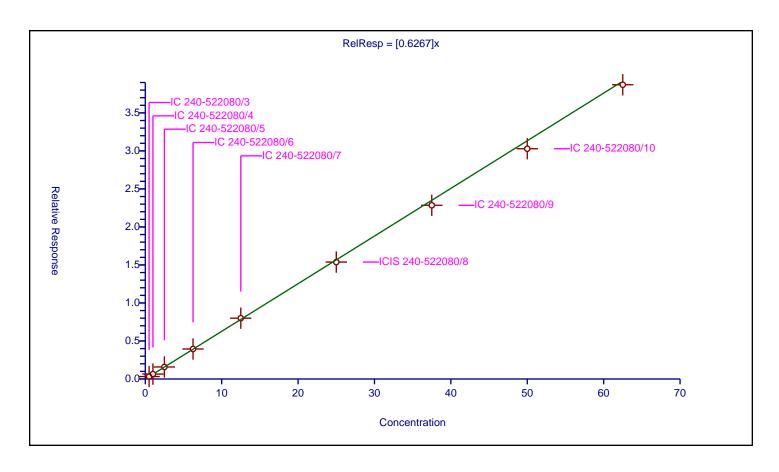
Intercept:	0
Slope:	0.647

Standard Error:	583000
Relative Standard Error:	2.7
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.319998	28.9	745534.0	0.639996	Υ
2	IC 240-522080/4	1.0	0.65861	28.9	753819.0	0.65861	Υ
3	IC 240-522080/5	2.5	1.697121	28.9	771696.0	0.678848	Υ
4	IC 240-522080/6	6.25	4.089478	28.9	772937.0	0.654316	Υ
5	IC 240-522080/7	12.5	8.223466	28.9	781050.0	0.657877	Υ
6	ICIS 240-522080/8	25.0	16.130599	28.9	814036.0	0.645224	Υ
7	IC 240-522080/9	37.5	23.514282	28.9	811641.0	0.627048	Υ
8	IC 240-522080/10	50.0	31.26078	28.9	813413.0	0.625216	Υ
9	IC 240-522080/11	62.5	39.73154	28.9	809800.0	0.635705	Υ

Calibration / o-Xylene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.6267

Curve Coefficients

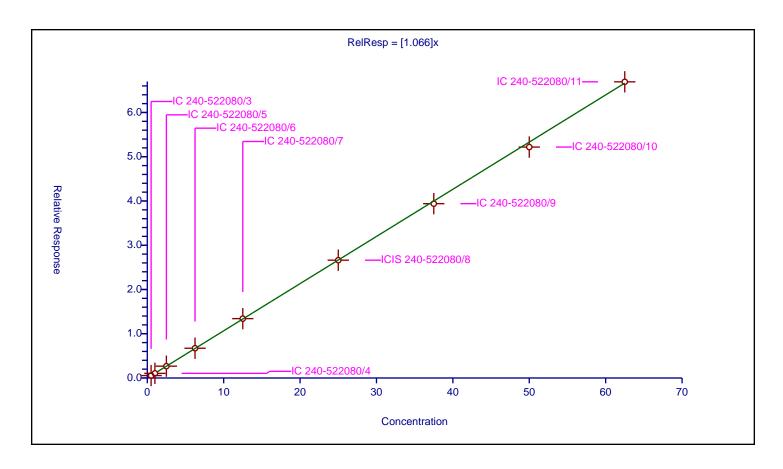
Error Coefficients

Standard Error:566000Relative Standard Error:2.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.320463	28.9	745534.0	0.640927	Υ
2	IC 240-522080/4	1.0	0.647071	28.9	753819.0	0.647071	Υ
3	IC 240-522080/5	2.5	1.580352	28.9	771696.0	0.632141	Υ
4	IC 240-522080/6	6.25	3.944816	28.9	772937.0	0.631171	Υ
5	IC 240-522080/7	12.5	7.998127	28.9	781050.0	0.63985	Υ
6	ICIS 240-522080/8	25.0	15.38012	28.9	814036.0	0.615205	Υ
7	IC 240-522080/9	37.5	22.848291	28.9	811641.0	0.609288	Υ
8	IC 240-522080/10	50.0	30.289054	28.9	813413.0	0.605781	Υ
9	IC 240-522080/11	62.5	38.705551	28.9	809800.0	0.619289	Υ

Calibration / Styrene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.066

Curve Coefficients

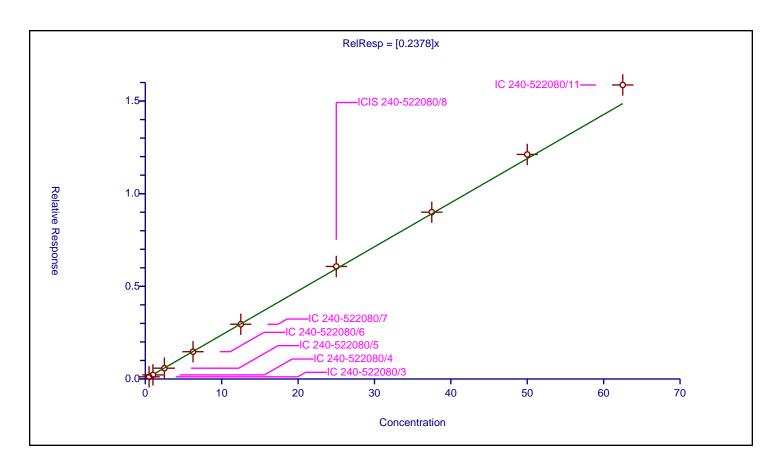
Error Coefficients

Standard Error:977000Relative Standard Error:1.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.549211	28.9	745534.0	1.098421	Υ
2	IC 240-522080/4	1.0	1.048279	28.9	753819.0	1.048279	Υ
3	IC 240-522080/5	2.5	2.672843	28.9	771696.0	1.069137	Υ
4	IC 240-522080/6	6.25	6.72793	28.9	772937.0	1.076469	Υ
5	IC 240-522080/7	12.5	13.416956	28.9	781050.0	1.073356	Υ
6	ICIS 240-522080/8	25.0	26.62293	28.9	814036.0	1.064917	Υ
7	IC 240-522080/9	37.5	39.392492	28.9	811641.0	1.050466	Υ
8	IC 240-522080/10	50.0	52.186902	28.9	813413.0	1.043738	Υ
9	IC 240-522080/11	62.5	66.925377	28.9	809800.0	1.070806	Υ

Calibration / Bromoform

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2378

Curve Coefficients

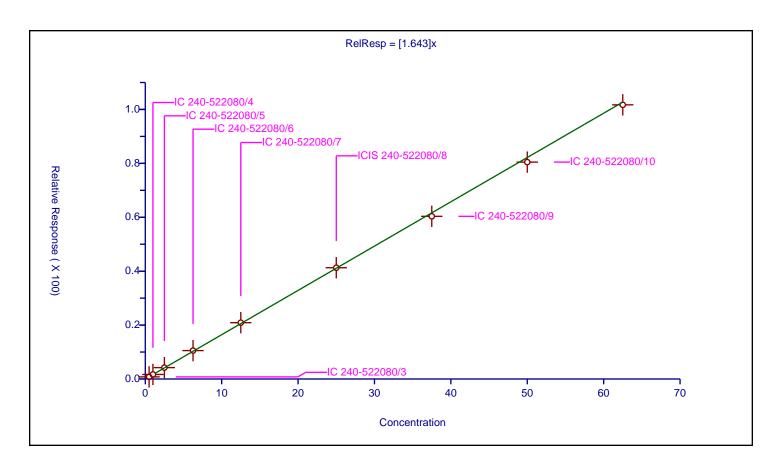
Error Coefficients

Standard Error:228000Relative Standard Error:3.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.117959	28.9	745534.0	0.235919	Υ
2	IC 240-522080/4	1.0	0.220559	28.9	753819.0	0.220559	Υ
3	IC 240-522080/5	2.5	0.582422	28.9	771696.0	0.232969	Υ
4	IC 240-522080/6	6.25	1.472188	28.9	772937.0	0.23555	Υ
5	IC 240-522080/7	12.5	2.954494	28.9	781050.0	0.236359	Υ
6	ICIS 240-522080/8	25.0	6.072282	28.9	814036.0	0.242891	Υ
7	IC 240-522080/9	37.5	9.001596	28.9	811641.0	0.240043	Υ
8	IC 240-522080/10	50.0	12.117874	28.9	813413.0	0.242357	Υ
9	IC 240-522080/11	62.5	15.866628	28.9	809800.0	0.253866	Υ

Calibration / Isopropylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

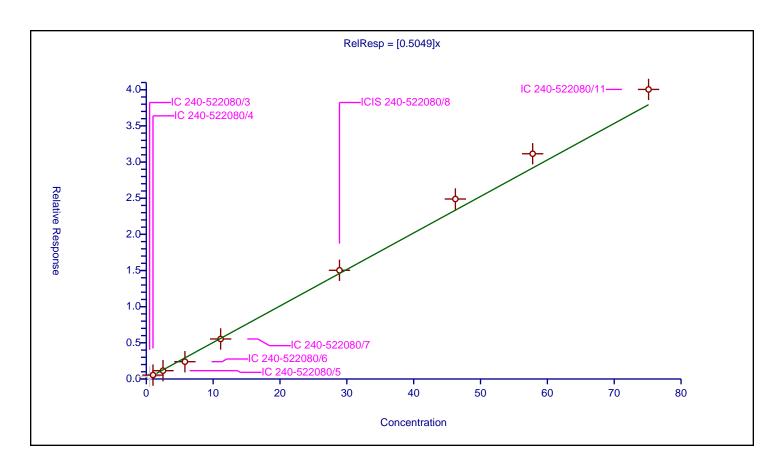

Intercept:	0
Slope:	1.643

Curve Coefficients

Error Coefficients

Standard Error:1500000Relative Standard Error:2.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.784664	28.9	745534.0	1.569328	Υ
2	IC 240-522080/4	1.0	1.68105	28.9	753819.0	1.68105	Υ
3	IC 240-522080/5	2.5	4.214696	28.9	771696.0	1.685878	Υ
4	IC 240-522080/6	6.25	10.538778	28.9	772937.0	1.686205	Υ
5	IC 240-522080/7	12.5	20.88722	28.9	781050.0	1.670978	Υ
6	ICIS 240-522080/8	25.0	41.28044	28.9	814036.0	1.651218	Υ
7	IC 240-522080/9	37.5	60.35604	28.9	811641.0	1.609494	Υ
8	IC 240-522080/10	50.0	80.468195	28.9	813413.0	1.609364	Υ
9	IC 240-522080/11	62.5	101.719613	28.9	809800.0	1.627514	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

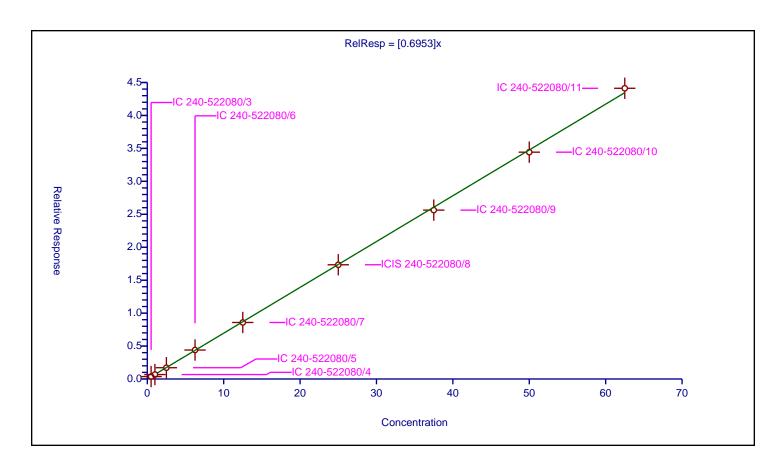
Curve Coefficients

Intercept:	0
Slope:	0.5049

Standard Error:	624000
Relative Standard Error:	9.1
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.351707	28.9	745534.0	0.703414	N
2	IC 240-522080/4	1.0	0.536964	28.9	753819.0	0.536964	Υ
3	IC 240-522080/5	2.5	1.150314	28.9	771696.0	0.460125	Υ
4	IC 240-522080/6	5.78	2.3931	28.9	772937.0	0.414031	Υ
5	IC 240-522080/7	11.12	5.534051	28.9	781050.0	0.497666	Υ
6	ICIS 240-522080/8	28.9	15.032554	28.9	814036.0	0.520158	Υ
7	IC 240-522080/9	46.24	24.888067	28.9	811641.0	0.538237	Υ
8	IC 240-522080/10	57.8	31.14698	28.9	813413.0	0.538875	Υ
9	IC 240-522080/11	75.14	40.042738	28.9	809800.0	0.532908	Υ

Calibration / Bromobenzene

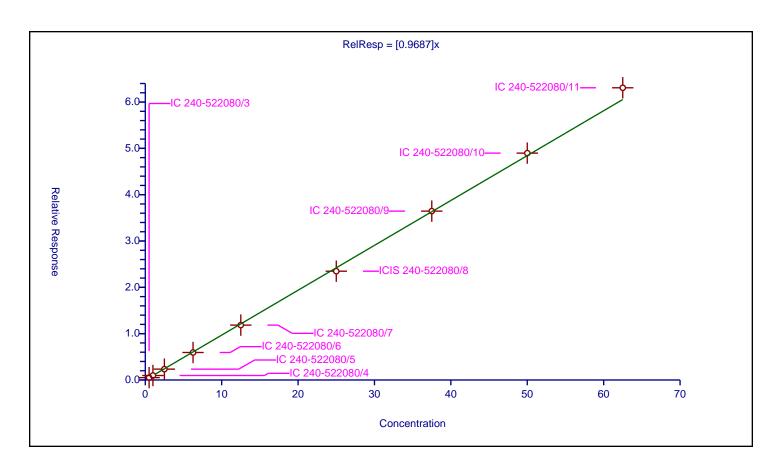

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.6953

Curve Coefficients

Standard Error:	333000
Relative Standard Error:	2.7
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.368579	28.9	405689.0	0.737159	Υ
2	IC 240-522080/4	1.0	0.674798	28.9	411445.0	0.674798	Υ
3	IC 240-522080/5	2.5	1.711379	28.9	414423.0	0.684552	Υ
4	IC 240-522080/6	6.25	4.395825	28.9	416930.0	0.703332	Υ
5	IC 240-522080/7	12.5	8.578314	28.9	417458.0	0.686265	Υ
6	ICIS 240-522080/8	25.0	17.335282	28.9	432421.0	0.693411	Υ
7	IC 240-522080/9	37.5	25.631709	28.9	426352.0	0.683512	Υ
8	IC 240-522080/10	50.0	34.425759	28.9	423064.0	0.688515	Υ
9	IC 240-522080/11	62.5	44.123972	28.9	416881.0	0.705984	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

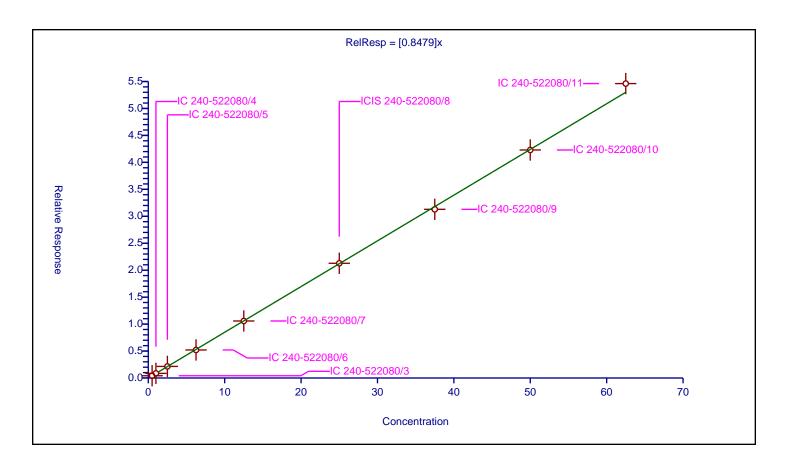
Curve (Coefficients
Intercept:	0
Slope:	0.9687

Error Coefficients

Standard Error:473000Relative Standard Error:3.0Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.507562	28.9	405689.0	1.015125	Υ
2	IC 240-522080/4	1.0	0.968051	28.9	411445.0	0.968051	Υ
3	IC 240-522080/5	2.5	2.344229	28.9	414423.0	0.937692	Υ
4	IC 240-522080/6	6.25	5.935823	28.9	416930.0	0.949732	Υ
5	IC 240-522080/7	12.5	11.845969	28.9	417458.0	0.947678	Υ
6	ICIS 240-522080/8	25.0	23.483652	28.9	432421.0	0.939346	Υ
7	IC 240-522080/9	37.5	36.45267	28.9	426352.0	0.972071	Υ
8	IC 240-522080/10	50.0	48.973171	28.9	423064.0	0.979463	Υ
9	IC 240-522080/11	62.5	63.077177	28.9	416881.0	1.009235	Υ

Calibration / N-Propylbenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

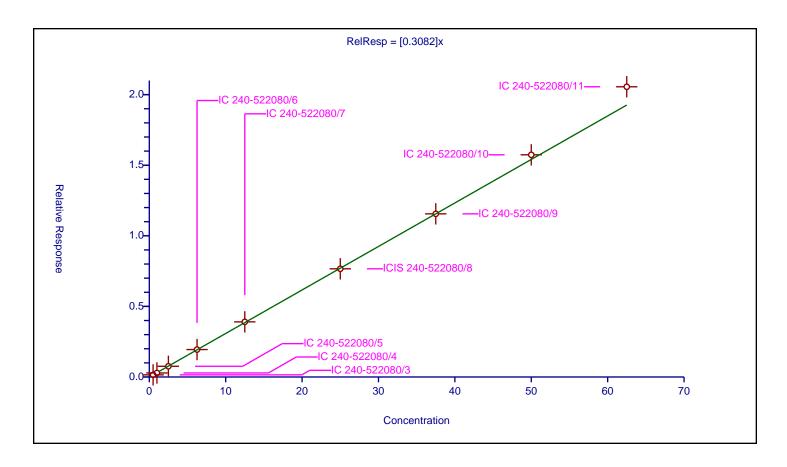
Intercept	0
Intercept:	U
Slope:	0.8479

Curve Coefficients

Standard Error:	411000
Relative Standard Error:	1.6
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.416735	28.9	405689.0	0.833471	Υ
2	IC 240-522080/4	1.0	0.856018	28.9	411445.0	0.856018	Υ
3	IC 240-522080/5	2.5	2.14611	28.9	414423.0	0.858444	Υ
4	IC 240-522080/6	6.25	5.200863	28.9	416930.0	0.832138	Υ
5	IC 240-522080/7	12.5	10.575903	28.9	417458.0	0.846072	Υ
6	ICIS 240-522080/8	25.0	21.280836	28.9	432421.0	0.851233	Υ
7	IC 240-522080/9	37.5	31.290483	28.9	426352.0	0.834413	Υ
8	IC 240-522080/10	50.0	42.297052	28.9	423064.0	0.845941	Υ
9	IC 240-522080/11	62.5	54.613299	28.9	416881.0	0.873813	Υ

Calibration


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Cui ve Coemcients	Curve	Coefficients
-------------------	-------	--------------

Intercept:	0
Slope:	0.3082

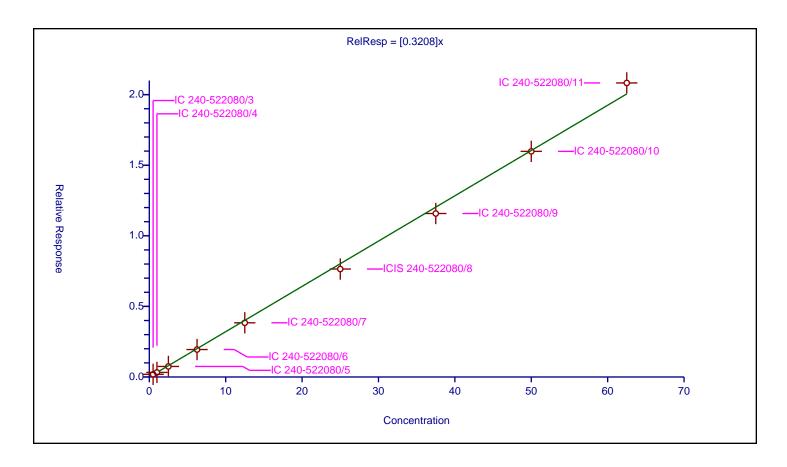
Standard Error:	153000
Relative Standard Error:	3.7
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.151236	28.9	405689.0	0.302472	Υ
2	IC 240-522080/4	1.0	0.286089	28.9	411445.0	0.286089	Υ
3	IC 240-522080/5	2.5	0.758443	28.9	414423.0	0.303377	Υ
4	IC 240-522080/6	6.25	1.943903	28.9	416930.0	0.311025	Υ
5	IC 240-522080/7	12.5	3.903935	28.9	417458.0	0.312315	Υ
6	ICIS 240-522080/8	25.0	7.66274	28.9	432421.0	0.30651	Υ
7	IC 240-522080/9	37.5	11.554726	28.9	426352.0	0.308126	Υ
8	IC 240-522080/10	50.0	15.737871	28.9	423064.0	0.314757	Υ
9	IC 240-522080/11	62.5	20.55633	28.9	416881.0	0.328901	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve	Coefficients
-------	--------------


 Intercept:
 0

 Slope:
 0.3208

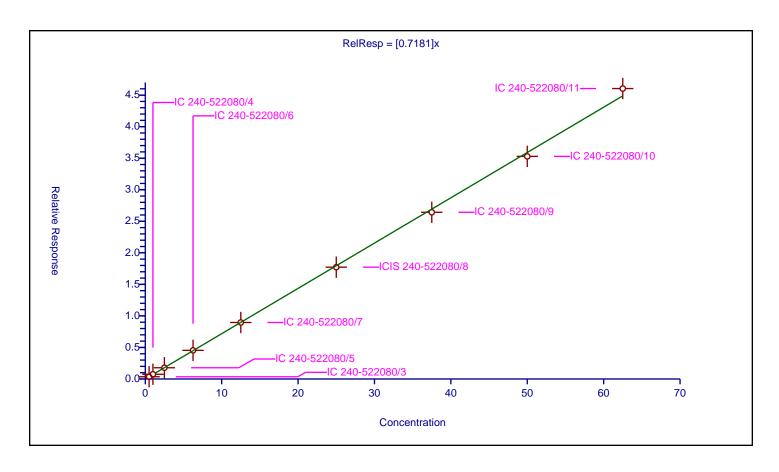
Error Coefficients

Standard Error:155000Relative Standard Error:7.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.189419	28.9	405689.0	0.378837	Υ
2	IC 240-522080/4	1.0	0.323878	28.9	411445.0	0.323878	Υ
3	IC 240-522080/5	2.5	0.746937	28.9	414423.0	0.298775	Υ
4	IC 240-522080/6	6.25	1.944527	28.9	416930.0	0.311124	Υ
5	IC 240-522080/7	12.5	3.838791	28.9	417458.0	0.307103	Υ
6	ICIS 240-522080/8	25.0	7.647167	28.9	432421.0	0.305887	Υ
7	IC 240-522080/9	37.5	11.579603	28.9	426352.0	0.308789	Υ
8	IC 240-522080/10	50.0	15.98099	28.9	423064.0	0.31962	Υ
9	IC 240-522080/11	62.5	20.827527	28.9	416881.0	0.33324	Υ

Calibration / 2-Chlorotoluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7181

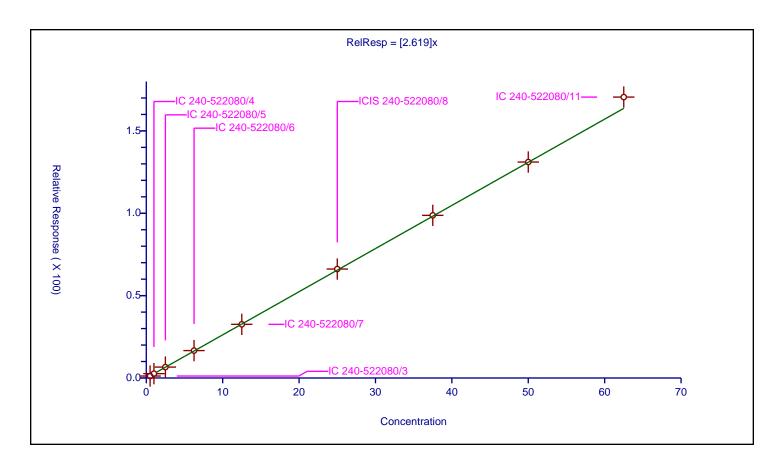
Curve Coefficients

Error Coefficients

Standard Error:345000Relative Standard Error:2.2Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.351198	28.9	405689.0	0.702395	Υ
2	IC 240-522080/4	1.0	0.74848	28.9	411445.0	0.74848	Υ
3	IC 240-522080/5	2.5	1.781742	28.9	414423.0	0.712697	Υ
4	IC 240-522080/6	6.25	4.54028	28.9	416930.0	0.726445	Υ
5	IC 240-522080/7	12.5	8.956994	28.9	417458.0	0.71656	Υ
6	ICIS 240-522080/8	25.0	17.726589	28.9	432421.0	0.709064	Υ
7	IC 240-522080/9	37.5	26.42743	28.9	426352.0	0.704731	Υ
8	IC 240-522080/10	50.0	35.289964	28.9	423064.0	0.705799	Υ
9	IC 240-522080/11	62.5	46.041968	28.9	416881.0	0.736671	Υ

Calibration


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

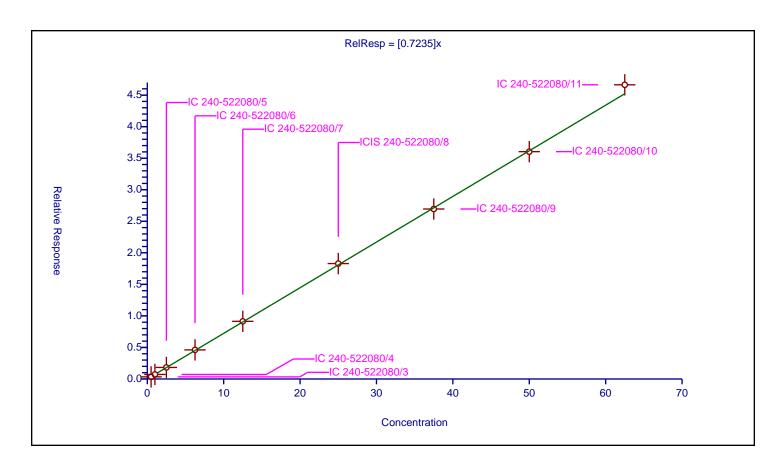
	Curve	Coefficients	
--	-------	--------------	--

Intercept:	0
Slope:	2.619

Standard Error:	1280000
Relative Standard Error:	3.6
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	1.193787	28.9	405689.0	2.387574	Υ
2	IC 240-522080/4	1.0	2.636819	28.9	411445.0	2.636819	Υ
3	IC 240-522080/5	2.5	6.622851	28.9	414423.0	2.649141	Υ
4	IC 240-522080/6	6.25	16.641085	28.9	416930.0	2.662574	Υ
5	IC 240-522080/7	12.5	32.585519	28.9	417458.0	2.606842	Υ
6	ICIS 240-522080/8	25.0	66.143367	28.9	432421.0	2.645735	Υ
7	IC 240-522080/9	37.5	98.74013	28.9	426352.0	2.63307	Υ
8	IC 240-522080/10	50.0	131.104793	28.9	423064.0	2.622096	Υ
9	IC 240-522080/11	62.5	170.543005	28.9	416881.0	2.728688	Υ

Calibration / 4-Chlorotoluene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 0.7235

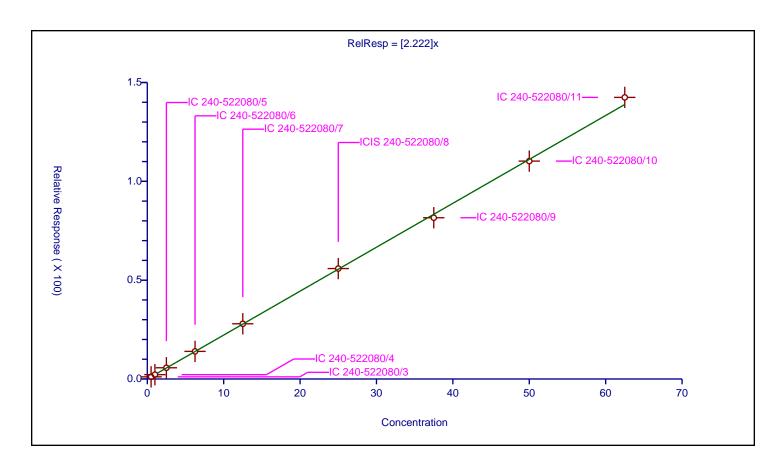
Error Coefficients

Standard Error:351000Relative Standard Error:3.0Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.33581	28.9	405689.0	0.671621	Υ
2	IC 240-522080/4	1.0	0.721016	28.9	411445.0	0.721016	Υ
3	IC 240-522080/5	2.5	1.830487	28.9	414423.0	0.732195	Υ
4	IC 240-522080/6	6.25	4.611329	28.9	416930.0	0.737813	Υ
5	IC 240-522080/7	12.5	9.138857	28.9	417458.0	0.731109	Υ
6	ICIS 240-522080/8	25.0	18.296541	28.9	432421.0	0.731862	Υ
7	IC 240-522080/9	37.5	26.944963	28.9	426352.0	0.718532	Υ
8	IC 240-522080/10	50.0	36.038245	28.9	423064.0	0.720765	Υ
9	IC 240-522080/11	62.5	46.635523	28.9	416881.0	0.746168	Υ

Calibration / tert-Butylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.222

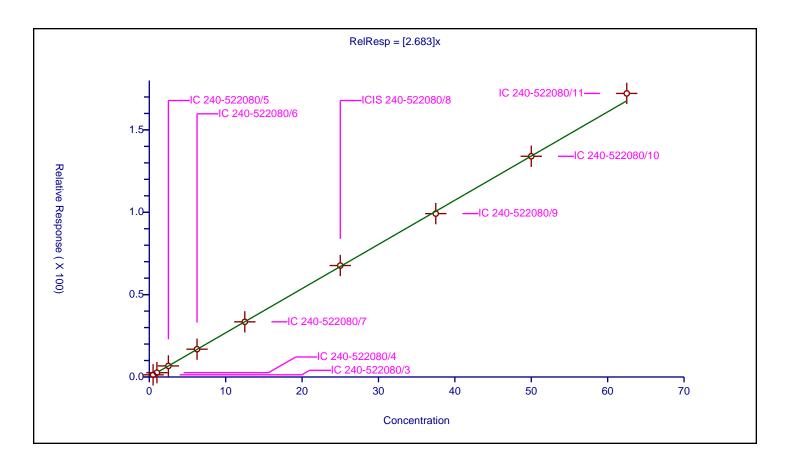
Curve Coefficients

Error Coefficients

Standard Error:1070000Relative Standard Error:1.8Correlation Coefficient:1.000Coefficient of Determination (Adjusted):1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	1.08337	28.9	405689.0	2.16674	Υ
2	IC 240-522080/4	1.0	2.196975	28.9	411445.0	2.196975	Υ
3	IC 240-522080/5	2.5	5.675564	28.9	414423.0	2.270226	Υ
4	IC 240-522080/6	6.25	13.965896	28.9	416930.0	2.234543	Υ
5	IC 240-522080/7	12.5	27.929347	28.9	417458.0	2.234348	Υ
6	ICIS 240-522080/8	25.0	55.872603	28.9	432421.0	2.234904	Υ
7	IC 240-522080/9	37.5	81.575773	28.9	426352.0	2.175354	Υ
8	IC 240-522080/10	50.0	110.238119	28.9	423064.0	2.204762	Υ
9	IC 240-522080/11	62.5	142.470461	28.9	416881.0	2.279527	Υ

Calibration


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients

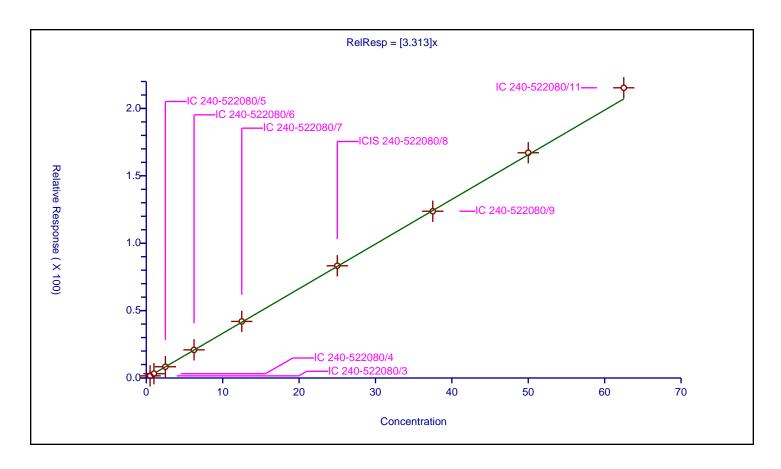
Intercept:	0
Slope:	2.683

Standard Error:	1300000
Relative Standard Error:	1.4
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	1.332984	28.9	405689.0	2.665967	Υ
2	IC 240-522080/4	1.0	2.621928	28.9	411445.0	2.621928	Υ
3	IC 240-522080/5	2.5	6.725084	28.9	414423.0	2.690033	Υ
4	IC 240-522080/6	6.25	16.877661	28.9	416930.0	2.700426	Υ
5	IC 240-522080/7	12.5	33.491374	28.9	417458.0	2.67931	Υ
6	ICIS 240-522080/8	25.0	67.66609	28.9	432421.0	2.706644	Υ
7	IC 240-522080/9	37.5	99.187778	28.9	426352.0	2.645007	Υ
8	IC 240-522080/10	50.0	133.998728	28.9	423064.0	2.679975	Υ
9	IC 240-522080/11	62.5	172.15542	28.9	416881.0	2.754487	Υ

Calibration / sec-Butylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	3.313

Curve Coefficients

Error Coefficients

Standard Error:1620000Relative Standard Error:2.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	1.583595	28.9	405689.0	3.16719	Υ
2	IC 240-522080/4	1.0	3.192349	28.9	411445.0	3.192349	Υ
3	IC 240-522080/5	2.5	8.354314	28.9	414423.0	3.341726	Υ
4	IC 240-522080/6	6.25	20.868125	28.9	416930.0	3.3389	Υ
5	IC 240-522080/7	12.5	41.976437	28.9	417458.0	3.358115	Υ
6	ICIS 240-522080/8	25.0	83.271867	28.9	432421.0	3.330875	Υ
7	IC 240-522080/9	37.5	123.740563	28.9	426352.0	3.299748	Υ
8	IC 240-522080/10	50.0	167.131425	28.9	423064.0	3.342628	Υ
9	IC 240-522080/11	62.5	215.342473	28.9	416881.0	3.44548	Υ

Calibration / 1,3-Dichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 1.361

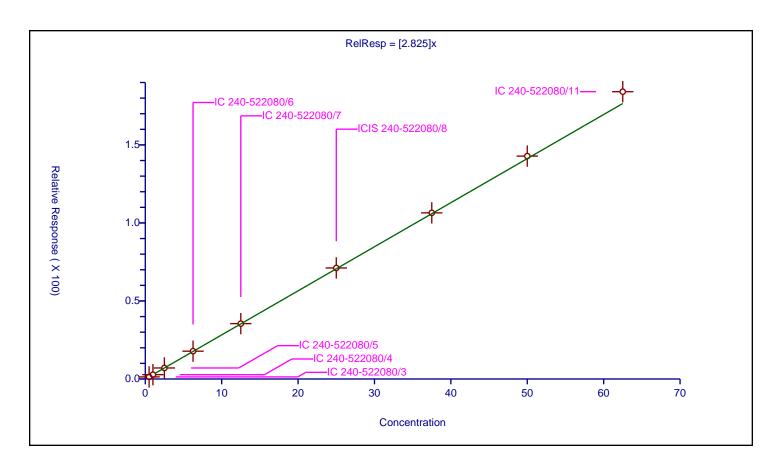
Error Coefficients

Standard Error:663000Relative Standard Error:3.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.625459	28.9	405689.0	1.250919	Υ
2	IC 240-522080/4	1.0	1.358587	28.9	411445.0	1.358587	Υ
3	IC 240-522080/5	2.5	3.499607	28.9	414423.0	1.399843	Υ
4	IC 240-522080/6	6.25	8.567481	28.9	416930.0	1.370797	Υ
5	IC 240-522080/7	12.5	17.27847	28.9	417458.0	1.382278	Υ
6	ICIS 240-522080/8	25.0	33.791375	28.9	432421.0	1.351655	Υ
7	IC 240-522080/9	37.5	50.948627	28.9	426352.0	1.35863	Υ
8	IC 240-522080/10	50.0	68.4672	28.9	423064.0	1.369344	Υ
9	IC 240-522080/11	62.5	87.927457	28.9	416881.0	1.406839	Υ

Calibration / 4-Isopropyltoluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.825

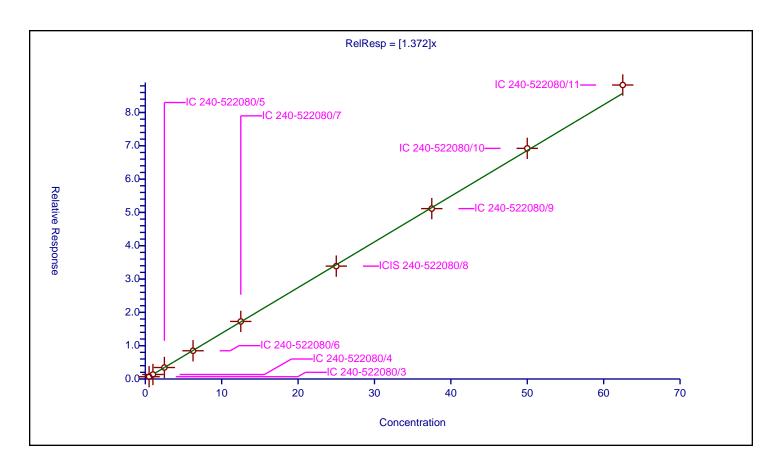
Curve Coefficients

Error Coefficients

Standard Error:1390000Relative Standard Error:2.7Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	1.332984	28.9	405689.0	2.665967	Υ
2	IC 240-522080/4	1.0	2.751943	28.9	411445.0	2.751943	Υ
3	IC 240-522080/5	2.5	7.060442	28.9	414423.0	2.824177	Υ
4	IC 240-522080/6	6.25	17.832214	28.9	416930.0	2.853154	Υ
5	IC 240-522080/7	12.5	35.479133	28.9	417458.0	2.838331	Υ
6	ICIS 240-522080/8	25.0	71.15337	28.9	432421.0	2.846135	Υ
7	IC 240-522080/9	37.5	106.471208	28.9	426352.0	2.839232	Υ
8	IC 240-522080/10	50.0	142.846528	28.9	423064.0	2.856931	Υ
9	IC 240-522080/11	62.5	184.115394	28.9	416881.0	2.945846	Υ

Calibration / 1,4-Dichlorobenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

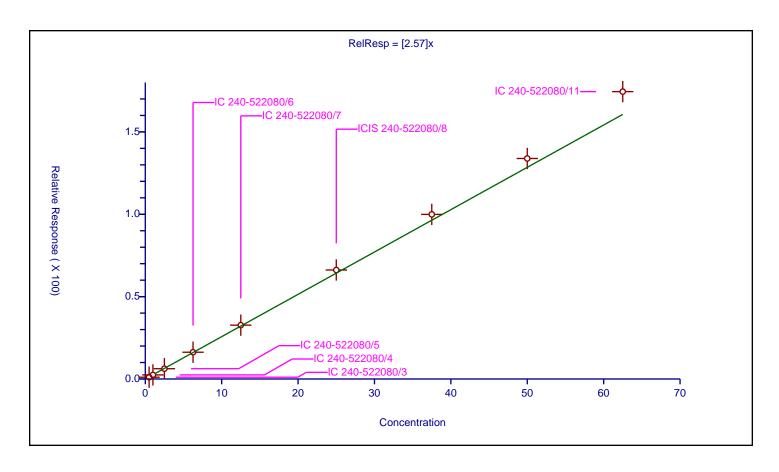
Intercept:	0
Slope:	1.372

Curve Coefficients

Standard Error:	666000
Relative Standard Error:	1.4
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.681594	28.9	405689.0	1.363188	Υ
2	IC 240-522080/4	1.0	1.35072	28.9	411445.0	1.35072	Υ
3	IC 240-522080/5	2.5	3.446747	28.9	414423.0	1.378699	Υ
4	IC 240-522080/6	6.25	8.475915	28.9	416930.0	1.356146	Υ
5	IC 240-522080/7	12.5	17.274801	28.9	417458.0	1.381984	Υ
6	ICIS 240-522080/8	25.0	33.881132	28.9	432421.0	1.355245	Υ
7	IC 240-522080/9	37.5	51.14649	28.9	426352.0	1.363906	Υ
8	IC 240-522080/10	50.0	69.232832	28.9	423064.0	1.384657	Υ
9	IC 240-522080/11	62.5	88.248983	28.9	416881.0	1.411984	Υ

Calibration / n-Butylbenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 2.57

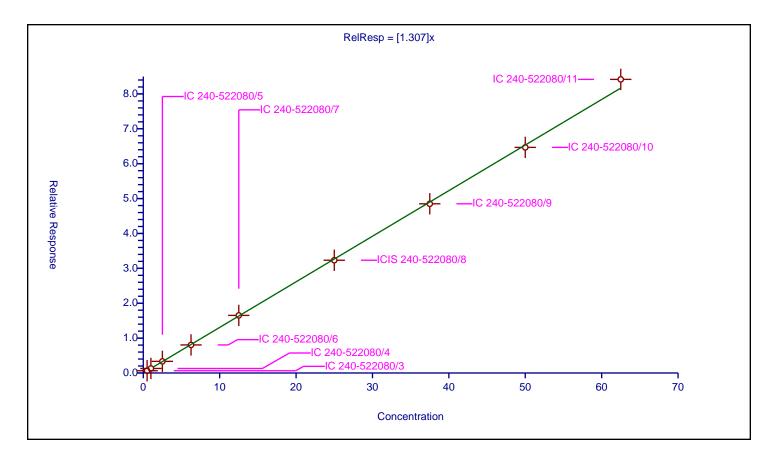
Error Coefficients

Standard Error:1300000Relative Standard Error:7.0Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	1.080805	28.9	405689.0	2.16161	Υ
2	IC 240-522080/4	1.0	2.474775	28.9	411445.0	2.474775	Υ
3	IC 240-522080/5	2.5	6.247256	28.9	414423.0	2.498902	Υ
4	IC 240-522080/6	6.25	16.252082	28.9	416930.0	2.600333	Υ
5	IC 240-522080/7	12.5	32.682093	28.9	417458.0	2.614567	Υ
6	ICIS 240-522080/8	25.0	66.169632	28.9	432421.0	2.646785	Υ
7	IC 240-522080/9	37.5	99.92534	28.9	426352.0	2.664676	Υ
8	IC 240-522080/10	50.0	133.869756	28.9	423064.0	2.677395	Υ
9	IC 240-522080/11	62.5	174.459969	28.9	416881.0	2.79136	Υ

Calibration / 1,2-Dichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.307
Slope:	1.307

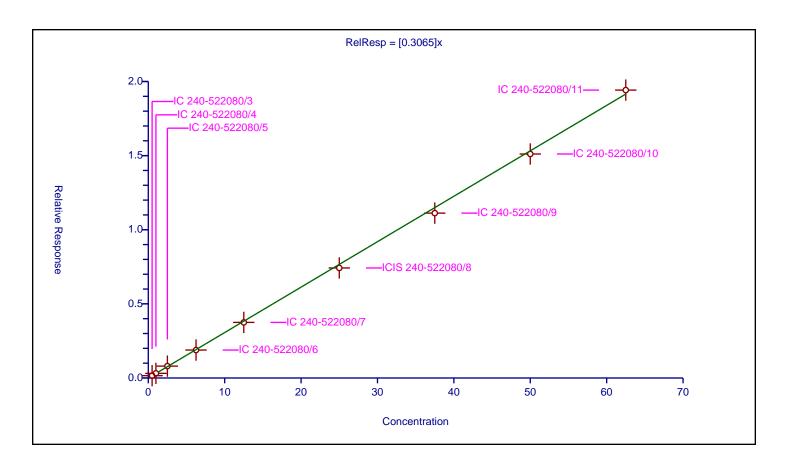
Curve Coefficients

Error Coefficients

Standard Error:631000Relative Standard Error:1.7Correlation Coefficient:1.000Coefficient of Determination (Adjusted):1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.646902	28.9	405689.0	1.293803	Υ
2	IC 240-522080/4	1.0	1.299023	28.9	411445.0	1.299023	Υ
3	IC 240-522080/5	2.5	3.336914	28.9	414423.0	1.334766	Υ
4	IC 240-522080/6	6.25	8.043936	28.9	416930.0	1.28703	Υ
5	IC 240-522080/7	12.5	16.510864	28.9	417458.0	1.320869	Υ
6	ICIS 240-522080/8	25.0	32.32566	28.9	432421.0	1.293026	Υ
7	IC 240-522080/9	37.5	48.506967	28.9	426352.0	1.293519	Υ
8	IC 240-522080/10	50.0	64.680575	28.9	423064.0	1.293612	Υ
9	IC 240-522080/11	62.5	84.172435	28.9	416881.0	1.346759	Υ

Calibration


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Coefficients	Curve
Coefficients	Curve

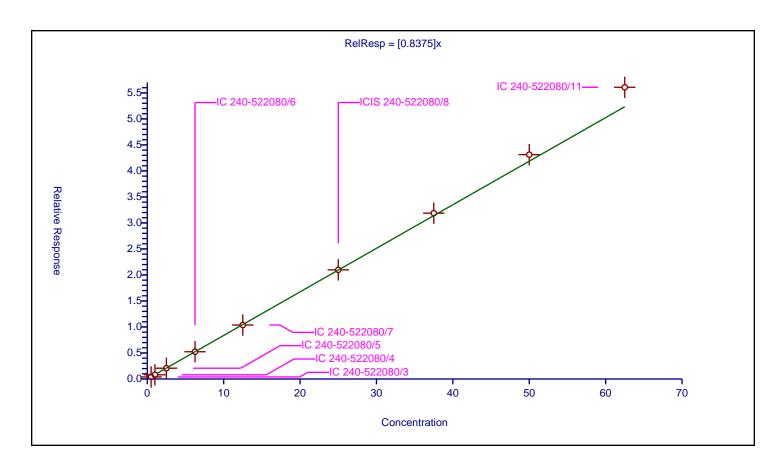
Intercept:	0
Slope:	0.3065

Standard Error:	146000
Relative Standard Error:	2.9
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.158217	28.9	405689.0	0.316434	Υ
2	IC 240-522080/4	1.0	0.313412	28.9	411445.0	0.313412	Υ
3	IC 240-522080/5	2.5	0.800494	28.9	414423.0	0.320198	Υ
4	IC 240-522080/6	6.25	1.885262	28.9	416930.0	0.301642	Υ
5	IC 240-522080/7	12.5	3.750178	28.9	417458.0	0.300014	Υ
6	ICIS 240-522080/8	25.0	7.422475	28.9	432421.0	0.296899	Υ
7	IC 240-522080/9	37.5	11.122194	28.9	426352.0	0.296592	Υ
8	IC 240-522080/10	50.0	15.109681	28.9	423064.0	0.302194	Υ
9	IC 240-522080/11	62.5	19.420936	28.9	416881.0	0.310735	Υ

Calibration / 1,2,4-Trichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

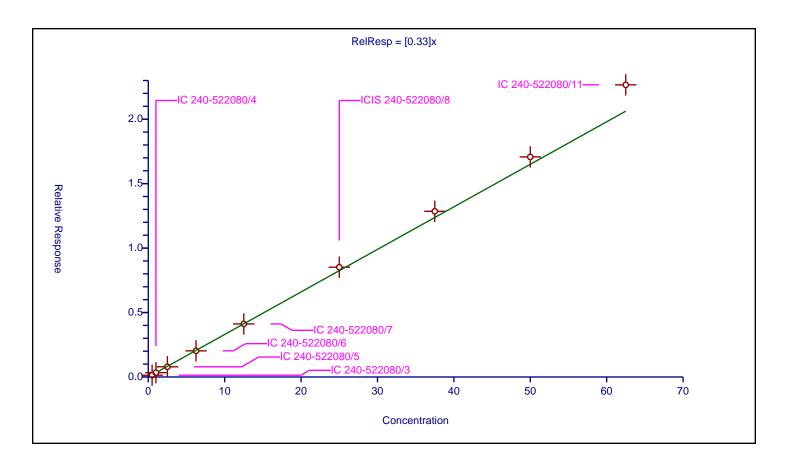

Intercept:	0
Slope:	0.8375

Curve Coefficients

Error Coefficients

Standard Error:419000Relative Standard Error:3.8Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.392871	28.9	405689.0	0.785742	Υ
2	IC 240-522080/4	1.0	0.805375	28.9	411445.0	0.805375	Υ
3	IC 240-522080/5	2.5	2.071912	28.9	414423.0	0.828765	Υ
4	IC 240-522080/6	6.25	5.239126	28.9	416930.0	0.83826	Υ
5	IC 240-522080/7	12.5	10.376248	28.9	417458.0	0.8301	Υ
6	ICIS 240-522080/8	25.0	20.98002	28.9	432421.0	0.839201	Υ
7	IC 240-522080/9	37.5	31.879191	28.9	426352.0	0.850112	Υ
8	IC 240-522080/10	50.0	43.134478	28.9	423064.0	0.86269	Υ
9	IC 240-522080/11	62.5	56.083183	28.9	416881.0	0.897331	Υ


Calibration / Hexachlorobutadiene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

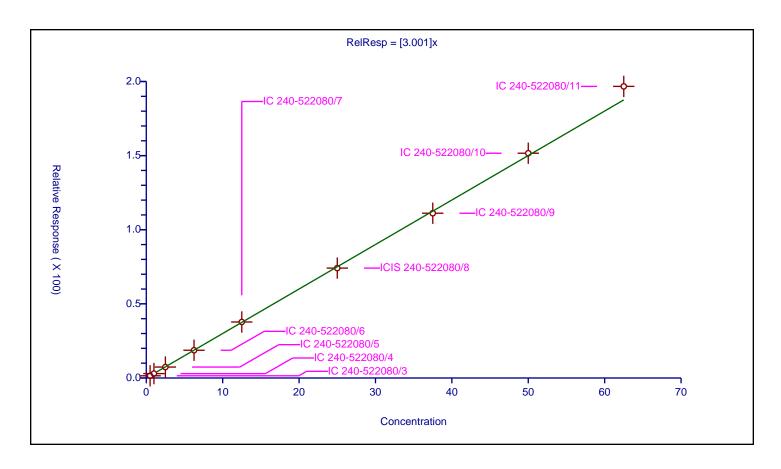
	Curve Coefficients
Intercept:	0
Slope:	0.33

Standard Error:	168000
Relative Standard Error:	7.2
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.138556	28.9	405689.0	0.277111	Y
2	IC 240-522080/4	1.0	0.334484	28.9	411445.0	0.334484	Υ
3	IC 240-522080/5	2.5	0.791847	28.9	414423.0	0.316739	Υ
4	IC 240-522080/6	6.25	2.027499	28.9	416930.0	0.3244	Υ
5	IC 240-522080/7	12.5	4.116259	28.9	417458.0	0.329301	Υ
6	ICIS 240-522080/8	25.0	8.517267	28.9	432421.0	0.340691	Υ
7	IC 240-522080/9	37.5	12.853407	28.9	426352.0	0.342758	Υ
8	IC 240-522080/10	50.0	17.073696	28.9	423064.0	0.341474	Υ
9	IC 240-522080/11	62.5	22.662751	28.9	416881.0	0.362604	Υ

Calibration / Naphthalene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	3.001

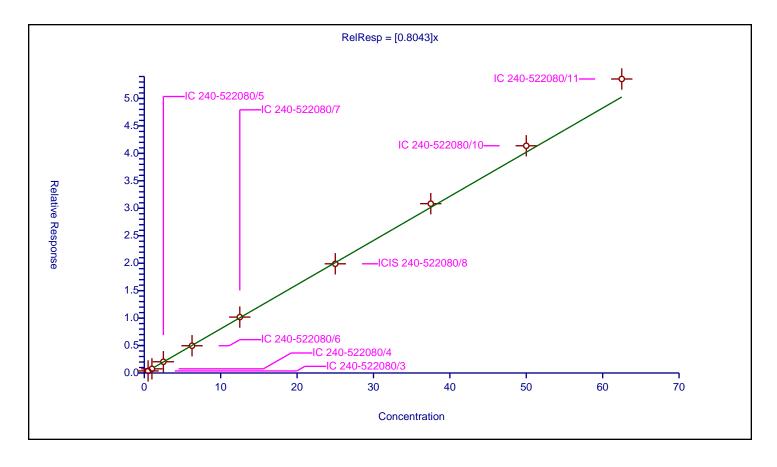
Curve Coefficients

Error Coefficients

Standard Error:1470000Relative Standard Error:2.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	on Rel. Resp. IS Amount IS I		IS Response	RRF	Used
1	IC 240-522080/3	0.5	1.491699	28.9	405689.0	2.983399	Υ
2	IC 240-522080/4	1.0	2.95283	28.9	411445.0	2.95283	Υ
3	IC 240-522080/5	2.5	7.376901	28.9	414423.0	2.950761	Υ
4	IC 240-522080/6	6.25	18.708232	28.9	416930.0	2.993317	Υ
5	IC 240-522080/7	12.5	37.778904	28.9	417458.0	3.022312	Υ
6	ICIS 240-522080/8	25.0	74.137197	28.9	432421.0	2.965488	Υ
7	IC 240-522080/9	37.5	111.145076	28.9	426352.0	2.963869	Υ
8	IC 240-522080/10	50.0	151.617478	28.9	423064.0	3.03235	Υ
9	IC 240-522080/11	62.5	196.709061	28.9	416881.0	3.147345	Υ

Calibration / 1,2,3-Trichlorobenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve (Coefficients
Intercept:	0
Slope:	0.8043

Error Coefficients

Standard Error:401000Relative Standard Error:4.2Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/3	0.5	0.375133	28.9	405689.0	0.750266	Υ
2	IC 240-522080/4	1.0	0.758173	28.9	411445.0	0.758173	Υ
3	IC 240-522080/5	2.5	2.048202	28.9	414423.0	0.819281	Υ
4	IC 240-522080/6	6.25	4.963594	28.9	416930.0	0.794175	Υ
5	IC 240-522080/7	12.5	10.178531	28.9	417458.0	0.814282	Υ
6	ICIS 240-522080/8	25.0	19.8873	28.9	432421.0	0.795492	Υ
7	IC 240-522080/9	37.5	30.838904	28.9	426352.0	0.822371	Υ
8	IC 240-522080/10	50.0	41.383663	28.9	423064.0	0.827673	Υ
9	IC 240-522080/11	62.5	53.549378	28.9	416881.0	0.85679	Υ

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/07/2022 21:40 Calibration End Date: 04/08/2022 00:50 Calibration ID: 65269

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 240-522080/18	225050.D	
Level 2	IC 240-522080/19	225051.D	
Level 3	IC 240-522080/20	225052.D	
Level 4	IC 240-522080/21	225053.D	
Level 5	IC 240-522080/22	225054.D	
Level 6	IC 240-522080/23	225055.D	
Level 7	IC 240-522080/24	225056.D	
Level 8	IC 240-522080/25	225057.D	
Level 9	IC 240-522080/26	225058.D	

ANALYTE	RRF				CURVE				MIN RRF	%RSD		IAX	R^2	 MIN R^2	
	LVL 1	LVL 2	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			8	RSD	OR COD	OR COD
Acetonitrile	0.0789	0.0721	0.0647	0.0609	0.0573	Ave		0.062			13.3		20.0		
Diisopropyl ether	0.0565	0.2009	0.1960	0.0558	0.2000	Ave		0.201			6.4		20.0		
2-Chloro-1,3-butadiene	0.2019	0.4053	0.4006		0.3704	Ave		0.388			2.9		20.0		
Ethyl-t-butyl ether (ETBE)	0.3788	0.7059	0.6807	0.3936	0.6972	Ave		0.703			6.1		20.0		
Ethyl acetate	0.7119			0.7532	0.2850	Ave		0.295			8.0		20.0		
Propionitrile	0.3014			0.3287	0.0665	Ave		0.068			3.5		20.0		
Methacrylonitrile	0.0667			0.0674	0.1899	Ave		6			2.9		20.0		
Tert-amyl-methyl ether (TAME)	0.1924			0.1977	0.9314	Ave		0.956			5.8		20.0		
n-Butanol	0.9642	1.0183	1.0059	1.0353	0.0132			5			12.4		20.0		
	0.0143	0.0154	0.0156	0.0161				0.013							
Methyl methacrylate	0.2250 0.2367	0.2511	0.2434	0.2326 0.2504	0.2365			0.237			3.8		20.0		
2-Nitropropane	0.1334			0.0965 0.1020	0.0945	Ave		0.105			12.3		20.0		
n-Butyl acetate	0.5744 0.5883			0.5762 0.6134	0.5859	Ave		0.594			2.6		20.0		

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type.

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/07/2022 21:40 Calibration End Date: 04/08/2022 00:50 Calibration ID: 65269

ANALYTE					CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	#	MAX	R^2	#	MIN R^2	
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2					%RSD	OR COD		OR COD
	LVL 6	LVL 7	LVL 8	LVL 9													
1-Chlorohexane	0.5951	0.5053	0.4970	0.4709	0.4326	Ave		0.483				9.8		20.0			
	0.4499	0.4582	0.4642	0.4792				6									
Cyclohexanone	0.0346	0.0327	0.0279	0.0274	0.0263	Ave		0.029				9.3		20.0			
	0.0274	0.0288	0.0287	0.0287				2.									
Pentachloroethane	0.1504	0.0513	0.0609	0.0505	0.0614	Ave		0.058				62.4	*	20.0			
	0.0340	0.0500	0.0257	0.0413				4									
1,2,3-Trimethylbenzene	2.5900	2.5479	2.7562		2.5659	Ave		2.655				2.9		20.0			
	2.6386	2.7400	2.6687	2.7320				4									
Benzyl chloride	1.6332	1.6962	1.6331	1.5966	1.5639	Ave		1.625				2.4		20.0			
	1.6043	1.6715	1.6082					3									
1,3,5-Trichlorobenzene	0.8060	0.8809	0.8902		0.8433	Ave		0.881				4.5		20.0			
	0.8748	0.9296	0.9044	0.9319				3									
2-Methylnaphthalene	1.0989	1.1548	1.2255		1.2641	Ave		1.277				8.6		20.0			
	1.3258	1.4123	1.3746	1.4010				7									

FORM VI

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 240-522080/18	225050.D	
Level 2	IC 240-522080/19	225051.D	
Level 3	IC 240-522080/20	225052.D	
Level 4	IC 240-522080/21	225053.D	
Level 5	IC 240-522080/22	225054.D	
Level 6	IC 240-522080/23	225055.D	
Level 7	IC 240-522080/24	225056.D	
Level 8	IC 240-522080/25	225057.D	
Level 9	IC 240-522080/26	225058.D	

ANALYTE IS			RESPONSE				CONCENTRATION (UG/L)					
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
Acetonitrile	FB	Ave	13299	23860	53428	129373	248863	5.00	10.0	25.0	62.5	125
			502707	768505	1013917	1287792		250	375	500	625	
Diisopropyl ether	FB	Ave	2915	6645	16180	41940	86890	0.500	1.00	2.50	6.25	12.5
			179621	285911	382585	499608		25.0	37.5	50.0	62.5	
2-Chloro-1,3-butadiene	FB	Ave	6372	13404	33081	82584	160933	0.500	1.00	2.50	6.25	12.5
			336931	517435	708998	908654		25.0	37.5	50.0	62.5	
Ethyl-t-butyl ether (ETBE)	FB	Ave	10321	23344	56206	146264	302942	0.500	1.00	2.50	6.25	12.5
			633179	1002700	1332852	1738773		25.0	37.5	50.0	62.5	
Ethyl acetate	FB	Ave	8744	19381	45303	118781	247651	1.00	2.00	5.00	12.5	25.0
			536172	860216	1160381	1517627		50.0	75.0	100	125	
Propionitrile	FB	Ave	11545	24421	58308	146229	288818	5.00	10.0	25.0	62.5	125
			593182	910824	1212388	1556990		250	375	500	625	
Methacrylonitrile	FB	Ave	30442	62403	159046	408566	824890	5.00	10.0	25.0	62.5	125
			1711142	2677688	3548473	4563702		250	375	500	625	
Tert-amyl-methyl ether (TAME)	FB	Ave	14534	30151	77750	199107	404693	0.500	1.00	2.50	6.25	12.5
			857616	1361174	1830122	2390065		25.0	37.5	50.0	62.5	
n-Butanol	FB	Ave	4635	10539	25964	67962	143523	12.5	25.0	62.5	156	313
			317418	513690	711210	930622		625	938	1250	1563	
Methyl methacrylate	FB	Ave	7586	15186	38756	98792	205522	1.00	2.00	5.00	12.5	25.0
			421074	671366	885845	1156068		50.0	75.0	100	125	
2-Nitropropane	FB	Ave	4497	8003	17378	40959	82097	1.00	2.00	5.00	12.5	25.0
			172151	272819	365112	470799		50.0	75.0	100	125	
n-Butyl acetate	CBNZ	Ave	7560	15379	38122	93678	191953	0.500	1.00	2.50	6.25	12.5
	d5		385390	603931	787393	1011355		25.0	37.5	50.0	62.5	

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA

RESPONSE AND CONCENTRATION

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 522080

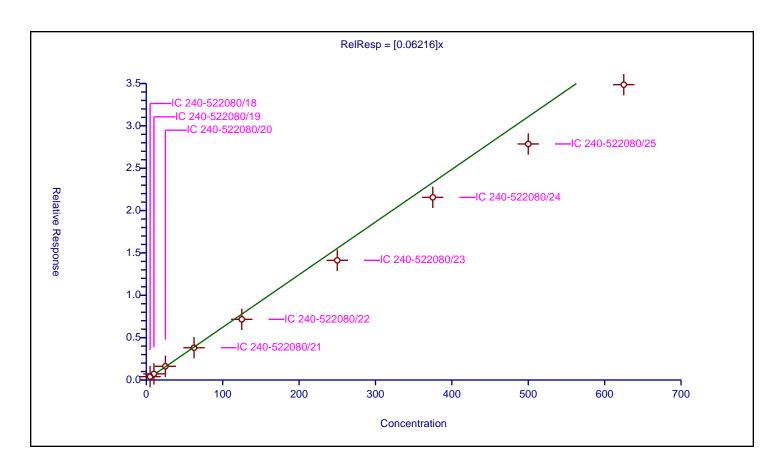
SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18 (mm) Heated Purge: (Y/N) N

Calibration End Date: 04/08/2022 00:50 Calibration ID: 65269 Calibration Start Date: 04/07/2022 21:40

ANALYTE	IS	CURVE		RESPONSE			CONCENTRATION (UG/L)					
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
1-Chlorohexane	CBNZ d5	Ave	7833	13152	31809	76561	141733	0.500	1.00	2.50	6.25	12.5
			294707	447228	606585	790051		25.0	37.5	50.0	62.5	
Cyclohexanone	CBNZ d5	Ave	4556	8511	17889	44565	86087	5.00	10.0	25.0	62.5	125
			179592	280610	374711	472883		250	375	500	625	
Pentachloroethane	DCBd 4	Ave	2134	1440	4152	8756	21482	1.00	2.00	5.00	12.5	25.0
	-		23769	51573	35519	72497		50.0	75.0	100	125	
1,2,3-Trimethylbenzene	DCBd 4	Ave	18377	35792	93975	230593	449000	0.500	1.00	2.50	6.25	12.5
			922086	1411793	1844123	2396508		25.0	37.5	50.0	62.5	
Benzyl chloride	DCBd 4	Ave	11588	23827	55682	138435	273664	0.500	1.00	2.50	6.25	12.5
			560631	861243	1111312	1421620		25.0	37.5	50.0	62.5	
1,3,5-Trichlorobenzene	DCBd 4	Ave	5719	12374	30352	75472	147564	0.500	1.00	2.50	6.25	12.5
			305699	478991	624946	817469		25.0	37.5	50.0	62.5	
2-Methylnaphthalene	DCBd 4	Ave	15594	32445	83566	215367	442391	1.00	2.00	5.00	12.5	25.0
			926603	1455412	1899785	2457915		50.0	75.0	100	125	

Curve Type Legend
Ave = Average ISTD


Calibration / Acetonitrile

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

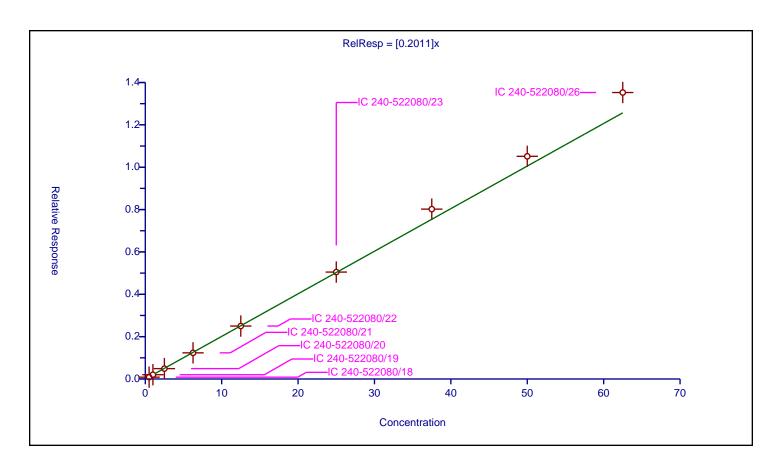
Curve Coefficient	s
Intercept:	0
Slope:	0.06216

672000
13.3
1.000
0.974

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	5.0	0.394492	28.9	974268.0	0.078898	Υ
2	IC 240-522080/19	10.0	0.721462	28.9	955773.0	0.072146	Υ
3	IC 240-522080/20	25.0	1.617636	28.9	954522.0	0.064705	Υ
4	IC 240-522080/21	62.5	3.80822	28.9	981792.0	0.060932	Υ
5	IC 240-522080/22	125.0	7.159629	28.9	1004541.0	0.057277	Υ
6	IC 240-522080/23	250.0	14.129319	28.9	1028233.0	0.056517	Υ
7	IC 240-522080/24	375.0	21.559161	28.9	1030179.0	0.057491	Υ
8	IC 240-522080/25	500.0	27.863974	28.9	1051616.0	0.055728	Υ
9	IC 240-522080/26	625.0	34.865347	28.9	1067455.0	0.055785	Υ

Calibration / Isopropyl ether

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

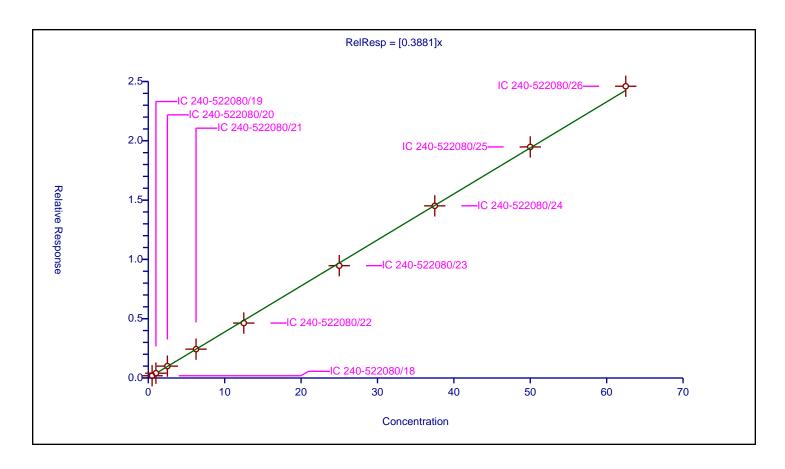

Intercept:	0
Slope:	0.2011

Curve Coefficients

Error Coefficients

Standard Error:255000Relative Standard Error:6.4Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	0.5	0.086469	28.9	974268.0	0.172937	Υ
2	IC 240-522080/19	1.0	0.200927	28.9	955773.0	0.200927	Υ
3	IC 240-522080/20	2.5	0.489881	28.9	954522.0	0.195952	Υ
4	IC 240-522080/21	6.25	1.234545	28.9	981792.0	0.197527	Υ
5	IC 240-522080/22	12.5	2.49977	28.9	1004541.0	0.199982	Υ
6	IC 240-522080/23	25.0	5.048512	28.9	1028233.0	0.20194	Υ
7	IC 240-522080/24	37.5	8.020769	28.9	1030179.0	0.213887	Υ
8	IC 240-522080/25	50.0	10.514015	28.9	1051616.0	0.21028	Υ
9	IC 240-522080/26	62.5	13.526258	28.9	1067455.0	0.21642	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve C	oefficients
---------	-------------

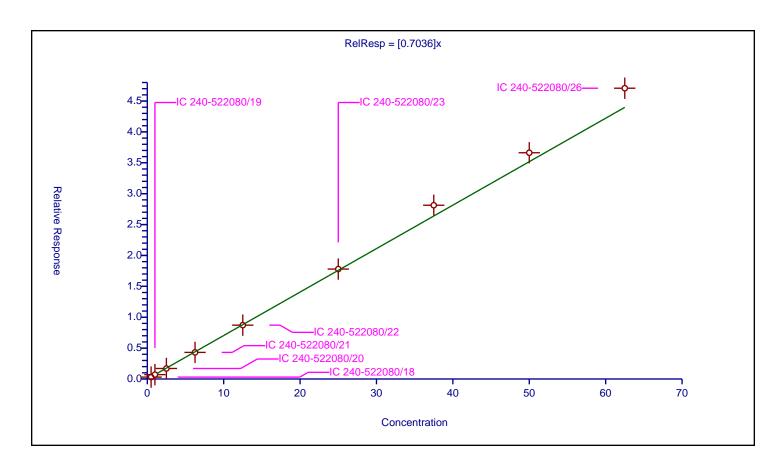
Intercept:	0
Slope:	0.3881

Standard Error:	467000
Relative Standard Error:	2.9
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	0.5	0.189015	28.9	974268.0	0.378029	Υ
2	IC 240-522080/19	1.0	0.405301	28.9	955773.0	0.405301	Υ
3	IC 240-522080/20	2.5	1.001591	28.9	954522.0	0.400637	Υ
4	IC 240-522080/21	6.25	2.43094	28.9	981792.0	0.38895	Υ
5	IC 240-522080/22	12.5	4.629939	28.9	1004541.0	0.370395	Υ
6	IC 240-522080/23	25.0	9.469941	28.9	1028233.0	0.378798	Υ
7	IC 240-522080/24	37.5	14.515799	28.9	1030179.0	0.387088	Υ
8	IC 240-522080/25	50.0	19.484339	28.9	1051616.0	0.389687	Υ
9	IC 240-522080/26	62.5	24.600663	28.9	1067455.0	0.393611	Υ

Calibration / Tert-butyl ethyl ether

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7036

Curve Coefficients

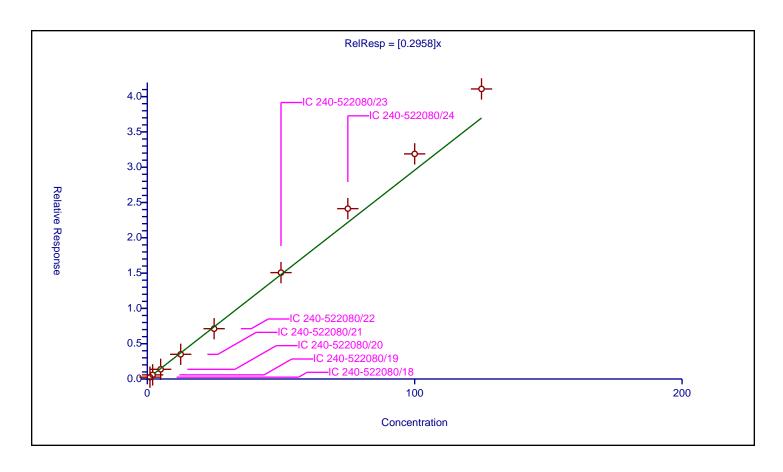
Error Coefficients

Standard Error:889000Relative Standard Error:6.1Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	0.5	0.306155	28.9	974268.0	0.61231	Υ
2	IC 240-522080/19	1.0	0.70586	28.9	955773.0	0.70586	Υ
3	IC 240-522080/20	2.5	1.701745	28.9	954522.0	0.680698	Υ
4	IC 240-522080/21	6.25	4.305423	28.9	981792.0	0.688868	Υ
5	IC 240-522080/22	12.5	8.715447	28.9	1004541.0	0.697236	Υ
6	IC 240-522080/23	25.0	17.796427	28.9	1028233.0	0.711857	Υ
7	IC 240-522080/24	37.5	28.129121	28.9	1030179.0	0.75011	Υ
8	IC 240-522080/25	50.0	36.628791	28.9	1051616.0	0.732576	Υ
9	IC 240-522080/26	62.5	47.07509	28.9	1067455.0	0.753201	Υ

Calibration / Ethyl acetate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2958

Curve Coefficients

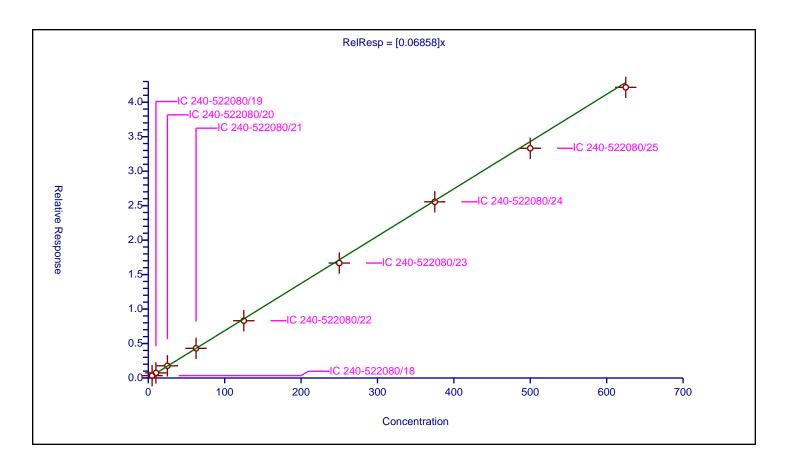
Error Coefficients

Standard Error:771000Relative Standard Error:8.0Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	1.0	0.259376	28.9	974268.0	0.259376	Υ
2	IC 240-522080/19	2.0	0.586029	28.9	955773.0	0.293015	Υ
3	IC 240-522080/20	5.0	1.371636	28.9	954522.0	0.274327	Υ
4	IC 240-522080/21	12.5	3.496434	28.9	981792.0	0.279715	Υ
5	IC 240-522080/22	25.0	7.12476	28.9	1004541.0	0.28499	Υ
6	IC 240-522080/23	50.0	15.069902	28.9	1028233.0	0.301398	Υ
7	IC 240-522080/24	75.0	24.131964	28.9	1030179.0	0.32176	Υ
8	IC 240-522080/25	100.0	31.889027	28.9	1051616.0	0.31889	Υ
9	IC 240-522080/26	125.0	41.08784	28.9	1067455.0	0.328703	Υ

Calibration / Propionitrile

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.06858

Curve Coefficients

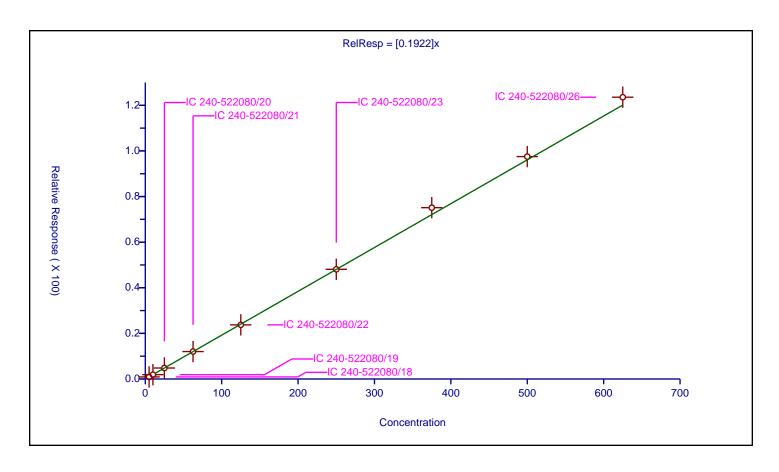
Error Coefficients

Standard Error:805000Relative Standard Error:3.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	5.0	0.342463	28.9	974268.0	0.068493	Υ
2	IC 240-522080/19	10.0	0.738425	28.9	955773.0	0.073843	Υ
3	IC 240-522080/20	25.0	1.765387	28.9	954522.0	0.070615	Υ
4	IC 240-522080/21	62.5	4.304392	28.9	981792.0	0.06887	Υ
5	IC 240-522080/22	125.0	8.309109	28.9	1004541.0	0.066473	Υ
6	IC 240-522080/23	250.0	16.672252	28.9	1028233.0	0.066689	Υ
7	IC 240-522080/24	375.0	25.551689	28.9	1030179.0	0.068138	Υ
8	IC 240-522080/25	500.0	33.318258	28.9	1051616.0	0.066637	Υ
9	IC 240-522080/26	625.0	42.153544	28.9	1067455.0	0.067446	Υ

Calibration / Methacrylonitrile

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1922

Curve Coefficients

Error Coefficients

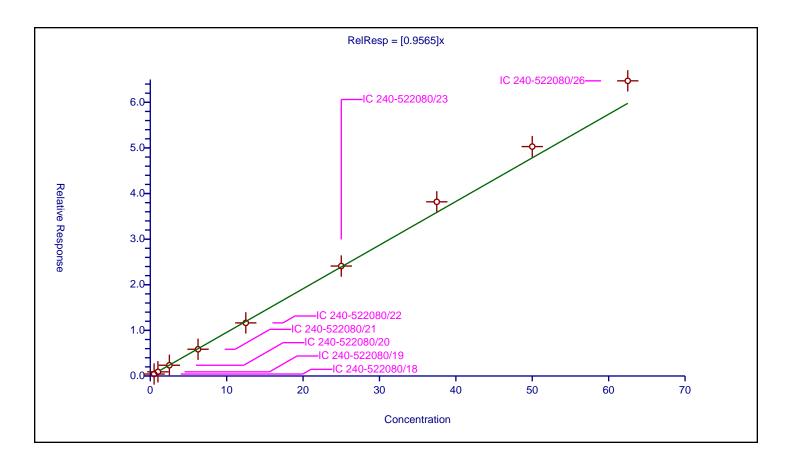
Standard Error:2360000Relative Standard Error:2.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	5.0	0.90301	28.9	974268.0	0.180602	Υ
2	IC 240-522080/19	10.0	1.886899	28.9	955773.0	0.18869	Υ
3	IC 240-522080/20	25.0	4.815425	28.9	954522.0	0.192617	Υ
4	IC 240-522080/21	62.5	12.026537	28.9	981792.0	0.192425	Υ
5	IC 240-522080/22	125.0	23.731556	28.9	1004541.0	0.189852	Υ
6	IC 240-522080/23	250.0	48.094161	28.9	1028233.0	0.192377	Υ
7	IC 240-522080/24	375.0	75.118191	28.9	1030179.0	0.200315	Υ
8	IC 240-522080/25	500.0	97.517411	28.9	1051616.0	0.195035	Υ
9	IC 240-522080/26	625.0	123.556485	28.9	1067455.0	0.19769	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients


 Intercept:
 0

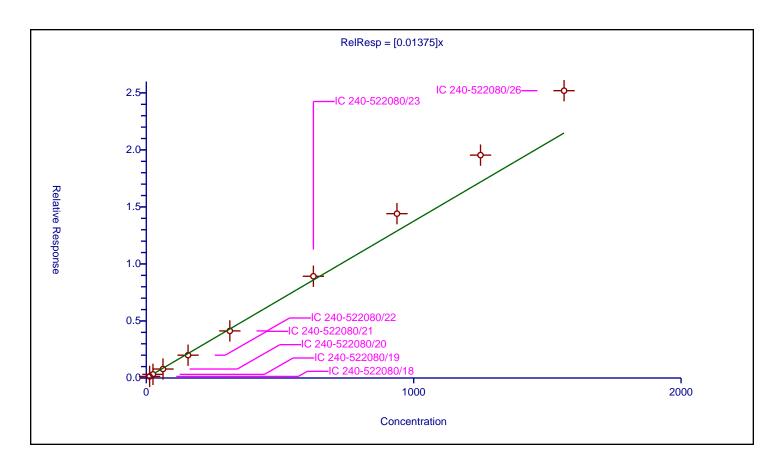
 Slope:
 0.9565

Error Coefficients

Standard Error:1220000Relative Standard Error:5.8Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	0.5	0.431126	28.9	974268.0	0.862253	Υ
2	IC 240-522080/19	1.0	0.911685	28.9	955773.0	0.911685	Υ
3	IC 240-522080/20	2.5	2.354032	28.9	954522.0	0.941613	Υ
4	IC 240-522080/21	6.25	5.860908	28.9	981792.0	0.937745	Υ
5	IC 240-522080/22	12.5	11.642758	28.9	1004541.0	0.931421	Υ
6	IC 240-522080/23	25.0	24.104558	28.9	1028233.0	0.964182	Υ
7	IC 240-522080/24	37.5	38.185528	28.9	1030179.0	1.018281	Υ
8	IC 240-522080/25	50.0	50.294524	28.9	1051616.0	1.00589	Υ
9	IC 240-522080/26	62.5	64.708	28.9	1067455.0	1.035328	Υ

Calibration / n-Butanol


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.01375

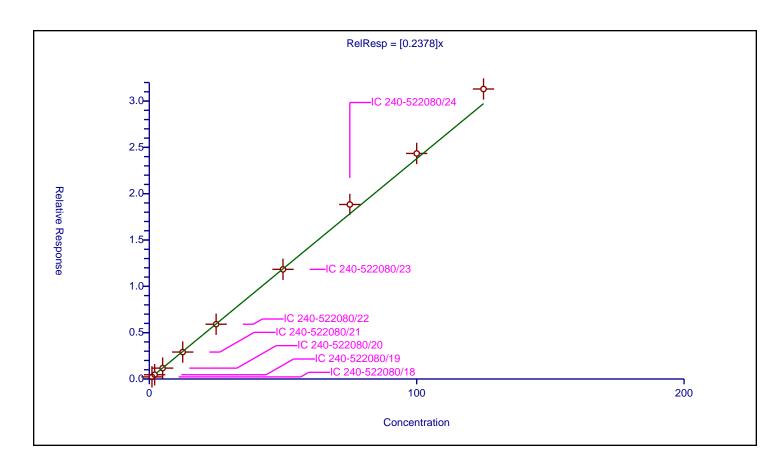
Error Coefficients

Standard Error:469000Relative Standard Error:12.4Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.983

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	12.5	0.137489	28.9	974268.0	0.010999	Υ
2	IC 240-522080/19	25.0	0.318671	28.9	955773.0	0.012747	Υ
3	IC 240-522080/20	62.5	0.78611	28.9	954522.0	0.012578	Υ
4	IC 240-522080/21	156.25	2.000527	28.9	981792.0	0.012803	Υ
5	IC 240-522080/22	312.5	4.129065	28.9	1004541.0	0.013213	Υ
6	IC 240-522080/23	625.0	8.9215	28.9	1028233.0	0.014274	Υ
7	IC 240-522080/24	937.5	14.410739	28.9	1030179.0	0.015371	Υ
8	IC 240-522080/25	1250.0	19.545128	28.9	1051616.0	0.015636	Υ
9	IC 240-522080/26	1562.5	25.195419	28.9	1067455.0	0.016125	Υ

Calibration / Methyl methacrylate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2378

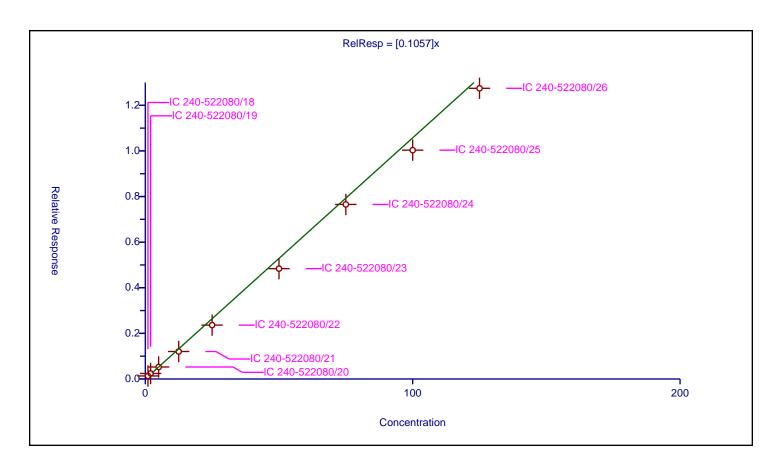
Curve Coefficients

Error Coefficients

Standard Error:592000Relative Standard Error:3.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	1.0	0.225026	28.9	974268.0	0.225026	Υ
2	IC 240-522080/19	2.0	0.459184	28.9	955773.0	0.229592	Υ
3	IC 240-522080/20	5.0	1.173413	28.9	954522.0	0.234683	Υ
4	IC 240-522080/21	12.5	2.908038	28.9	981792.0	0.232643	Υ
5	IC 240-522080/22	25.0	5.912736	28.9	1004541.0	0.236509	Υ
6	IC 240-522080/23	50.0	11.834904	28.9	1028233.0	0.236698	Υ
7	IC 240-522080/24	75.0	18.834084	28.9	1030179.0	0.251121	Υ
8	IC 240-522080/25	100.0	24.344362	28.9	1051616.0	0.243444	Υ
9	IC 240-522080/26	125.0	31.299085	28.9	1067455.0	0.250393	Υ

Calibration /2-Nitropropane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.1057

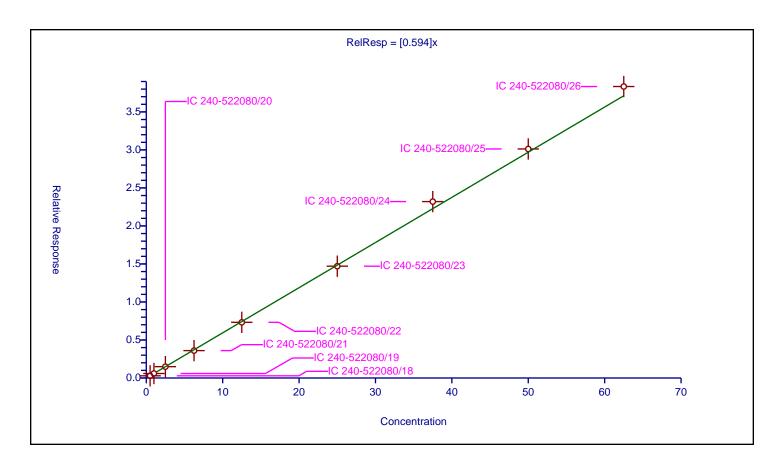
Curve Coefficients

242000
12.3
0.999
0.978

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	1.0	0.133396	28.9	974268.0	0.133396	Υ
2	IC 240-522080/19	2.0	0.241989	28.9	955773.0	0.120995	Υ
3	IC 240-522080/20	5.0	0.526153	28.9	954522.0	0.105231	Υ
4	IC 240-522080/21	12.5	1.205668	28.9	981792.0	0.096453	Υ
5	IC 240-522080/22	25.0	2.361878	28.9	1004541.0	0.094475	Υ
6	IC 240-522080/23	50.0	4.838557	28.9	1028233.0	0.096771	Υ
7	IC 240-522080/24	75.0	7.653494	28.9	1030179.0	0.102047	Υ
8	IC 240-522080/25	100.0	10.033831	28.9	1051616.0	0.100338	Υ
9	IC 240-522080/26	125.0	12.74629	28.9	1067455.0	0.10197	Υ

Calibration / n-Butyl acetate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.594

Curve Coefficients

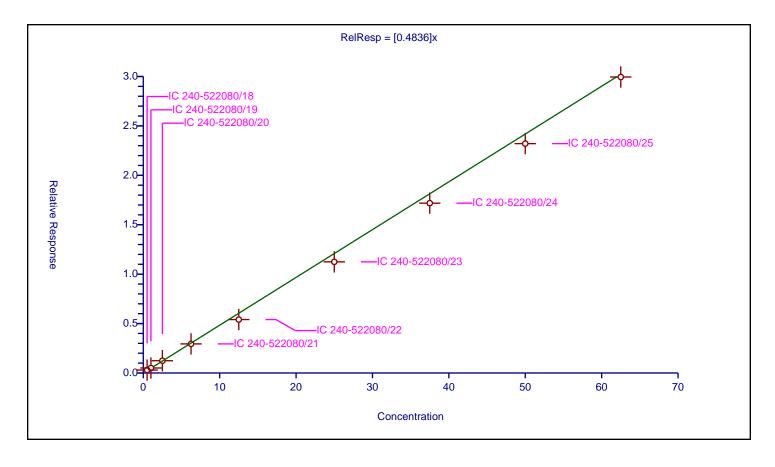
Error Coefficients

Standard Error:525000Relative Standard Error:2.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	0.5	0.287182	28.9	760786.0	0.574364	Υ
2	IC 240-522080/19	1.0	0.590857	28.9	752218.0	0.590857	Υ
3	IC 240-522080/20	2.5	1.489032	28.9	739894.0	0.595613	Υ
4	IC 240-522080/21	6.25	3.601275	28.9	751760.0	0.576204	Υ
5	IC 240-522080/22	12.5	7.323607	28.9	757474.0	0.585889	Υ
6	IC 240-522080/23	25.0	14.7069	28.9	757316.0	0.588276	Υ
7	IC 240-522080/24	37.5	23.2052	28.9	752142.0	0.618805	Υ
8	IC 240-522080/25	50.0	30.126656	28.9	755333.0	0.602533	Υ
9	IC 240-522080/26	62.5	38.340208	28.9	762337.0	0.613443	Υ

Calibration / 1-Chlorohexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.4836

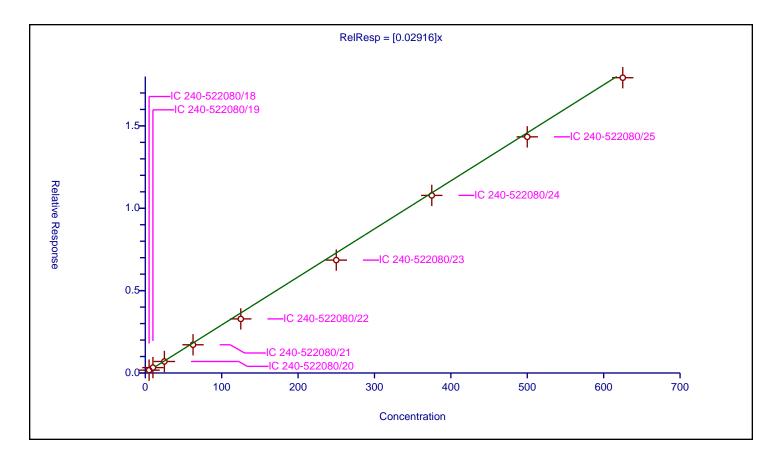
Curve Coefficients

Error Coefficients

Standard Error:404000Relative Standard Error:9.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.986

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	0.5	0.297552	28.9	760786.0	0.595105	Υ
2	IC 240-522080/19	1.0	0.505296	28.9	752218.0	0.505296	Υ
3	IC 240-522080/20	2.5	1.242448	28.9	739894.0	0.496979	Υ
4	IC 240-522080/21	6.25	2.943244	28.9	751760.0	0.470919	Υ
5	IC 240-522080/22	12.5	5.407557	28.9	757474.0	0.432605	Υ
6	IC 240-522080/23	25.0	11.246339	28.9	757316.0	0.449854	Υ
7	IC 240-522080/24	37.5	17.184108	28.9	752142.0	0.458243	Υ
8	IC 240-522080/25	50.0	23.208713	28.9	755333.0	0.464174	Υ
9	IC 240-522080/26	62.5	29.950631	28.9	762337.0	0.47921	Υ

Calibration / Cyclohexanone


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

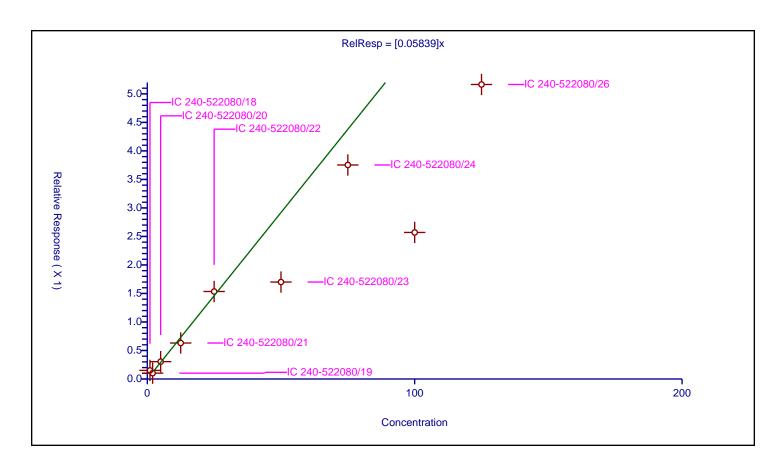
Curve Coe	efficients
Intercept:	0
Slope:	0.02916

Error Coefficients

Standard Error:246000Relative Standard Error:9.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.988

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	5.0	0.173069	28.9	760786.0	0.034614	Υ
2	IC 240-522080/19	10.0	0.32699	28.9	752218.0	0.032699	Υ
3	IC 240-522080/20	25.0	0.698738	28.9	739894.0	0.02795	Υ
4	IC 240-522080/21	62.5	1.713218	28.9	751760.0	0.027411	Υ
5	IC 240-522080/22	125.0	3.284488	28.9	757474.0	0.026276	Υ
6	IC 240-522080/23	250.0	6.853426	28.9	757316.0	0.027414	Υ
7	IC 240-522080/24	375.0	10.782045	28.9	752142.0	0.028752	Υ
8	IC 240-522080/25	500.0	14.336919	28.9	755333.0	0.028674	Υ
9	IC 240-522080/26	625.0	17.926873	28.9	762337.0	0.028683	Υ

Calibration / Pentachloroethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.05839

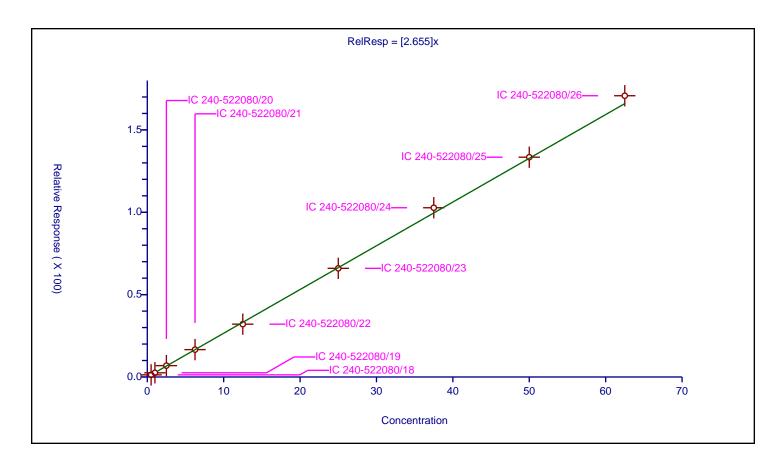
Error Coefficients

Standard Error:	35900
Relative Standard Error:	62.4
Correlation Coefficient:	0.889
Coefficient of Determination (Adjusted):	0.0794

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	1.0	0.15038	28.9	410112.0	0.15038	Υ
2	IC 240-522080/19	2.0	0.102509	28.9	405975.0	0.051254	Υ
3	IC 240-522080/20	5.0	0.304441	28.9	394141.0	0.060888	Υ
4	IC 240-522080/21	12.5	0.631154	28.9	400930.0	0.050492	Υ
5	IC 240-522080/22	25.0	1.53455	28.9	404568.0	0.061382	Υ
6	IC 240-522080/23	50.0	1.7004	28.9	403978.0	0.034008	Υ
7	IC 240-522080/24	75.0	3.753446	28.9	397091.0	0.050046	Υ
8	IC 240-522080/25	100.0	2.570039	28.9	399410.0	0.0257	Υ
9	IC 240-522080/26	125.0	5.165424	28.9	405613.0	0.041323	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


	Curve	Coefficients	
--	-------	--------------	--

Intercept:	0
Slope:	2.655

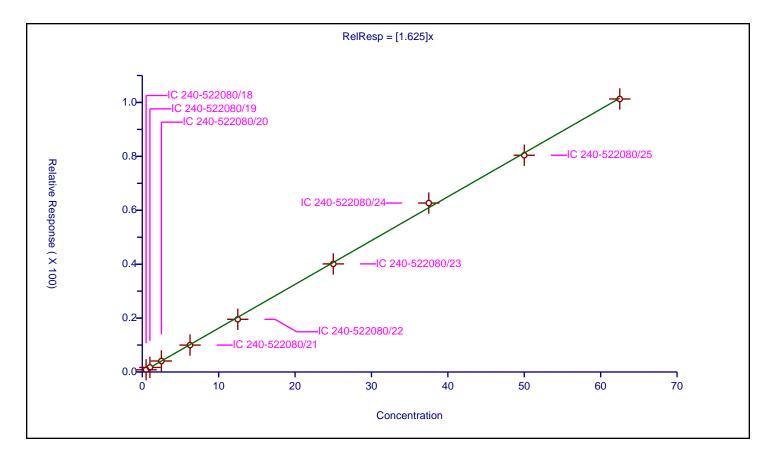
Error Coefficients

Standard Error:1240000Relative Standard Error:2.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	0.5	1.295001	28.9	410112.0	2.590001	Υ
2	IC 240-522080/19	1.0	2.547913	28.9	405975.0	2.547913	Υ
3	IC 240-522080/20	2.5	6.890624	28.9	394141.0	2.75625	Υ
4	IC 240-522080/21	6.25	16.621699	28.9	400930.0	2.659472	Υ
5	IC 240-522080/22	12.5	32.073965	28.9	404568.0	2.565917	Υ
6	IC 240-522080/23	25.0	65.964695	28.9	403978.0	2.638588	Υ
7	IC 240-522080/24	37.5	102.749288	28.9	397091.0	2.739981	Υ
8	IC 240-522080/25	50.0	133.434703	28.9	399410.0	2.668694	Υ
9	IC 240-522080/26	62.5	170.751631	28.9	405613.0	2.732026	Υ

Calibration / Benzyl chloride

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.625

Curve Coefficients

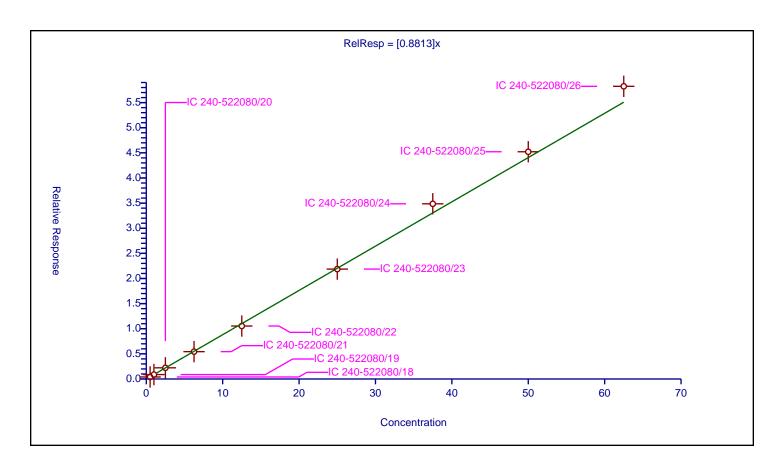
Error Coefficients

Standard Error:742000Relative Standard Error:2.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	0.5	0.81659	28.9	410112.0	1.633179	Υ
2	IC 240-522080/19	1.0	1.696164	28.9	405975.0	1.696164	Υ
3	IC 240-522080/20	2.5	4.082828	28.9	394141.0	1.633131	Υ
4	IC 240-522080/21	6.25	9.978728	28.9	400930.0	1.596597	Υ
5	IC 240-522080/22	12.5	19.548975	28.9	404568.0	1.563918	Υ
6	IC 240-522080/23	25.0	40.106728	28.9	403978.0	1.604269	Υ
7	IC 240-522080/24	37.5	62.680652	28.9	397091.0	1.671484	Υ
8	IC 240-522080/25	50.0	80.410898	28.9	399410.0	1.608218	Υ
9	IC 240-522080/26	62.5	101.290683	28.9	405613.0	1.620651	Υ

Calibration / 1,3,5-Trichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.8813

Curve Coefficients

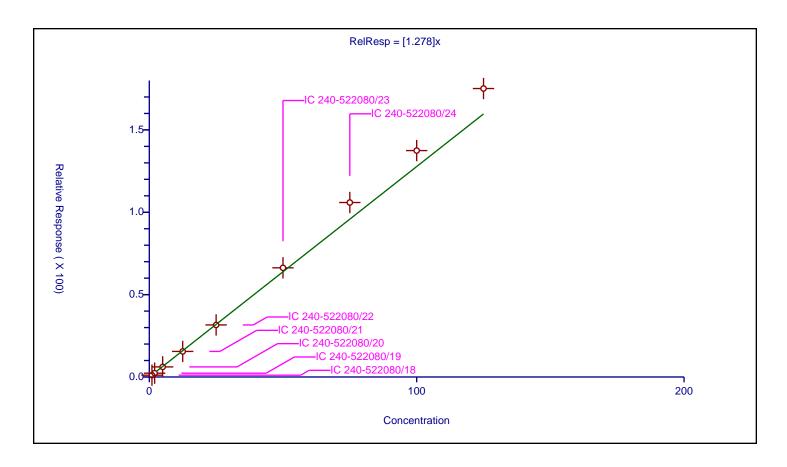
Error Coefficients

Standard Error:420000Relative Standard Error:4.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	0.5	0.40301	28.9	410112.0	0.806019	Υ
2	IC 240-522080/19	1.0	0.880864	28.9	405975.0	0.880864	Υ
3	IC 240-522080/20	2.5	2.22553	28.9	394141.0	0.890212	Υ
4	IC 240-522080/21	6.25	5.440204	28.9	400930.0	0.870433	Υ
5	IC 240-522080/22	12.5	10.541119	28.9	404568.0	0.84329	Υ
6	IC 240-522080/23	25.0	21.869263	28.9	403978.0	0.874771	Υ
7	IC 240-522080/24	37.5	34.860624	28.9	397091.0	0.929617	Υ
8	IC 240-522080/25	50.0	45.219047	28.9	399410.0	0.904381	Υ
9	IC 240-522080/26	62.5	58.244815	28.9	405613.0	0.931917	Υ

Calibration / 2-Methylnaphthalene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.278

Curve Coefficients

Error Coefficients

Standard Error:1270000Relative Standard Error:8.6Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-522080/18	1.0	1.098887	28.9	410112.0	1.098887	Υ
2	IC 240-522080/19	2.0	2.309651	28.9	405975.0	1.154825	Υ
3	IC 240-522080/20	5.0	6.127395	28.9	394141.0	1.225479	Υ
4	IC 240-522080/21	12.5	15.524172	28.9	400930.0	1.241934	Υ
5	IC 240-522080/22	25.0	31.601857	28.9	404568.0	1.264074	Υ
6	IC 240-522080/23	50.0	66.287834	28.9	403978.0	1.325757	Υ
7	IC 240-522080/24	75.0	105.923848	28.9	397091.0	1.412318	Υ
8	IC 240-522080/25	100.0	137.462223	28.9	399410.0	1.374622	Υ
9	IC 240-522080/26	125.0	175.126891	28.9	405613.0	1.401015	Υ

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 240-524416/3	225395.D	
Level 2	IC 240-524416/4	225396.D	
Level 3	IC 240-524416/5	225397.D	İ
Level 4	IC 240-524416/6	225398.D	
Level 5	IC 240-524416/7	225399.D	İ
Level 6	ICIS 240-524416/8	225400.D	İ
Level 7	IC 240-524416/9	225401.D	İ
Level 8	IC 240-524416/10	225402.D	İ
Level 9	IC 240-524416/11	225403.D	İ

ANALYTE			RRF			CURVE		COEFFICI	ENT #	MIN RRF	%RSD	 MAX	R^2	 MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COD
Dichlorodifluoromethane	0.2507	0.3013 0.2709		0.2867 0.2543	0.2792	Ave		0.276		0.1000	7.4	20.0		
Chloromethane	0.3767 0.2851	0.3616 0.2810		0.3116 0.2755	0.2907	Ave		0.311		0.1000	12.6	20.0		
Vinyl chloride	0.3780 0.3336	0.3981		0.3644	0.3503	Ave		0.350		0.1000	9.8	20.0		
Butadiene	0.3913 0.3257	0.4112		0.3601	0.3262	Ave		0.346			13.7	20.0		
Bromomethane	0.3346 0.1342	0.2377		0.1644 0.1435	0.1431	Lin1	0.103	0.137		0.0500	5.9		0.9990	0.9900
Chloroethane	+++++ 0.2249	0.3083 0.1756		0.2376	0.2270	Qua	-0.00	0.267	-0.002234	0.0500	12.4		0.9960	0.9900
Trichlorofluoromethane	0.4451	0.4817		0.4621 0.3932	0.4357	Ave	,	0.437		0.1000	8.5	20.0		
Dichlorofluoromethane	0.6504 0.5226	0.6414		0.5661 0.4898	0.5431	Ave		0.558			11.3	20.0		
Ethyl ether	0.2898 0.2241	0.2509		0.2349	0.2355	Ave		0.237			11.1	20.0		
1,1,2-Trichloro-1,2,2-trichfluoroe thane	+++++ 0.2243	0.2353		0.2430 0.2197	0.2236	Ave		0.233		0.0500	6.6	20.0		
Acrolein	0.0594 0.0513	0.0552 0.0535		0.0525 0.0517	0.0522	Ave		0.053			4.6	20.0		
1,1-Dichloroethene	0.1970 0.2212	0.2517 0.2257		0.2381 0.2171	0.2295	Ave		0.227		0.1000	7.4	20.0		

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

ANALYTE			RRF			CURVE		COEFFICIE	ENT #	MIN RRF	%RSD		MAX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD		OR COD
	LVL 6	LVL 7	LVL 8	LVL 9												
Acetone	0.4076	0.2663		0.1412	0.1301	Lin1	0.272	0.125		0.0100	4.4			0.9990		0.9900
	0.1297	0.1324		0.1292			7	6								
Iodomethane	++++	0.2187		0.1814	0.1876	Ave		0.201			7.5		20.0			
	0.1985	0.2082		0.2185				7								
Carbon disulfide	0.8024	0.7796		0.7355	0.7034	Ave		0.722		0.1000	7.4		20.0			
	0.6901	0.6882	0.6630	0.6611				6								
3-Chloro-1-propene	0.3990	0.3845		0.3596	0.3565	Ave		0.353			7.0		20.0			
	0.3356	0.3349	0.3345	0.3241				7								
Methyl acetate	0.3492	0.2621	0.2775	0.2663	0.2667	Ave		0.280		0.1000	9.5		20.0			
	0.2699	0.2779	0.2730	0.2771				0								
Methylene Chloride	++++	0.3043	0.2991	0.2802	0.2688	Ave		0.271		0.1000	7.9		20.0			
_	0.2578	0.2625	0.2535	0.2451				1								
tert-Butyl alcohol	0.0391	0.0376	0.0401	0.0425	0.0437	Ave		0.045			13.6		20.0			
	0.0482	0.0512		0.0543				0.045								
Methyl tert-butyl ether	0.7593	0.6828	0.7584	0.7238	0.7210	Ave		0.727		0.1000	3.2		20.0			
	0.7282	0.7385		0.7182				0.727								
trans-1,2-Dichloroethene	0.2932	0.2744		0.2573	0.2527	Ave		0.259		0.1000	6.5		20.0			
crame 1/2 premieroconene	0.2513	0.2488		0.2426	0.2027	1110		0.239		0.1000	0.0		20.0			
Acrylonitrile	0.1635	0.1422		0.1524	0.1519	Ave		0.151			3.8		20.0			
nor quon control	0.1510			0.1483	0.1013	1110		0.131			0.0		20.0			
Hexane	++++	0.3111		0.3306	0.3112	Ave		0.332			5.4		20.0			
nexane	0.3270	0.3586		0.3469	0.3112	1100					3.4		20.0			
1,1-Dichloroethane	0.4898	0.4939		0.4815	0.4687	7770		5		0.2000	5.2		20.0			
1,1-Dichioloechane	0.4509	0.4539		0.4391	0.4007	Ave		0.468		0.2000	3.2		20.0			
Wings age at a	0.3568			0.4331	0.4030	70		6			11 7		20.0			
Vinyl acetate	0.3338	0.3316		+++++	0.4030	Ave		0.368			11.7		20.0			
0.0 0.1.1.1		0.0599		0.0596	0.000	2		9			C F		20.0			
2,2-Dichloropropane	0.0641 0.0650			0.0596	0.0632	Ave		0.064			6.5		20.0			
								4								
cis-1,2-Dichloroethene	0.3411	0.2896		0.2878	0.2840	Ave		0.288		0.1000	8.5		20.0			
	0.2745	0.2745		0.2681				9								
2-Butanone	++++	0.0483		0.0489	0.0503	Ave		0.051		0.0100	4.2		20.0			
	0.0528	0.0536		0.0534				2.								
Bromochloromethane	0.2623	0.2239		0.2226	0.2152	Ave		0.216			11.4		20.0			
	0.2026			0.1864				2.				Ш				
Tetrahydrofuran	++++	0.1606		0.1255	0.1257	Ave		0.130			9.2		20.0			
	0.1265	0.1295	0.1264	0.1283				9								

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

ANALYTE			RRF			CURVE		COEFFICI	ENT #	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	М1	M2			%RSD	OR COD	OR COD
Chloroform	0.5483 0.4536	0.5001 0.4526	0.5056	0.4820 0.4325	0.4587	Ave		0.474		0.2000	7.9	20.		
Cyclohexane	++++ 0.3796	0.4020 0.3978		0.4290 0.3798	0.3898	Ave		0.400		0.1000	5.3	20.		
1,1,1-Trichloroethane	0.3614 0.3791	0.3959 0.3768		0.3964 0.3686	0.3749	Ave		0.382		0.1000	4.6	20.		
Carbon tetrachloride	0.2492 0.2843	0.3062 0.2855		0.2969 0.2834	0.2793	Ave		0.286		0.1000	6.4	20.		
1,1-Dichloropropene	0.3065 0.3617	0.3434		0.3619 0.3519	0.3567	Ave		0.351			5.5	20.		
Benzene	1.1132 1.0255	1.0282		1.0434	1.0250	Ave		1.035		0.5000	3.2	20.		
Isobutyl alcohol	+++++ 0.0113	0.0063 0.0129		0.0081	0.0094	Qua	-0.08	0.008	0.0000052		10.4		1.0000	0.9900
1,2-Dichloroethane	0.4639 0.3416	0.3801 0.3464		0.3695 0.3218	0.3565	Ave	.,	0.364		0.1000	11.6	20.		
n-Heptane	+++++ 0.0661	0.0629		0.0685	0.0635	Ave		0.067			4.4	20.		
Trichloroethene	0.2706 0.2605	0.2349		0.2587	0.2513	Ave		0.254		0.1500	3.9	20.		
Methylcyclohexane	+++++	0.3968		0.4222	0.4057	Ave		0.421		0.1000	3.5	20.		
1,2-Dichloropropane	0.2716 0.2527	0.2482		0.2531	0.2555	Ave		0.255		0.1000	2.9	20.		
Dibromomethane	0.1546 0.1523		0.1698	0.1628 0.1447	0.1538	Ave		0.155			5.4	20.		
1,4-Dioxane	+++++ 0.0052	0.0036		0.0047	0.0049	Lin1	-0.05	0.005			7.9		0.9990	0.9900
Bromodichloromethane	0.3721 0.3307	0.3463	0.3562	0.3359	0.3345	Ave	n	0.339		0.1500	4.9	20.		
2-Chloroethyl vinyl ether	0.1757 0.1926	0.1622	0.1786	0.1745	0.1827	Ave		0.184			7.1	20.		
cis-1,3-Dichloropropene	0.4067 0.3789	0.3412	0.3702	0.3767	0.3739	Ave		0.379		0.1500	4.9	20.		
4-Methyl-2-pentanone	0.3404	0.3058	0.2984	0.3095	0.3223	Ave		0.327		0.0500	5.7	20.		

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

ANALYTE			RRF			CURVE		COEFFICIE	ENT #	MIN RRF	%RSD				MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			%RSI	OR COD		OR COD
Toluene	1.5693	1.4169		1.4455	1.4208	Ave		1.453		0.4000	3.6	20.	0	+	
	1.4628	1.4337		1.4238				1.433							
trans-1,3-Dichloropropene	0.4147 0.4447	0.3497 0.4718		0.3920 0.4684	0.4187	Ave		0.424		0.1000	9.8	20.	0		
Ethyl methacrylate	0.3841 0.4505	0.3262		0.3905 0.4697	0.4183	Ave		0.416			11.5	20.	0		
1,1,2-Trichloroethane	0.3223 0.3141	0.2676 0.3237		0.3011 0.3109	0.3046	Ave		0.305		0.1000	5.4	20.	0		
Tetrachloroethene	0.2603 0.3238	0.3007		0.3114	0.3074	Ave		0.308		0.1500	6.5	20.	0		
1,3-Dichloropropane	0.5482 0.5608	0.4964		0.5399	0.5403	Ave		0.543			3.6	20.	0		
2-Hexanone	0.3530 0.3544	0.2965		0.3286 0.3555	0.3341	Ave		0.338		0.0500	6.7	20.	0		
Dibromochloromethane	0.2891 0.2975	0.2842		0.2917	0.2938	Ave		0.296			3.2	20.	0		
1,2-Dibromoethane	0.3088	0.2831		0.3156 0.3318	0.3108	Ave		0.317			5.4	20.	0		
Chlorobenzene	0.9200 0.8872		0.9441	0.8943	0.8639	Ave		0.887		0.3000	3.2	20.	0		
Ethylbenzene	0.4842	0.4734	0.5002	0.4889	0.4837	Ave		0.489			1.8	20.	0		
1,1,1,2-Tetrachloroethane	0.2524 0.2783	0.2323	0.2432	0.2450	0.2601	Ave		0.263			8.4	20.	0		
m-Xylene & p-Xylene	0.6070 0.6182		0.6410	0.6087	0.5853	Ave		0.602			3.1	20.	0		
o-Xylene	0.6097 0.5951	0.5777	0.6056	0.5878 0.5741	0.5813	Ave		0.585			2.7	20.	0		
Styrene	1.0024 1.0102	0.9053 1.0056		0.9799	0.9766	Ave		0.983		0.3000	3.3	20.	0		
Bromoform	0.1945 0.1992		0.1751	0.1772	0.1862	Ave		0.190		0.1000	9.0	20.	0		
Isopropylbenzene	1.3799	1.4777	1.6470	1.5686	1.5369	Ave		1.533		0.1000	4.8	20.	0		
Bromobenzene	0.6992	0.5962	0.6835	0.6599	0.6515	Ave		0.666			4.6	20.	0		

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
	LVL 6	LVL 7	LVL 8	LVL 9											
1,1,2,2-Tetrachloroethane	1.0169	0.8948		0.9260	0.9454	Ave		0.961			0.3000	4.6	20.0		
	0.9596	0.9991	1.0210	0.9675				3							
n-Propylbenzene	0.7552	0.7298		0.8028	0.7792	Ave		0.799				4.9	20.0		
	0.8225	0.8242	0.8056	0.8168				6							
1,2,3-Trichloropropane	0.3068	0.2458			0.3100	Ave		0.307				8.0	20.0		
	0.3209	0.3284	0.3216	0.3159				9							
trans-1,4-Dichloro-2-butene	0.1871	0.1776		0.2161	0.2322	Ave		0.234				16.8	20.0		
	0.2539	0.2748	0.2791	0.2782				2							
2-Chlorotoluene	0.7214	0.6037	0.7033	0.6765	0.6673	Ave		0.677				4.8	20.0		
	0.6864	0.6843	0.6753	0.6770				2							
1,3,5-Trimethylbenzene	2.3399	2.2502	2.5367	2.4909	2.4569	Ave		2.456				4.0	20.0		
	2.5501	2.5067	2.4733	2.5029				4							
4-Chlorotoluene	0.6725	0.6225	0.7515	0.6960	0.6678	Ave		0.691				5.2	20.0		
	0.7032	0.7189	0.6871	0.7011				2							
tert-Butylbenzene	1.7968	2.0271	2.2337	2.1028	2.1047	Ave		2.087				5.8	20.0		
	2.1326	2.1495	2.1017	2.1397				6							
1,2,4-Trimethylbenzene	2.4653	2.2930	2.6224	2.5675	2.5723	Ave		2.539				4.1	20.0		
	2.6068	2.6055	2.5474	2.5786				9							
sec-Butylbenzene	2.5723	3.0914	3.3878	3.2676	3.1728	Ave		3.174				7.6	20.0		
	3.2624	3.3253	3.2388	3.2526				6							
1,3-Dichlorobenzene	1.2824	1.2359	1.3339	1.3350	1.3153	Ave		1.311			0.6000	2.6	20.0		
	1.3163	1.3408	1.3136	1.3322				7							
p-Isopropyltoluene	2.1402	2.3955	2.6967	2.6963	2.6141	Ave		2.610				8.0	20.0		
	2.7375	2.7467	2.7218	2.7486				8							
1,4-Dichlorobenzene	1.4984	1.2210	1.3590	1.3399	1.3017	Ave		1.335			0.5000	5.4	20.0		
	1.3275	1.3405	1.3089	1.3245				7							
n-Butylbenzene	1.9569	2.1831	2.5774	2.5558	2.5221	Ave		2.484				9.9	20.0		
_	2.6168	2.6602	2.6283	2.6602				5							
1,2-Dichlorobenzene	1.3463	1.2232	1.2983	1.2578	1.2569	Ave		1.272			0.4000	2.8	20.0		
	1.2813	1.2777	1.2481	1.2581				1.2/2							
1,2-Dibromo-3-Chloropropane	0.2370	0.2071	0.2228	0.2216	0.2422	Ave		0.242			0.0500	9.2	20.0		
	0.2500	0.2662	0.2669	0.2682				Δ.2.42							
1,2,4-Trichlorobenzene	0.7217	0.6883	0.7954	0.7814	0.7752	Ave		0.783			0.2000	6.4	20.0		
•	0.7980	0.8402	0.8245	0.8258				Δ.763							
Hexachlorobutadiene	++++	0.2904	0.3271	0.3071	0.2953	Ave		0.309			1	4.0	20.0		
	0.3070	0.3156		0.3148				0.309							

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	#	MAX	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2					%RSD	OR COD		OR COD
Naphthalene	2.7556 2.8839	2.4249 3.0251	2.7692 2.9828	2.7394 2.9422	2.7451	Ave		2.807				6.4		20.0			
1,2,3-Trichlorobenzene	0.7747 0.7583	0.6707 0.8000	0.7725 0.7846		0.7356	Ave		0.759				5.2		20.0			
Dibromofluoromethane (Surr)	0.3084 0.2734	0.2614 0.2767	0.2644 0.2764	0.2178 0.2728	0.2656	Ave		0.268				8.7		20.0			
1,2-Dichloroethane-d4 (Surr)	0.4914 0.3097	0.3953 0.3145	0.3432 0.3035	0.2637 0.3055	0.3062	Lin1	0.078	0.304				8.1			0.9990		0.9900
Toluene-d8 (Surr)	1.3990 1.4303	1.2717 1.4242		1.0396 1.4390	1.3176	Ave		1.329				10.3		20.0			
4-Bromofluorobenzene (Surr)	0.5933 0.5282	0.4789 0.5264	0.4725 0.5279	0.3934 0.5306	0.4813	Ave		0.503 6				11.0		20.0			

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA

RESPONSE AND CONCENTRATION

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

Calibration Files

LEVEL:	LA	B SAMPLE ID:	LAB FILE ID:
Level 1	l IC	240-524416/3	225395.D
Level 2	2 IC	240-524416/4	225396.D
Level 3	3 IC	240-524416/5	225397.D
Level 4	4 IC	240-524416/6	225398.D
Level 5		240-524416/7	225399.D
Level 6	6 IC	IS 240-524416/8	225400.D
Level 7	7 IC	240-524416/9	225401.D
Level 8	B IC	240-524416/10	225402.D
Level		240-524416/11	225403.D

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
Dichlorodifluoromethane	FB	Ave	4890	12057 476987	31006 636869	75147 788787	153879	0.500 25.0	1.00 37.5	2.50		12.5
Chloromethane	FB	Ave	306047 7348	14471	34042	81682	160233	0.500	1.00	50.0	62.5	12.5
			323479	494729	675227	854516		25.0	37.5	50.0	62.5	
Vinyl chloride	FB	Ave	7373 378467	15931 570285	39143 754463	95511 958130	193065	0.500 25.0	1.00 37.5	2.50 50.0	6.25 62.5	12.5
Butadiene	FB	Ave	7632 369508	16454 542314	40784 726282	94402 902252	179788	0.500	1.00	2.50	6.25	12.5
Bromomethane	FB	Lin1	6525 152205	9510 243565	19134 339512	43108 444930	78884	0.500	1.00	2.50	6.25	12.5
Chloroethane	FB	Qua	++++ 255150	12338 309149	27282 383261	62284	125140	+++++	1.00	2.50		12.5
Trichlorofluoromethane	FB	Ave	8682 477378	19276 719458	49656 966916	121142 1219541	240158	0.500	1.00	2.50	6.25	12.5
Dichlorofluoromethane	FB	Ave	12685 592964	25663 896982	61316 1192925	148396 1518883	299337	0.500 25.0	1.00	2.50	6.25	12.5
Ethyl ether	FB	Ave	5653 254270	10041 392841	25919 511633	61585 641851	129778	0.500 25.0	1.00 37.5	2.50	6.25 62.5	12.5
1,1,2-Trichloro-1,2,2-trichfluor oethane	FB	Ave	++++	9417	26547	63703	123231	+++++	1.00	2.50	6.25	12.5
			254431	403723	545312	681195		25.0	37.5	50.0	62.5	
Acrolein	FB	Ave	5795 290895	11042 470837	27211 648423	68854 801408	143849	2.50 125	5.00 188	12.5 250	31.3 313	62.5
1,1-Dichloroethene	FB	Ave	3843 250988	10073 397388	24642 530841	62412 673331	126497	0.500 25.0	1.00 37.5	2.50 50.0	6.25 62.5	12.5

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
Acetone	FB	Lin1	15901 294401	21311 466343	35370 622155	74009 801514	143374	1.00 50.0	2.00 75.0	5.00 100	12.5 125	25.0
Iodomethane	FB	Ave	+++++ 225186	8750 366525	18668 522847	47562 677687	103392	+++++	1.00	2.50	6.25	12.5
Carbon disulfide	FB	Ave	15649 783001	31195 1211711	77854 1619917	192808 2050318	387699	0.500	1.00	2.50	6.25	12.5
3-Chloro-1-propene	FB	Ave	7781 380804	15387 589603	35397 817206	94277 1005013	196489	0.500	1.00	2.50	6.25	12.5
Methyl acetate	FB	Ave	13620 612444	20976 978418	55384 1334224	139606 1718778	294046	1.00	2.00 75.0	5.00	12.5 125	25.0
Methylene Chloride	FB	Ave	++++	12176 462218	29846	73446 760232	148165	+++++	1.00	2.50	6.25	12.5
tert-Butyl alcohol	FB	Ave	7635 547213	15040 902259	40043	111508 1683191	241097	5.00	10.0	25.0 500	62.5	125
Methyl tert-butyl ether	FB	Ave	14810 826138	27322 1300264	75675 1760755	189732 2227260	397423	0.500	1.00	2.50	6.25	12.5
trans-1,2-Dichloroethene	FB	Ave	5718 285161	10979	27025 593115	67438 752370	139307	0.500	1.00	2.50	6.25	12.5
Acrylonitrile	FB	Ave	31883 1713489	56892 2698332	155323 3629901	399563 4600449	837176	5.00	10.0	25.0 500	62.5	125
Hexane	FB	Ave	++++ 370985	12447 631339	32255 859375	86670 1075945	171506	+++++ 25.0	1.00	2.50	6.25 62.5	12.5
1,1-Dichloroethane	FB	Ave	9553 511547	19762 799070	50080 1070354	126229 1361763	258351	0.500	1.00	2.50	6.25	12.5
Vinyl acetate	FB	Ave	6959 378713	14068 653195	32737 1122294	91114	222115	0.500	1.00	2.50	6.25	12.5
2,2-Dichloropropane	FB	Ave	1251 73719	2396 112334	7402 159748	15633 198800	34820	0.500	1.00	2.50	6.25	12.5
cis-1,2-Dichloroethene	FB	Ave	6653	11590 483278	31450 648784	75446 831484	156538	0.500	1.00	2.50	6.25	12.5
2-Butanone	FB	Ave	++++ 119728	3864 188724	9880	25637 331011	55425	++++	2.00	5.00	12.5	25.0
Bromochloromethane	FB	Ave	5115 229841	8961 356551	24062 462606	58359 577966	118589	0.500	1.00 37.5	2.50	6.25	12.5
Tetrahydrofuran	FB	Ave	++++ 287130	12849 456055	24927 617596	65772 795750	138573	++++	2.00	5.00	12.5	25.0

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
Chloroform	FB	Ave	10694 514619	20013 796798	50453 1075323	126345 1341162	252852	0.500 25.0	1.00 37.5	2.50	6.25 62.5	12.5
Cyclohexane	FB	Ave	+++++ 430716	16087 700308	43374 945364	112454 1177771	214856	+++++ 25.0	1.00 37.5	2.50 50.0	6.25 62.5	12.5
1,1,1-Trichloroethane	FB	Ave	7048 430164	15842 663381	41634 901396	103908 1143024	206647	0.500 25.0	1.00 37.5	2.50 50.0	6.25 62.5	12.5
Carbon tetrachloride	FB	Ave	4860 322531	12252 502568	31154 686332	77839 878759	153945	0.500 25.0	1.00 37.5	2.50 50.0	6.25 62.5	12.5
1,1-Dichloropropene	FB	Ave	5978 410352	13740 631882	37522 855441	94880 1091323	196583	0.500 25.0	1.00 37.5	2.50	6.25 62.5	12.5
Benzene	FB	Ave	21712 1163436	41143 1824141	104383 2446172	273519 3116242	564967	0.500 25.0	1.00 37.5	2.50	6.25 62.5	12.5
Isobutyl alcohol	FB	Qua	+++++ 319841	6303 566758	17405 ++++	53032 ++++	129300	+++++ 625	25.0 938	62.5	156 +++++	313
1,2-Dichloroethane	FB	Ave	9048 387607	15209 609813	37060 802120	96856 998019	196518	0.500 25.0	1.00 37.5	2.50 50.0	6.25 62.5	12.5
n-Heptane	FB	Ave	+++++ 75006	2515 124189	6730 170720	17944 216415	35011	+++++ 25.0	1.00 37.5	2.50 50.0	6.25 62.5	12.5
Trichloroethene	FB	Ave	5278 295526	9401 456818	25319 604413	67802 794710	138523	0.500 25.0	1.00 37.5	2.50 50.0	6.25 62.5	12.5
Methylcyclohexane	FB	Ave	+++++ 469665	15879 770286	43386 1063091	110679 1325520	223632	+++++ 25.0	1.00 37.5	2.50	6.25 62.5	12.5
1,2-Dichloropropane	FB	Ave	5298 286736	9931 450909	25912 609223	66359 770838	140850	0.500 25.0	1.00 37.5	2.50 50.0	6.25 62.5	12.5
Dibromomethane	FB	Ave	3016 172771	6579 273143	16942 356188	42669 448875	84763	0.500 25.0	1.00 37.5	2.50 50.0	6.25 62.5	12.5
1,4-Dioxane	FB	Lin1	+++++ 117664	2880 192204	8555 268548	24554 348083	54056	+++++ 500	20.0 750	50.0 1000	125 1250	250
Bromodichloromethane	FB	Ave	7258 375236	13855 587411	35544 790129	88052 991870	184377	0.500 25.0	1.00 37.5	2.50	6.25 62.5	12.5
2-Chloroethyl vinyl ether	FB	Ave	6852 437072	12983 708494	35650 955950	91507 1227873	201405	1.00	2.00 75.0	5.00	12.5 125	25.0
cis-1,3-Dichloropropene	FB	Ave	7933 429917	13652 702229	36943 943839	98747 1195806	206082	0.500	1.00	2.50	6.25	12.5
4-Methyl-2-pentanone	FB	Ave	13280 768371	24476 1221184	59540 1668749	162272 2131426	355333	1.00	2.00 75.0	5.00 100	12.5 125	25.0

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
Toluene	CBNZ	Ave	24159	44018	113828	290594	598257	0.500	1.00	2.50	6.25	12.5
	d5		1227866	1873986	2525370	3230252		25.0	37.5	50.0	62.5	
trans-1,3-Dichloropropene	CBNZ	Ave	6384	10863	29948	78806	176282	0.500	1.00	2.50	6.25	12.5
	d5		373291	616655	829593	1062754		25.0	37.5	50.0	62.5	
Ethyl methacrylate	CBNZ	Ave	5913	10135	29573	78498	176151	0.500	1.00	2.50	6.25	12.5
	d5											
			378127	604408	821658	1065502		25.0	37.5	50.0	62.5	
1,1,2-Trichloroethane	CBNZ d5	Ave	4962	8313	22805	60522	128273	0.500	1.00	2.50	6.25	12.5
			263663	423066	549840	705422		25.0	37.5	50.0	62.5	
Tetrachloroethene	CBNZ d5	Ave	4007	9340	24730	62600	129442	0.500	1.00	2.50	6.25	12.5
			271788	419228	558035	723997		25.0	37.5	50.0	62.5	
1,3-Dichloropropane	CBNZ d5	Ave	8440	15422	41488	108547	227524	0.500	1.00	2.50	6.25	12.5
			470735	738454	987279	1241301		25.0	37.5	50.0	62.5	
2-Hexanone	CBNZ d5	Ave	10868	18424	47327	132119	281394	1.00	2.00	5.00	12.5	25.0
			595003	948825	1257803	1613251		50.0	75.0	100	125	
Dibromochloromethane	CBNZ d5	Ave	4450	8830	22132	58639	123717	0.500	1.00	2.50	6.25	12.5
			249759	408956	548506	694358		25.0	37.5	50.0	62.5	
1,2-Dibromoethane	CBNZ d5	Ave	4754	8795	23680	63447	130862	0.500	1.00	2.50	6.25	12.5
			276529	447027	587173	752757		25.0	37.5	50.0	62.5	
Chlorobenzene	CBNZ d5	Ave	14163	26920	71767	179784	363767	0.500	1.00	2.50	6.25	12.5
			744741	1152890	1540786	1972916		25.0	37.5	50.0	62.5	
Ethylbenzene	CBNZ d5	Ave	7454	14708	38024	98280	203670	0.500	1.00	2.50	6.25	12.5
			420266	646911	866569	1120715		25.0	37.5	50.0	62.5	
1,1,1,2-Tetrachloroethane	CBNZ d5	Ave	3885	7218	18489	49247	109533	0.500	1.00	2.50	6.25	12.5
			233604	379101	509811	658299		25.0	37.5	50.0	62.5	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
m-Xylene & p-Xylene	CBNZ	Ave	9344	18448	48726	122359	246468	0.500	1.00	2.50	6.25	12.5
	d5		518936	768849	1043820	1347974		25.0	37.5	50.0	62.5	
o-Xylene	CBNZ	Ave	9387	17947	46038	118176	244757	0.500	1.00	2.50	6.25	12.5
	d5		499538	749816	1008228	1302435		25.0	37.5	50.0	62.5	
Styrene	CBNZ	Ave	15432	28124	76335	196994	411219	0.500	1.00	2.50	6.25	12.5
	d5											
7		-	847965	1314431	1747633	2243613	70200	25.0	37.5	50.0	62.5	10.5
Bromoform	CBNZ d5	Ave	2994	4961	13309	35616	78392	0.500	1.00	2.50	6.25	12.5
			167229	270087	367222	477235		25.0	37.5	50.0	62.5	
Isopropylbenzene	CBNZ d5	Ave	21243	45905	125200	315340	647135	0.500	1.00	2.50	6.25	12.5
	43		1321567	2023943	2725077	3509282		25.0	37.5	50.0	62.5	
Bromobenzene	DCBd	Ave	5695	10082	27430	69672	142424	0.500	1.00	2.50	6.25	12.5
	4		294176	458215	602100	772441		25.0	37.5	50.0	62.5	
1,1,2,2-Tetrachloroethane	DCBd	Ave	8283	15131	36990	97759	206664	0.500	1.00	2.50	6.25	12.5
	4		417332	660631	918859	1118252		25.0	37.5	50.0	62.5	
n-Propylbenzene	DCBd	Ave	6151	12341	34513	84755	170341	0.500	1.00	2.50	6.25	12.5
	4		357715	545010	724979	944066		25.0	37.5	50.0	62.5	
1,2,3-Trichloropropane	DCBd	Ave	2499	4156	12776	32066	67760	0.500	1.00	2.50	6.25	12.5
	4		139537	217157	289452	365101		25.0	37.5	50.0	62.5	
trans-1,4-Dichloro-2-butene	DCBd	Ave	1524	3004	8379	22815	50762	0.500	1.00	2.50	6.25	12.5
	4		110398	181691	251175	321563		25.0	37.5	50.0	62.5	
2-Chlorotoluene	DCBd	Ave	5876	10208	28224	71420	145868	0.500	1.00	2.50	6.25	12.5
	4		298517	452486	607758	782543		25.0	37.5	50.0	62.5	
1,3,5-Trimethylbenzene	DCBd	Ave	19059	38051	101797	262981	537089	0.500	1.00	2.50	6.25	12.5
	4		1109015	1657552	2225847	2893023		25.0	37.5	50.0	62.5	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
4-Chlorotoluene	DCBd 4	Ave	5478	10527	30159	73484	145990	0.500	1.00	2.50	6.25	12.5
	1		305812	475362	618313	810351		25.0	37.5	50.0	62.5	
tert-Butylbenzene	DCBd 4	Ave	14635	34279	89639	222006	460091	0.500	1.00	2.50	6.25	12.5
			927450	1421344	1891414	2473232		25.0	37.5	50.0	62.5	
1,2,4-Trimethylbenzene	DCBd 4	Ave	20080	38775	105238	271066	562319	0.500	1.00	2.50	6.25	12.5
			1133664	1722866	2292582	2980435		25.0	37.5	50.0	62.5	
sec-Butylbenzene	DCBd 4	Ave	20952	52276	135953	344977	693587	0.500	1.00	2.50	6.25	12.5
			1418784	2198829	2914743	3759534		25.0	37.5	50.0	62.5	
1,3-Dichlorobenzene	DCBd 4	Ave	10445	20899	53531	140947	287535	0.500	1.00	2.50	6.25	12.5
			572447	886573	1182187	1539858		25.0	37.5	50.0	62.5	
p-Isopropyltoluene	DCBd 4	Ave	17432	40509	108217	284658	571463	0.500	1.00	2.50	6.25	12.5
			1190522	1816214	2449535	3176930		25.0	37.5	50.0	62.5	
1,4-Dichlorobenzene	DCBd 4	Ave	12205	20648	54537	141463	284563	0.500	1.00	2.50	6.25	12.5
			577314	886410	1177904	1530950		25.0	37.5	50.0	62.5	
n-Butylbenzene	DCBd 4	Ave	15939	36916	103431	269829	551343	0.500	1.00	2.50	6.25	12.5
			1137997	1759052	2365365	3074761		25.0	37.5	50.0	62.5	
1,2-Dichlorobenzene	DCBd 4	Ave	10966	20685	52100	132791	274756	0.500	1.00	2.50	6.25	12.5
			557212	844871	1123217	1454127		25.0	37.5	50.0	62.5	
1,2-Dibromo-3-Chloropropane	DCBd 4	Ave	1930	3502	8941	23394	52956	0.500	1.00	2.50	6.25	12.5
			108722	175994	240185	310005		25.0	37.5	50.0	62.5	
1,2,4-Trichlorobenzene	DCBd 4	Ave	5878	11640	31918	82494	169465	0.500	1.00	2.50	6.25	12.5
			347035	555578	741990	954523		25.0	37.5	50.0	62.5	
Hexachlorobutadiene	DCBd 4	Ave	++++	4911	13127	32421	64554	++++	1.00	2.50	6.25	12.5
			133510	208661	289324	363900		25.0	37.5	50.0	62.5	

Lab Name: Eurofins Canton Job No.: 240-171981-1 Analy Batch No.: 524416

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 GC Column: DB-624 ID: $0.18 \, (mm)$ Heated Purge: (Y/N) N

Calibration End Date: 04/28/2022 19:03 Calibration Start Date: 04/28/2022 15:53 Calibration ID: 65475

ANALYTE	IS	CURVE			RESPONSE			CONCENTRATION (UG/L)				
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5
Naphthalene	DCBd	Ave	22445	41005	111128	289218	600091	0.500	1.00	2.50	6.25	12.5
	4		1254161	2000320	2684412	3400764		25.0	37.5	50.0	62.5	
1,2,3-Trichlorobenzene	DCBd	Ave	6310	11342	30999	78676	160802	0.500	1.00	2.50	6.25	12.5
	4		329781	528966	706115	918304		25.0	37.5	50.0	62.5	
Dibromofluoromethane (Surr)	FB	Ave	6014	10458	26384	52809	130220	0.500	1.00	2.50	5.78	11.1
			358529	600627	780567	1017253		28.9	46.2	57.8	75.1	
1,2-Dichloroethane-d4 (Surr)	FB	Lin1	9585	15819	34243	63925	150149	0.500	1.00	2.50	5.78	11.1
			406171	682822	857296	1138947		28.9	46.2	57.8	75.1	
Toluene-d8 (Surr)	CBNZ d5	Ave	21538	39507	91630	193272	493544	0.500	1.00	2.50	5.78	11.1
			1387962	2295473	2989937	3924763		28.9	46.2	57.8	75.1	
4-Bromofluorobenzene (Surr)	CBNZ d5	Ave	9134	14877	35915	73130	180281	0.500	1.00	2.50	5.78	11.1
	45		512564	848479	1095308	1447101		28.9	46.2	57.8	75.1	

Curve Type Legend
Ave = Average ISTD

Lin1 = Linear 1/conc ISTD

Qua = Quadratic ISTD

FORM VI

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Canton

Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22

GC Column: DB-624

ID: 0.18 (mm)

Heated Purge: (Y/N) N

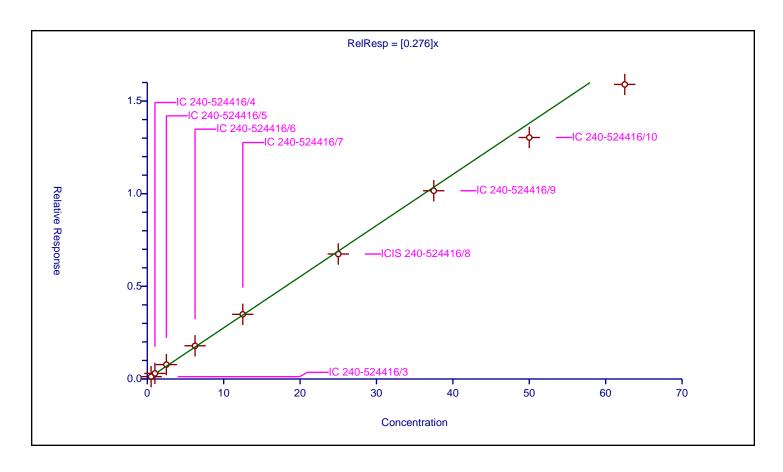
Calibration Start Date: 04/28/2022 15:53 Calibration End Date: 04/28/2022 19:03 Calibration ID: 65475

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 240-524416/3	225395.D
Level 2	IC 240-524416/4	225396.D
Level 3	IC 240-524416/5	225397.D
Level 4	IC 240-524416/6	225398.D
Level 5	IC 240-524416/7	225399.D
Level 6	ICIS 240-524416/8	225400.D
Level 7	IC 240-524416/9	225401.D
Level 8	IC 240-524416/10	225402.D
Level 9	IC 240-524416/11	225403.D

ANALYTE		PERCENT ERROR						P	ERCENT E	RROR LIM	IT	
	LVL 1 # LVL 7 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2 LVL 8	LVL 3 LVL 9	LVL 4	LVL 5	LVL 6
Bromomethane	-7.4						50					
Chloroethane	++++	19.1	++++					50				
Acetone	7.4						50					
Isobutyl alcohol	++++	17.9	+++++					50				
1,4-Dioxane	++++	16.0						50				
1,2-Dichloroethane-d4 (Surr)	10.1						50					

Calibration / Dichlorodifluoromethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:	0 0.276	

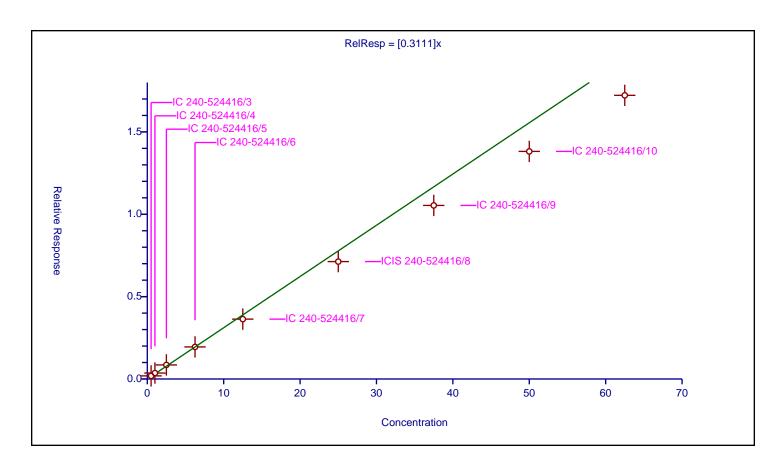
Error Coefficients

Standard Error:415000Relative Standard Error:7.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.125361	28.9	1127312.0	0.250722	Υ
2	IC 240-524416/4	1.0	0.301319	28.9	1156405.0	0.301319	Υ
3	IC 240-524416/5	2.5	0.776858	28.9	1153458.0	0.310743	Υ
4	IC 240-524416/6	6.25	1.791691	28.9	1212122.0	0.286671	Υ
5	IC 240-524416/7	12.5	3.489703	28.9	1274350.0	0.279176	Υ
6	ICIS 240-524416/8	25.0	6.743765	28.9	1311546.0	0.269751	Υ
7	IC 240-524416/9	37.5	10.159565	28.9	1356842.0	0.270922	Υ
8	IC 240-524416/10	50.0	13.032575	28.9	1412270.0	0.260651	Υ
9	IC 240-524416/11	62.5	15.896476	28.9	1434025.0	0.254344	Υ

Calibration / Chloromethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3111

Curve Coefficients

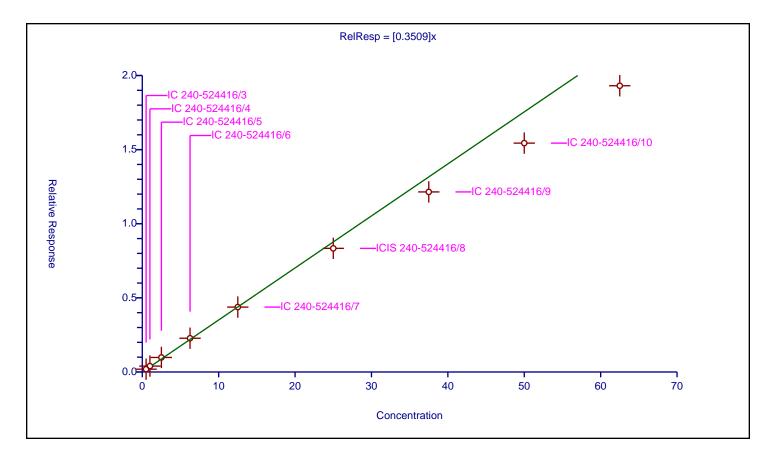
Error Coefficients

443000
12.6
0.999
0.977

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.188375	28.9	1127312.0	0.37675	Υ
2	IC 240-524416/4	1.0	0.361648	28.9	1156405.0	0.361648	Υ
3	IC 240-524416/5	2.5	0.852926	28.9	1153458.0	0.34117	Υ
4	IC 240-524416/6	6.25	1.947502	28.9	1212122.0	0.3116	Υ
5	IC 240-524416/7	12.5	3.633801	28.9	1274350.0	0.290704	Υ
6	ICIS 240-524416/8	25.0	7.12788	28.9	1311546.0	0.285115	Υ
7	IC 240-524416/9	37.5	10.53746	28.9	1356842.0	0.280999	Υ
8	IC 240-524416/10	50.0	13.817514	28.9	1412270.0	0.27635	Υ
9	IC 240-524416/11	62.5	17.221117	28.9	1434025.0	0.275538	Υ

Calibration / Vinyl chloride

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3509

Curve Coefficients

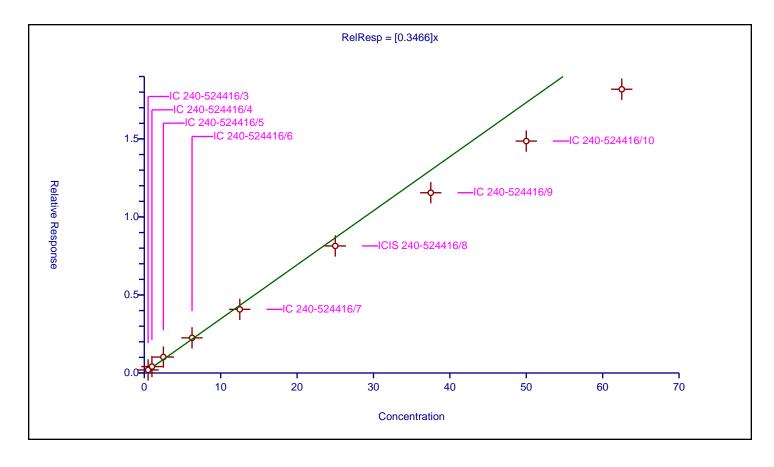
Error Coefficients

Standard Error:500000Relative Standard Error:9.8Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.987

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.189016	28.9	1127312.0	0.378031	Υ
2	IC 240-524416/4	1.0	0.398136	28.9	1156405.0	0.398136	Υ
3	IC 240-524416/5	2.5	0.980732	28.9	1153458.0	0.392293	Υ
4	IC 240-524416/6	6.25	2.27722	28.9	1212122.0	0.364355	Υ
5	IC 240-524416/7	12.5	4.378372	28.9	1274350.0	0.35027	Υ
6	ICIS 240-524416/8	25.0	8.339545	28.9	1311546.0	0.333582	Υ
7	IC 240-524416/9	37.5	12.146762	28.9	1356842.0	0.323914	Υ
8	IC 240-524416/10	50.0	15.43896	28.9	1412270.0	0.308779	Υ
9	IC 240-524416/11	62.5	19.309257	28.9	1434025.0	0.308948	Υ

Calibration / Butadiene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3466

Curve Coefficients

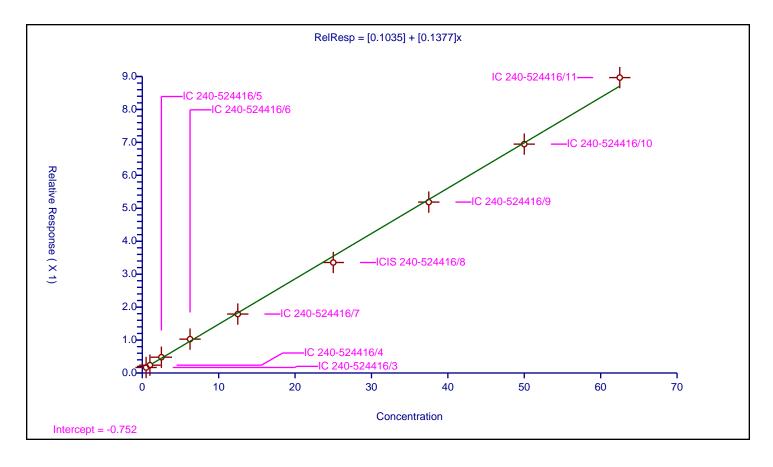
Error Coefficients

Standard Error:476000Relative Standard Error:13.7Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.973

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.195656	28.9	1127312.0	0.391311	Υ
2	IC 240-524416/4	1.0	0.411206	28.9	1156405.0	0.411206	Υ
3	IC 240-524416/5	2.5	1.021847	28.9	1153458.0	0.408739	Υ
4	IC 240-524416/6	6.25	2.250778	28.9	1212122.0	0.360125	Υ
5	IC 240-524416/7	12.5	4.077273	28.9	1274350.0	0.326182	Υ
6	ICIS 240-524416/8	25.0	8.142132	28.9	1311546.0	0.325685	Υ
7	IC 240-524416/9	37.5	11.550995	28.9	1356842.0	0.308027	Υ
8	IC 240-524416/10	50.0	14.862278	28.9	1412270.0	0.297246	Υ
9	IC 240-524416/11	62.5	18.183144	28.9	1434025.0	0.29093	Υ

Calibration / Bromomethane

Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0.1035
Slope:	0.1377

Curve Coefficients

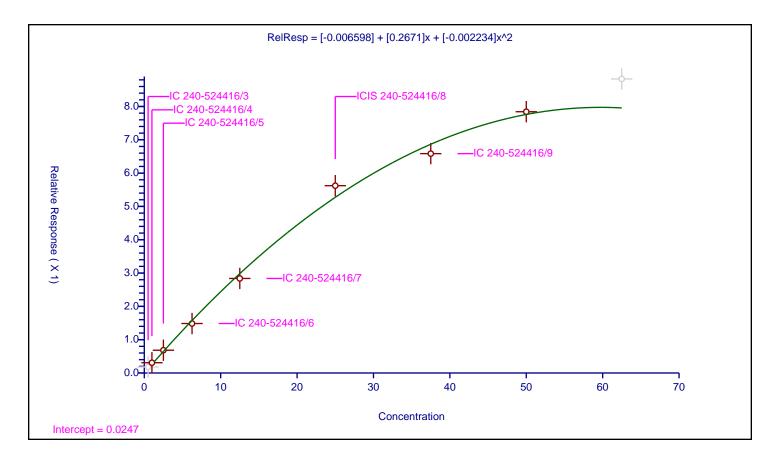
Error Coefficients

Standard Error:240000Relative Standard Error:5.9Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.167276	28.9	1127312.0	0.334552	Υ
2	IC 240-524416/4	1.0	0.237667	28.9	1156405.0	0.237667	Υ
3	IC 240-524416/5	2.5	0.479404	28.9	1153458.0	0.191762	Υ
4	IC 240-524416/6	6.25	1.027802	28.9	1212122.0	0.164448	Υ
5	IC 240-524416/7	12.5	1.788949	28.9	1274350.0	0.143116	Υ
6	ICIS 240-524416/8	25.0	3.353847	28.9	1311546.0	0.134154	Υ
7	IC 240-524416/9	37.5	5.187803	28.9	1356842.0	0.138341	Υ
8	IC 240-524416/10	50.0	6.947607	28.9	1412270.0	0.138952	Υ
9	IC 240-524416/11	62.5	8.966704	28.9	1434025.0	0.143467	Υ

Calibration / Chloroethane

Curve Type:	Quadratic
Weighting:	None
Origin:	None
Dependency:	Response
Calib Mode:	ISTD
Response Base:	AREA
RF Rounding:	0


Intercept:	-0.006598
Slope:	0.2671
Second Order:	-0.002234

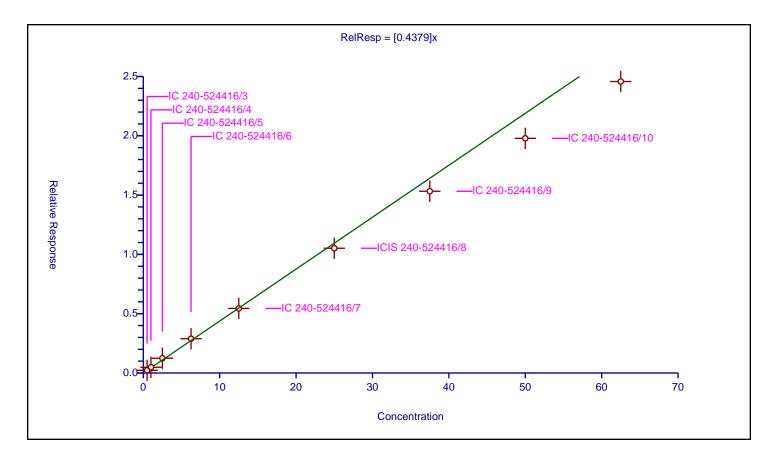
Error Coefficients

Curve Coefficients

Standard Error: 286000 **Relative Standard Error:** 12.4 **Correlation Coefficient:** 0.994 Coefficient of Determination (Adjusted): 0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.181171	28.9	1127312.0	0.362342	N
2	IC 240-524416/4	1.0	0.308342	28.9	1156405.0	0.308342	Υ
3	IC 240-524416/5	2.5	0.683553	28.9	1153458.0	0.273421	Υ
4	IC 240-524416/6	6.25	1.485005	28.9	1212122.0	0.237601	Υ
5	IC 240-524416/7	12.5	2.837953	28.9	1274350.0	0.227036	Υ
6	ICIS 240-524416/8	25.0	5.622247	28.9	1311546.0	0.22489	Υ
7	IC 240-524416/9	37.5	6.584706	28.9	1356842.0	0.175592	Υ
8	IC 240-524416/10	50.0	7.842865	28.9	1412270.0	0.156857	Υ
9	IC 240-524416/11	62.5	8.827063	28.9	1434025.0	0.141233	N

Calibration / Trichlorofluoromethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.4379

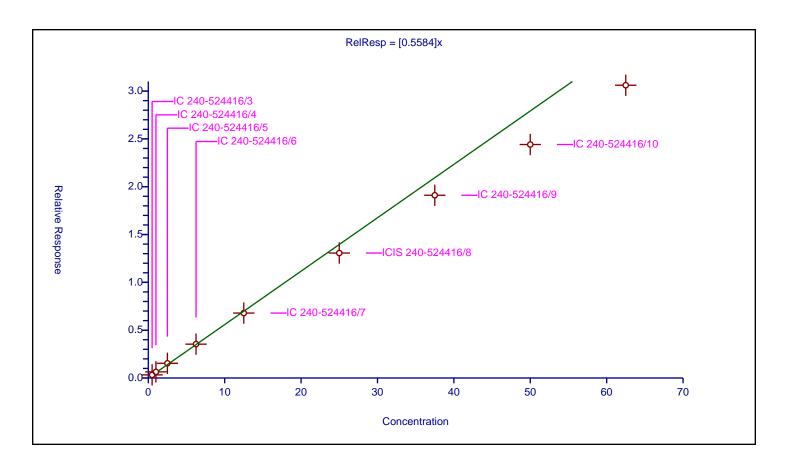
Error Coefficients

Standard Error:637000Relative Standard Error:8.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.222574	28.9	1127312.0	0.445147	Υ
2	IC 240-524416/4	1.0	0.481731	28.9	1156405.0	0.481731	Υ
3	IC 240-524416/5	2.5	1.244136	28.9	1153458.0	0.497654	Υ
4	IC 240-524416/6	6.25	2.888326	28.9	1212122.0	0.462132	Υ
5	IC 240-524416/7	12.5	5.446358	28.9	1274350.0	0.435709	Υ
6	ICIS 240-524416/8	25.0	10.519055	28.9	1311546.0	0.420762	Υ
7	IC 240-524416/9	37.5	15.324066	28.9	1356842.0	0.408642	Υ
8	IC 240-524416/10	50.0	19.786494	28.9	1412270.0	0.39573	Υ
9	IC 240-524416/11	62.5	24.57749	28.9	1434025.0	0.39324	Υ

Calibration / Dichlorofluoromethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.5584

Curve Coefficients

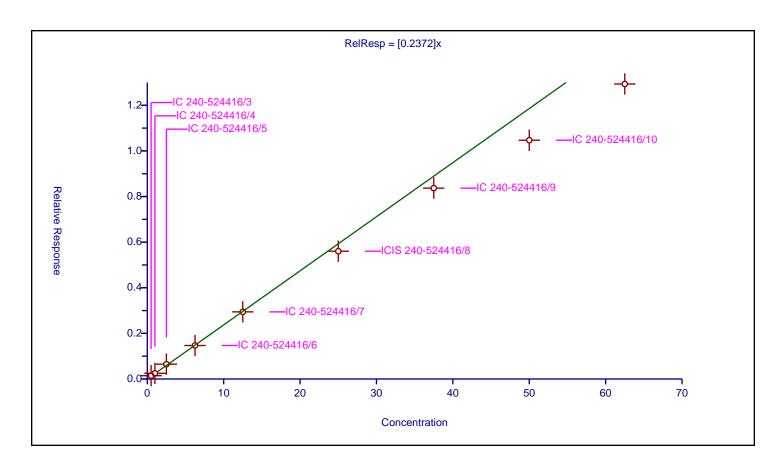
Error Coefficients

Standard Error:791000Relative Standard Error:11.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.982

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.325195	28.9	1127312.0	0.65039	Υ
2	IC 240-524416/4	1.0	0.64135	28.9	1156405.0	0.64135	Υ
3	IC 240-524416/5	2.5	1.536278	28.9	1153458.0	0.614511	Υ
4	IC 240-524416/6	6.25	3.538129	28.9	1212122.0	0.566101	Υ
5	IC 240-524416/7	12.5	6.788433	28.9	1274350.0	0.543075	Υ
6	ICIS 240-524416/8	25.0	13.066	28.9	1311546.0	0.52264	Υ
7	IC 240-524416/9	37.5	19.105231	28.9	1356842.0	0.509473	Υ
8	IC 240-524416/10	50.0	24.411432	28.9	1412270.0	0.488229	Υ
9	IC 240-524416/11	62.5	30.610149	28.9	1434025.0	0.489762	Υ

Calibration / Ethyl ether

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2372

Curve Coefficients

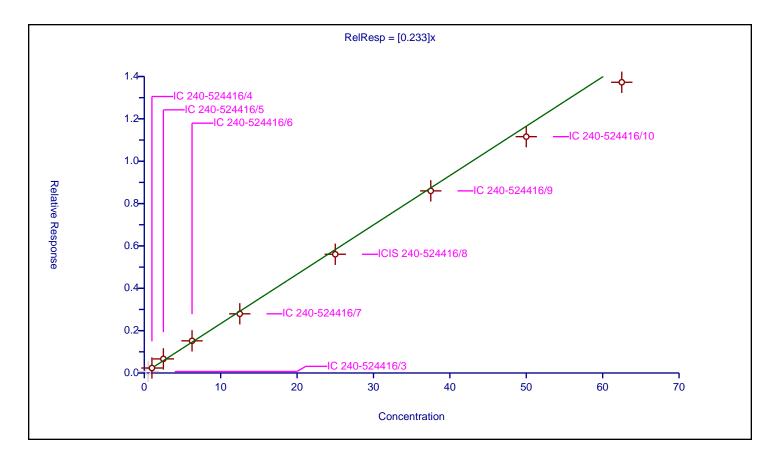
Error Coefficients

Standard Error:338000Relative Standard Error:11.1Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.982

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.144921	28.9	1127312.0	0.289843	Υ
2	IC 240-524416/4	1.0	0.250937	28.9	1156405.0	0.250937	Υ
3	IC 240-524416/5	2.5	0.649403	28.9	1153458.0	0.259761	Υ
4	IC 240-524416/6	6.25	1.468339	28.9	1212122.0	0.234934	Υ
5	IC 240-524416/7	12.5	2.943135	28.9	1274350.0	0.235451	Υ
6	ICIS 240-524416/8	25.0	5.602856	28.9	1311546.0	0.224114	Υ
7	IC 240-524416/9	37.5	8.367301	28.9	1356842.0	0.223128	Υ
8	IC 240-524416/10	50.0	10.469807	28.9	1412270.0	0.209396	Υ
9	IC 240-524416/11	62.5	12.935265	28.9	1434025.0	0.206964	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


 Intercept:
 0

 Slope:
 0.233

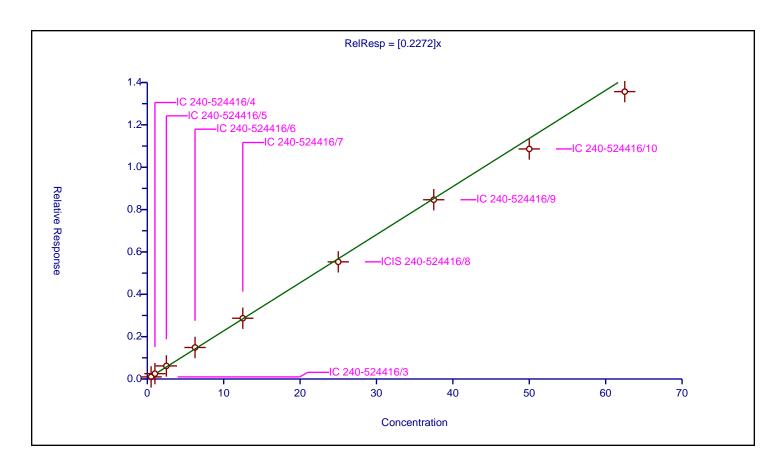
Error Coefficients

Standard Error:380000Relative Standard Error:6.6Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.0695	28.9	1127312.0	0.138999	N
2	IC 240-524416/4	1.0	0.235343	28.9	1156405.0	0.235343	Υ
3	IC 240-524416/5	2.5	0.665138	28.9	1153458.0	0.266055	Υ
4	IC 240-524416/6	6.25	1.518838	28.9	1212122.0	0.243014	Υ
5	IC 240-524416/7	12.5	2.794661	28.9	1274350.0	0.223573	Υ
6	ICIS 240-524416/8	25.0	5.606403	28.9	1311546.0	0.224256	Υ
7	IC 240-524416/9	37.5	8.599081	28.9	1356842.0	0.229309	Υ
8	IC 240-524416/10	50.0	11.158997	28.9	1412270.0	0.22318	Υ
9	IC 240-524416/11	62.5	13.728168	28.9	1434025.0	0.219651	Υ

Calibration / 1,1-Dichloroethene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2272

Curve Coefficients

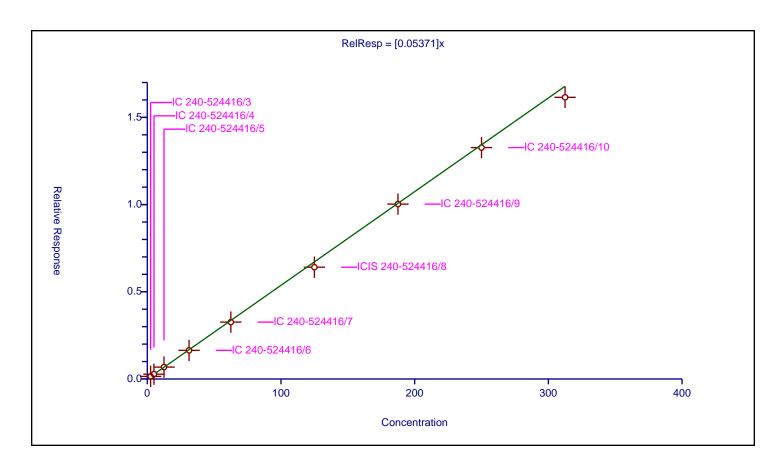
Error Coefficients

Standard Error:349000Relative Standard Error:7.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.09852	28.9	1127312.0	0.19704	Υ
2	IC 240-524416/4	1.0	0.251737	28.9	1156405.0	0.251737	Υ
3	IC 240-524416/5	2.5	0.617408	28.9	1153458.0	0.246963	Υ
4	IC 240-524416/6	6.25	1.488057	28.9	1212122.0	0.238089	Υ
5	IC 240-524416/7	12.5	2.868728	28.9	1274350.0	0.229498	Υ
6	ICIS 240-524416/8	25.0	5.530537	28.9	1311546.0	0.221221	Υ
7	IC 240-524416/9	37.5	8.464149	28.9	1356842.0	0.225711	Υ
8	IC 240-524416/10	50.0	10.86287	28.9	1412270.0	0.217257	Υ
9	IC 240-524416/11	62.5	13.569684	28.9	1434025.0	0.217115	Υ

Calibration / Acrolein

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.05371

Curve Coefficients

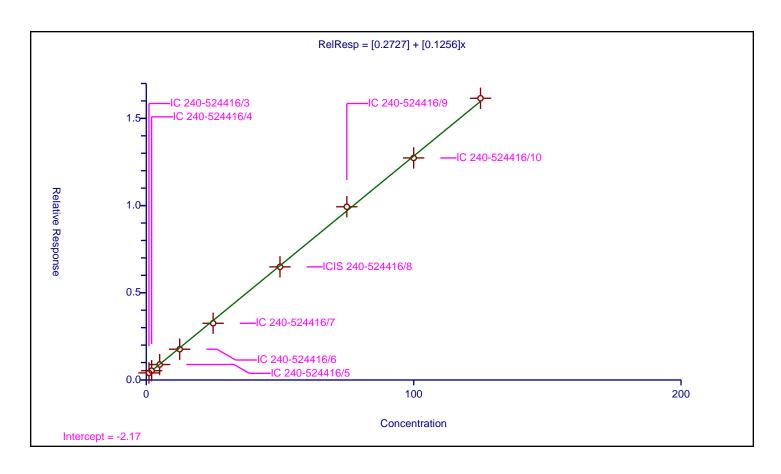
Error Coefficients

Standard Error:418000Relative Standard Error:4.6Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	2.5	0.148562	28.9	1127312.0	0.059425	Υ
2	IC 240-524416/4	5.0	0.275953	28.9	1156405.0	0.055191	Υ
3	IC 240-524416/5	12.5	0.681774	28.9	1153458.0	0.054542	Υ
4	IC 240-524416/6	31.25	1.64165	28.9	1212122.0	0.052533	Υ
5	IC 240-524416/7	62.5	3.26224	28.9	1274350.0	0.052196	Υ
6	ICIS 240-524416/8	125.0	6.40989	28.9	1311546.0	0.051279	Υ
7	IC 240-524416/9	187.5	10.028573	28.9	1356842.0	0.053486	Υ
8	IC 240-524416/10	250.0	13.26901	28.9	1412270.0	0.053076	Υ
9	IC 240-524416/11	312.5	16.150828	28.9	1434025.0	0.051683	Υ

Calibration / Acetone

Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0.2727
Slope:	0.1256

Curve Coefficients

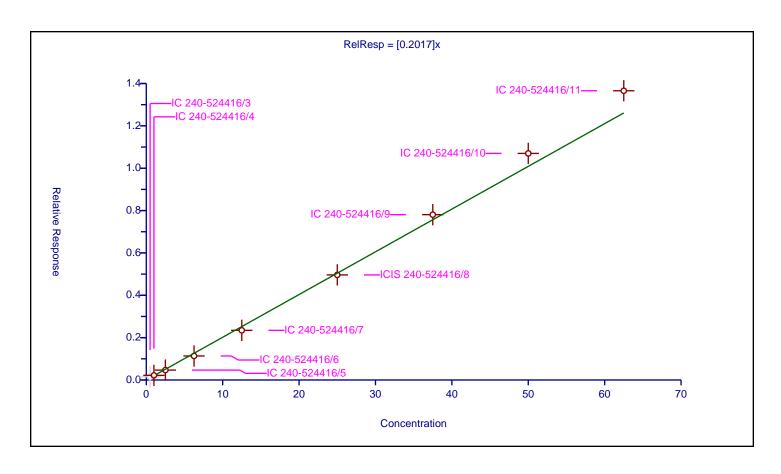
Error Coefficients

Standard Error:441000Relative Standard Error:4.4Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	1.0	0.407641	28.9	1127312.0	0.407641	Υ
2	IC 240-524416/4	2.0	0.532588	28.9	1156405.0	0.266294	Υ
3	IC 240-524416/5	5.0	0.886199	28.9	1153458.0	0.17724	Υ
4	IC 240-524416/6	12.5	1.764558	28.9	1212122.0	0.141165	Υ
5	IC 240-524416/7	25.0	3.251468	28.9	1274350.0	0.130059	Υ
6	ICIS 240-524416/8	50.0	6.487145	28.9	1311546.0	0.129743	Υ
7	IC 240-524416/9	75.0	9.932853	28.9	1356842.0	0.132438	Υ
8	IC 240-524416/10	100.0	12.731475	28.9	1412270.0	0.127315	Υ
9	IC 240-524416/11	125.0	16.152964	28.9	1434025.0	0.129224	Υ

Calibration / Iodomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2017

Curve Coefficients

Error Coefficients

Standard Error:	365000
Relative Standard Error:	7.5
Correlation Coefficient:	0.995
Coefficient of Determination (Adjusted):	0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.150638	28.9	1127312.0	0.301277	N
2	IC 240-524416/4	1.0	0.218673	28.9	1156405.0	0.218673	Υ
3	IC 240-524416/5	2.5	0.467729	28.9	1153458.0	0.187091	Υ
4	IC 240-524416/6	6.25	1.133996	28.9	1212122.0	0.181439	Υ
5	IC 240-524416/7	12.5	2.344747	28.9	1274350.0	0.18758	Υ
6	ICIS 240-524416/8	25.0	4.961988	28.9	1311546.0	0.19848	Υ
7	IC 240-524416/9	37.5	7.806784	28.9	1356842.0	0.208181	Υ
8	IC 240-524416/10	50.0	10.699284	28.9	1412270.0	0.213986	Υ
9	IC 240-524416/11	62.5	13.657471	28.9	1434025.0	0.21852	Υ

Calibration / Carbon disulfide

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.7226

Curve Coefficients

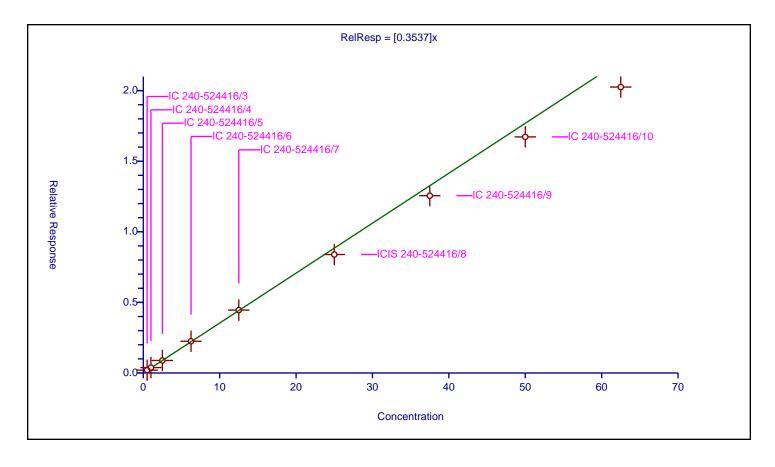
Error Coefficients

Standard Error:1070000Relative Standard Error:7.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.401181	28.9	1127312.0	0.802362	Υ
2	IC 240-524416/4	1.0	0.779602	28.9	1156405.0	0.779602	Υ
3	IC 240-524416/5	2.5	1.950639	28.9	1153458.0	0.780256	Υ
4	IC 240-524416/6	6.25	4.597022	28.9	1212122.0	0.735523	Υ
5	IC 240-524416/7	12.5	8.792326	28.9	1274350.0	0.703386	Υ
6	ICIS 240-524416/8	25.0	17.253477	28.9	1311546.0	0.690139	Υ
7	IC 240-524416/9	37.5	25.808788	28.9	1356842.0	0.688234	Υ
8	IC 240-524416/10	50.0	33.149186	28.9	1412270.0	0.662984	Υ
9	IC 240-524416/11	62.5	41.320193	28.9	1434025.0	0.661123	Υ

Calibration /3-Chloro-1-propene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3537

Curve Coefficients

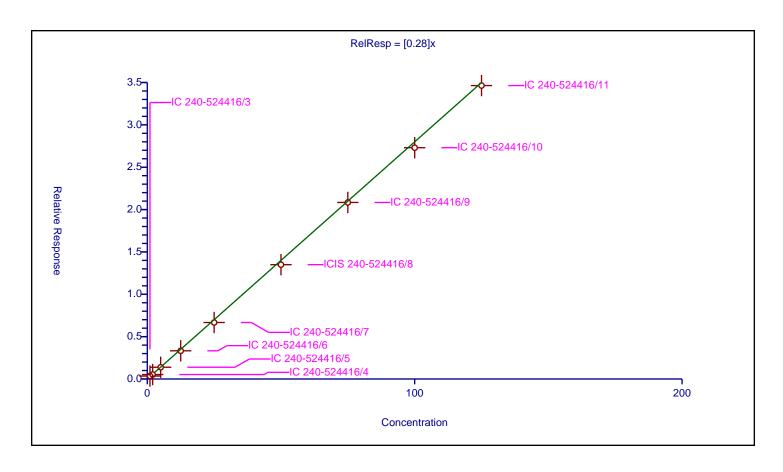
Error Coefficients

Standard Error:527000Relative Standard Error:7.0Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.199475	28.9	1127312.0	0.398951	Υ
2	IC 240-524416/4	1.0	0.38454	28.9	1156405.0	0.38454	Υ
3	IC 240-524416/5	2.5	0.886875	28.9	1153458.0	0.35475	Υ
4	IC 240-524416/6	6.25	2.247798	28.9	1212122.0	0.359648	Υ
5	IC 240-524416/7	12.5	4.456022	28.9	1274350.0	0.356482	Υ
6	ICIS 240-524416/8	25.0	8.39104	28.9	1311546.0	0.335642	Υ
7	IC 240-524416/9	37.5	12.558225	28.9	1356842.0	0.334886	Υ
8	IC 240-524416/10	50.0	16.722902	28.9	1412270.0	0.334458	Υ
9	IC 240-524416/11	62.5	20.254093	28.9	1434025.0	0.324065	Υ

Calibration / Methyl acetate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.28

Curve Coefficients

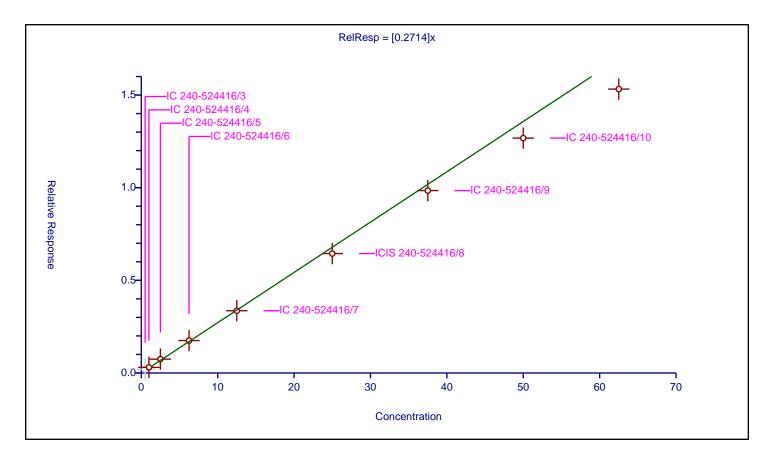
Error Coefficients

Standard Error:879000Relative Standard Error:9.5Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.987

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	1.0	0.349165	28.9	1127312.0	0.349165	Υ
2	IC 240-524416/4	2.0	0.524216	28.9	1156405.0	0.262108	Υ
3	IC 240-524416/5	5.0	1.387651	28.9	1153458.0	0.27753	Υ
4	IC 240-524416/6	12.5	3.328554	28.9	1212122.0	0.266284	Υ
5	IC 240-524416/7	25.0	6.668442	28.9	1274350.0	0.266738	Υ
6	ICIS 240-524416/8	50.0	13.495243	28.9	1311546.0	0.269905	Υ
7	IC 240-524416/9	75.0	20.839774	28.9	1356842.0	0.277864	Υ
8	IC 240-524416/10	100.0	27.302905	28.9	1412270.0	0.273029	Υ
9	IC 240-524416/11	125.0	34.638646	28.9	1434025.0	0.277109	Υ

Calibration / Methylene Chloride

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2714

Curve Coefficients

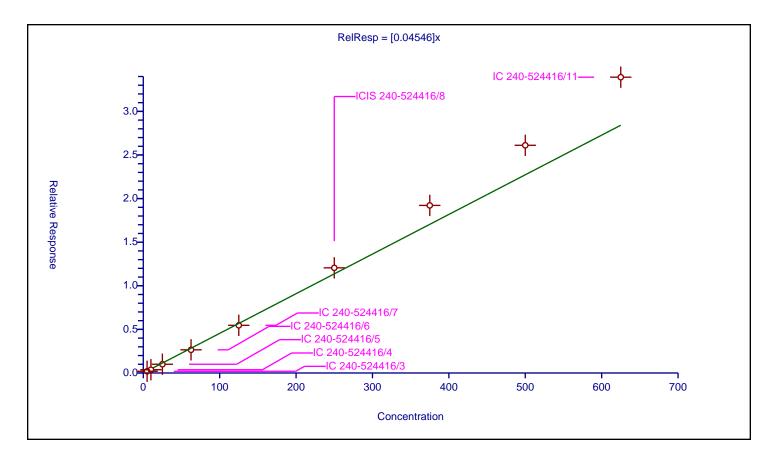
Error Coefficients

Standard Error:429000Relative Standard Error:7.9Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.198296	28.9	1127312.0	0.396592	N
2	IC 240-524416/4	1.0	0.304293	28.9	1156405.0	0.304293	Υ
3	IC 240-524416/5	2.5	0.747794	28.9	1153458.0	0.299118	Υ
4	IC 240-524416/6	6.25	1.751135	28.9	1212122.0	0.280182	Υ
5	IC 240-524416/7	12.5	3.36012	28.9	1274350.0	0.26881	Υ
6	ICIS 240-524416/8	25.0	6.444904	28.9	1311546.0	0.257796	Υ
7	IC 240-524416/9	37.5	9.844993	28.9	1356842.0	0.262533	Υ
8	IC 240-524416/10	50.0	12.676776	28.9	1412270.0	0.253536	Υ
9	IC 240-524416/11	62.5	15.321005	28.9	1434025.0	0.245136	Υ

Calibration / 2-Methyl-2-propanol

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.04546

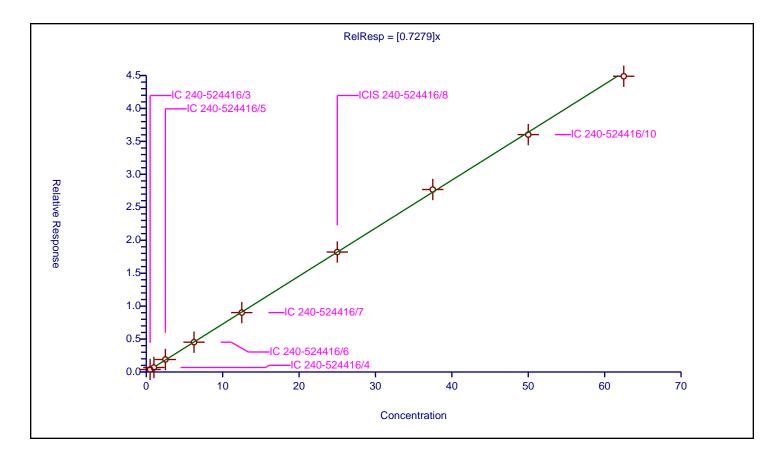
Curve Coefficients

Error Coefficients

Standard Error:840000Relative Standard Error:13.6Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.979

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	5.0	0.195732	28.9	1127312.0	0.039146	Υ
2	IC 240-524416/4	10.0	0.375868	28.9	1156405.0	0.037587	Υ
3	IC 240-524416/5	25.0	1.003281	28.9	1153458.0	0.040131	Υ
4	IC 240-524416/6	62.5	2.658628	28.9	1212122.0	0.042538	Υ
5	IC 240-524416/7	125.0	5.467653	28.9	1274350.0	0.043741	Υ
6	ICIS 240-524416/8	250.0	12.057873	28.9	1311546.0	0.048231	Υ
7	IC 240-524416/9	375.0	19.217628	28.9	1356842.0	0.051247	Υ
8	IC 240-524416/10	500.0	26.111847	28.9	1412270.0	0.052224	Υ
9	IC 240-524416/11	625.0	33.921459	28.9	1434025.0	0.054274	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

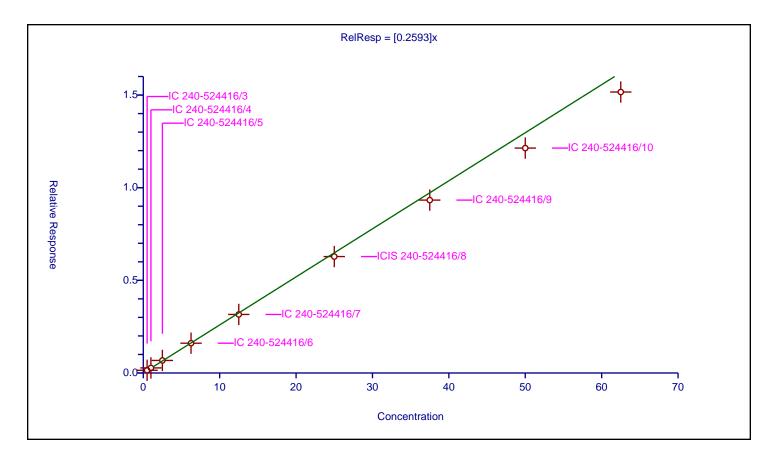

Curve Coefficients

Intercept:	0
Slope:	0.7279

Error Coefficients

Standard Error:1150000Relative Standard Error:3.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.379672	28.9	1127312.0	0.759344	Υ
2	IC 240-524416/4	1.0	0.682811	28.9	1156405.0	0.682811	Υ
3	IC 240-524416/5	2.5	1.896044	28.9	1153458.0	0.758418	Υ
4	IC 240-524416/6	6.25	4.523682	28.9	1212122.0	0.723789	Υ
5	IC 240-524416/7	12.5	9.012849	28.9	1274350.0	0.721028	Υ
6	ICIS 240-524416/8	25.0	18.204004	28.9	1311546.0	0.72816	Υ
7	IC 240-524416/9	37.5	27.694919	28.9	1356842.0	0.738531	Υ
8	IC 240-524416/10	50.0	36.031226	28.9	1412270.0	0.720625	Υ
9	IC 240-524416/11	62.5	44.886117	28.9	1434025.0	0.718178	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.2593

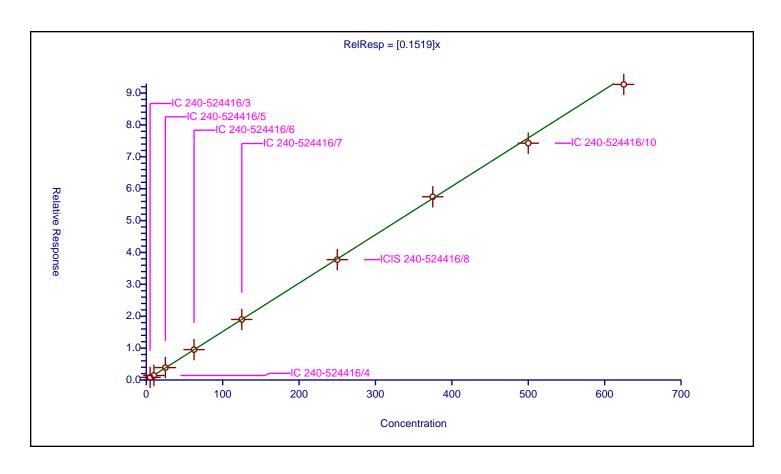
Error Coefficients

Standard Error:390000Relative Standard Error:6.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.146588	28.9	1127312.0	0.293176	Υ
2	IC 240-524416/4	1.0	0.274379	28.9	1156405.0	0.274379	Υ
3	IC 240-524416/5	2.5	0.677114	28.9	1153458.0	0.270846	Υ
4	IC 240-524416/6	6.25	1.607889	28.9	1212122.0	0.257262	Υ
5	IC 240-524416/7	12.5	3.159236	28.9	1274350.0	0.252739	Υ
6	ICIS 240-524416/8	25.0	6.283541	28.9	1311546.0	0.251342	Υ
7	IC 240-524416/9	37.5	9.329887	28.9	1356842.0	0.248797	Υ
8	IC 240-524416/10	50.0	12.137214	28.9	1412270.0	0.242744	Υ
9	IC 240-524416/11	62.5	15.162562	28.9	1434025.0	0.242601	Υ

Calibration / Acrylonitrile

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1519

Curve Coefficients

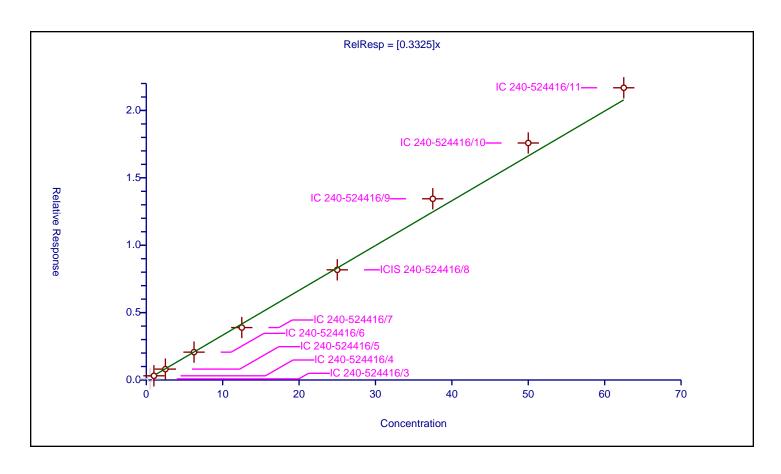
Error Coefficients

Standard Error:2380000Relative Standard Error:3.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	5.0	0.817359	28.9	1127312.0	0.163472	Υ
2	IC 240-524416/4	10.0	1.421802	28.9	1156405.0	0.14218	Υ
3	IC 240-524416/5	25.0	3.891633	28.9	1153458.0	0.155665	Υ
4	IC 240-524416/6	62.5	9.526575	28.9	1212122.0	0.152425	Υ
5	IC 240-524416/7	125.0	18.985668	28.9	1274350.0	0.151885	Υ
6	ICIS 240-524416/8	250.0	37.75684	28.9	1311546.0	0.151027	Υ
7	IC 240-524416/9	375.0	57.473011	28.9	1356842.0	0.153261	Υ
8	IC 240-524416/10	500.0	74.280512	28.9	1412270.0	0.148561	Υ
9	IC 240-524416/11	625.0	92.713151	28.9	1434025.0	0.148341	Υ

Calibration / Hexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3325

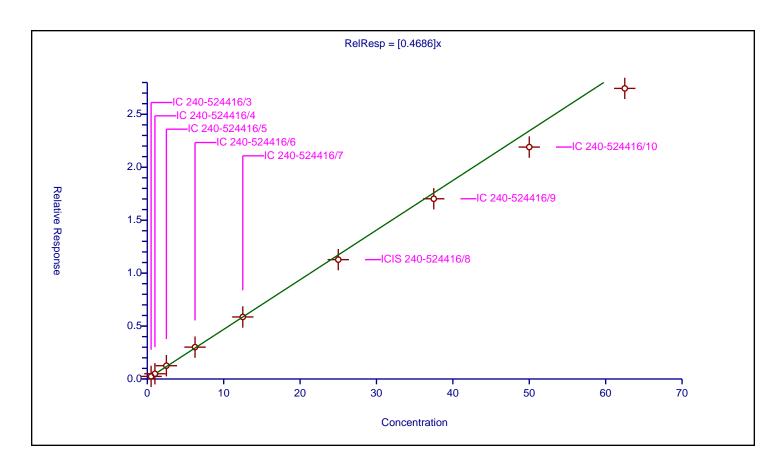
Curve Coefficients

Error Coefficients

Standard Error:594000Relative Standard Error:5.4Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.082369	28.9	1127312.0	0.164738	N
2	IC 240-524416/4	1.0	0.311066	28.9	1156405.0	0.311066	Υ
3	IC 240-524416/5	2.5	0.808152	28.9	1153458.0	0.323261	Υ
4	IC 240-524416/6	6.25	2.066428	28.9	1212122.0	0.330629	Υ
5	IC 240-524416/7	12.5	3.889452	28.9	1274350.0	0.311156	Υ
6	ICIS 240-524416/8	25.0	8.174678	28.9	1311546.0	0.326987	Υ
7	IC 240-524416/9	37.5	13.447179	28.9	1356842.0	0.358591	Υ
8	IC 240-524416/10	50.0	17.585828	28.9	1412270.0	0.351717	Υ
9	IC 240-524416/11	62.5	21.68359	28.9	1434025.0	0.346937	Υ

Calibration / 1,1-Dichloroethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

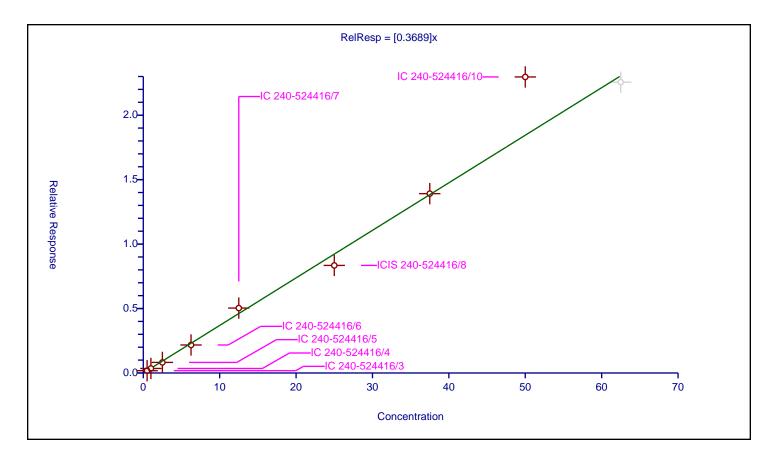
Curve (Coefficients
Intercept:	0
Slope:	0.4686

Error Coefficients

Standard Error:706000Relative Standard Error:5.2Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.244903	28.9	1127312.0	0.489805	Υ
2	IC 240-524416/4	1.0	0.493877	28.9	1156405.0	0.493877	Υ
3	IC 240-524416/5	2.5	1.254759	28.9	1153458.0	0.501904	Υ
4	IC 240-524416/6	6.25	3.009613	28.9	1212122.0	0.481538	Υ
5	IC 240-524416/7	12.5	5.858943	28.9	1274350.0	0.468715	Υ
6	ICIS 240-524416/8	25.0	11.271971	28.9	1311546.0	0.450879	Υ
7	IC 240-524416/9	37.5	17.019758	28.9	1356842.0	0.45386	Υ
8	IC 240-524416/10	50.0	21.903199	28.9	1412270.0	0.438064	Υ
9	IC 240-524416/11	62.5	27.443699	28.9	1434025.0	0.439099	Υ

Calibration / Vinyl acetate

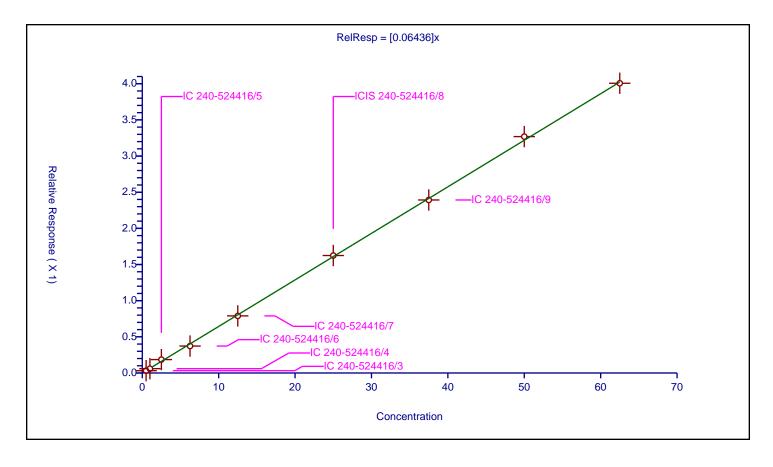

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.3689

Curve Coefficients

Standard Error:	519000
Relative Standard Error:	11.7
Correlation Coefficient:	0.968
Coefficient of Determination (Adjusted):	0.983

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.178402	28.9	1127312.0	0.356805	Υ
2	IC 240-524416/4	1.0	0.351577	28.9	1156405.0	0.351577	Υ
3	IC 240-524416/5	2.5	0.820229	28.9	1153458.0	0.328091	Υ
4	IC 240-524416/6	6.25	2.172384	28.9	1212122.0	0.347581	Υ
5	IC 240-524416/7	12.5	5.037175	28.9	1274350.0	0.402974	Υ
6	ICIS 240-524416/8	25.0	8.344965	28.9	1311546.0	0.333799	Υ
7	IC 240-524416/9	37.5	13.9127	28.9	1356842.0	0.371005	Υ
8	IC 240-524416/10	50.0	22.966073	28.9	1412270.0	0.459321	Υ
9	IC 240-524416/11	62.5	22.562304	28.9	1434025.0	0.360997	N


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

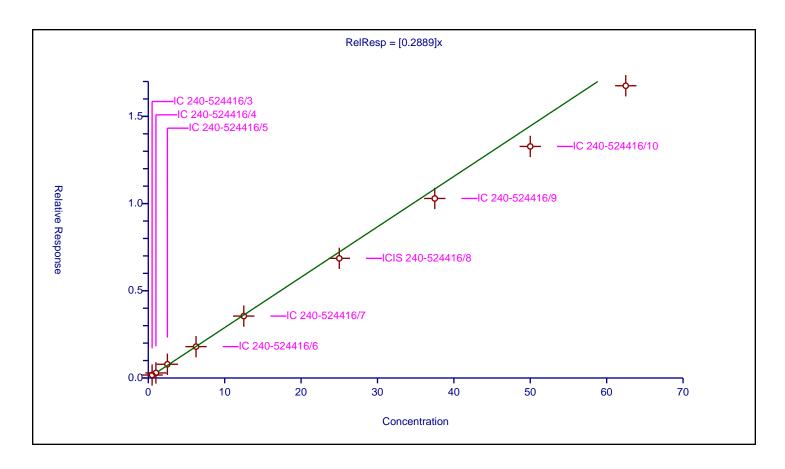
Curve Coefficients	
Intercept:	0
Slope:	0.06436

Error Coefficients

Standard Error:103000Relative Standard Error:6.5Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.032071	28.9	1127312.0	0.064142	Υ
2	IC 240-524416/4	1.0	0.059879	28.9	1156405.0	0.059879	Υ
3	IC 240-524416/5	2.5	0.185458	28.9	1153458.0	0.074183	Υ
4	IC 240-524416/6	6.25	0.37273	28.9	1212122.0	0.059637	Υ
5	IC 240-524416/7	12.5	0.789656	28.9	1274350.0	0.063172	Υ
6	ICIS 240-524416/8	25.0	1.624403	28.9	1311546.0	0.064976	Υ
7	IC 240-524416/9	37.5	2.392653	28.9	1356842.0	0.063804	Υ
8	IC 240-524416/10	50.0	3.269005	28.9	1412270.0	0.06538	Υ
9	IC 240-524416/11	62.5	4.006429	28.9	1434025.0	0.064103	Υ

Calibration / cis-1,2-Dichloroethene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.2889

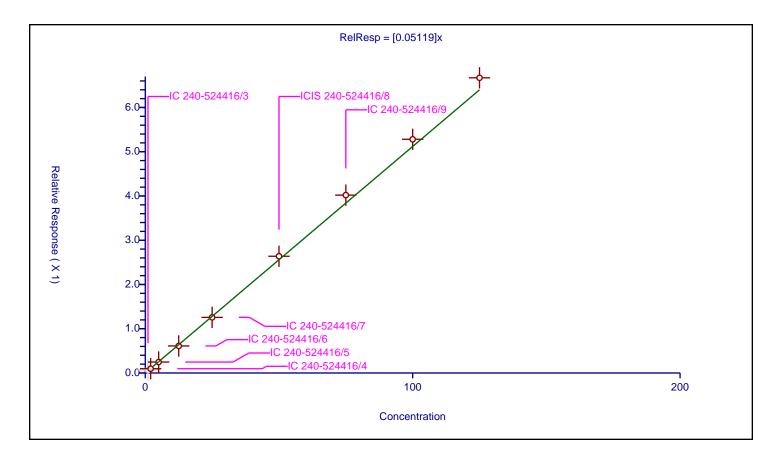
Error Coefficients

Standard Error:429000Relative Standard Error:8.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.170558	28.9	1127312.0	0.341115	Υ
2	IC 240-524416/4	1.0	0.289649	28.9	1156405.0	0.289649	Υ
3	IC 240-524416/5	2.5	0.787983	28.9	1153458.0	0.315193	Υ
4	IC 240-524416/6	6.25	1.79882	28.9	1212122.0	0.287811	Υ
5	IC 240-524416/7	12.5	3.550004	28.9	1274350.0	0.284	Υ
6	ICIS 240-524416/8	25.0	6.861366	28.9	1311546.0	0.274455	Υ
7	IC 240-524416/9	37.5	10.29356	28.9	1356842.0	0.274495	Υ
8	IC 240-524416/10	50.0	13.276397	28.9	1412270.0	0.265528	Υ
9	IC 240-524416/11	62.5	16.756952	28.9	1434025.0	0.268111	Υ

Calibration / 2-Butanone (MEK)

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.05119

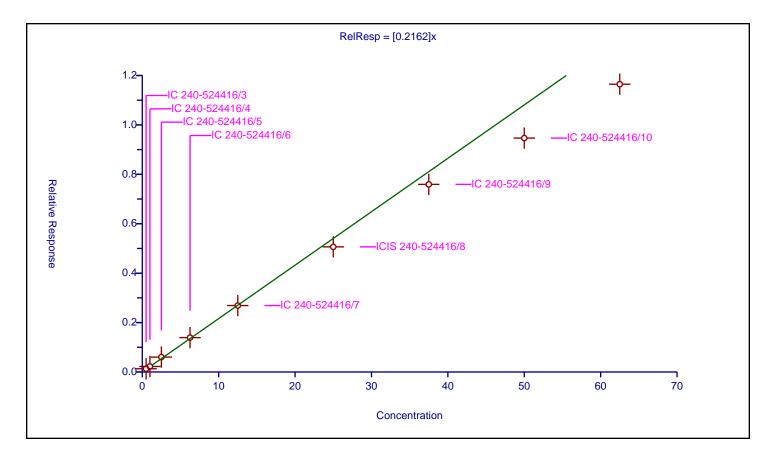
Curve Coefficients

Error Coefficients

Standard Error:181000Relative Standard Error:4.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	1.0	0.068602	28.9	1127312.0	0.068602	N
2	IC 240-524416/4	2.0	0.096566	28.9	1156405.0	0.048283	Υ
3	IC 240-524416/5	5.0	0.247544	28.9	1153458.0	0.049509	Υ
4	IC 240-524416/6	12.5	0.61125	28.9	1212122.0	0.0489	Υ
5	IC 240-524416/7	25.0	1.256941	28.9	1274350.0	0.050278	Υ
6	ICIS 240-524416/8	50.0	2.638214	28.9	1311546.0	0.052764	Υ
7	IC 240-524416/9	75.0	4.019719	28.9	1356842.0	0.053596	Υ
8	IC 240-524416/10	100.0	5.281386	28.9	1412270.0	0.052814	Υ
9	IC 240-524416/11	125.0	6.670886	28.9	1434025.0	0.053367	Υ

Calibration / Chlorobromomethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

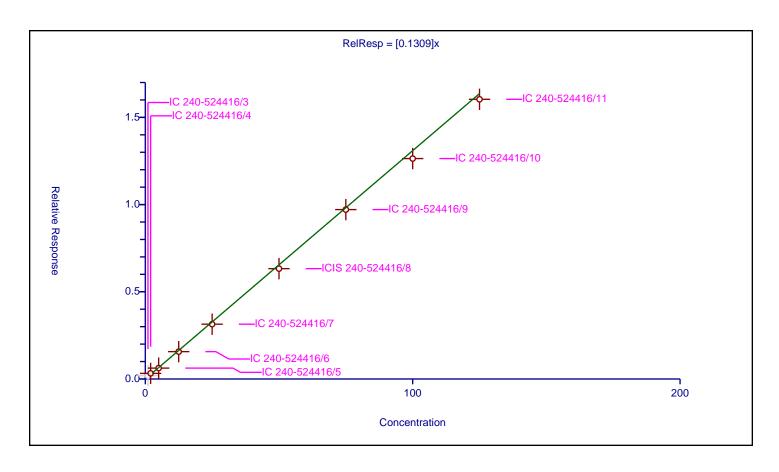
Curv	ve Coefficients
Intercept:	0
Slope:	0.2162

Error Coefficients

Standard Error:305000Relative Standard Error:11.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.982

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.131129	28.9	1127312.0	0.262258	Υ
2	IC 240-524416/4	1.0	0.223947	28.9	1156405.0	0.223947	Υ
3	IC 240-524416/5	2.5	0.602876	28.9	1153458.0	0.24115	Υ
4	IC 240-524416/6	6.25	1.391424	28.9	1212122.0	0.222628	Υ
5	IC 240-524416/7	12.5	2.689388	28.9	1274350.0	0.215151	Υ
6	ICIS 240-524416/8	25.0	5.064561	28.9	1311546.0	0.202582	Υ
7	IC 240-524416/9	37.5	7.594343	28.9	1356842.0	0.202516	Υ
8	IC 240-524416/10	50.0	9.466542	28.9	1412270.0	0.189331	Υ
9	IC 240-524416/11	62.5	11.647787	28.9	1434025.0	0.186365	Υ

Calibration / Tetrahydrofuran


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.1309

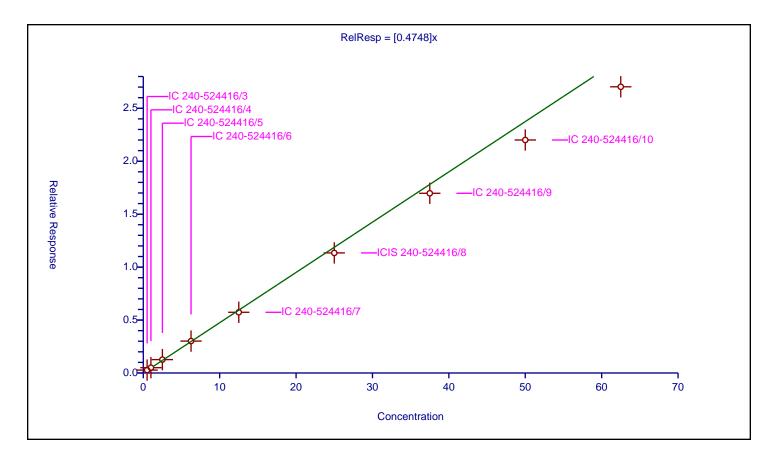
Curve Coefficients

Standard Error:	436000
Relative Standard Error:	9.2
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.988

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	1.0	0.189118	28.9	1127312.0	0.189118	N
2	IC 240-524416/4	2.0	0.321112	28.9	1156405.0	0.160556	Υ
3	IC 240-524416/5	5.0	0.624548	28.9	1153458.0	0.12491	Υ
4	IC 240-524416/6	12.5	1.568168	28.9	1212122.0	0.125453	Υ
5	IC 240-524416/7	25.0	3.14259	28.9	1274350.0	0.125704	Υ
6	ICIS 240-524416/8	50.0	6.326928	28.9	1311546.0	0.126539	Υ
7	IC 240-524416/9	75.0	9.713725	28.9	1356842.0	0.129516	Υ
8	IC 240-524416/10	100.0	12.638181	28.9	1412270.0	0.126382	Υ
9	IC 240-524416/11	125.0	16.036802	28.9	1434025.0	0.128294	Υ

Calibration / Chloroform

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.4748

Curve Coefficients

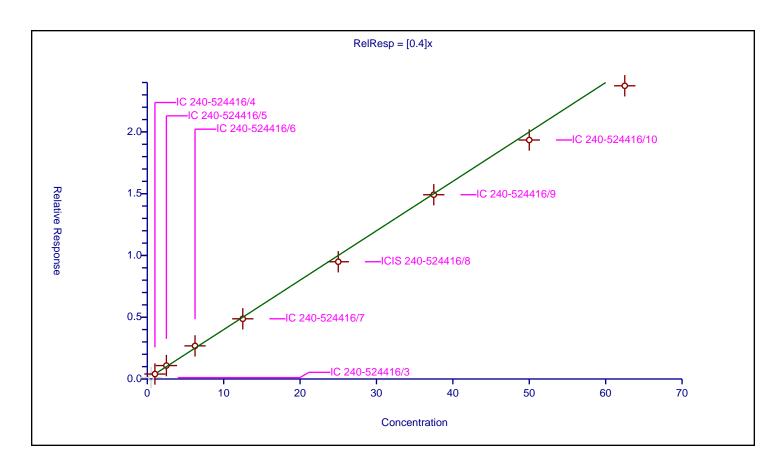
Error Coefficients

Standard Error:702000Relative Standard Error:7.9Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.274154	28.9	1127312.0	0.548307	Υ
2	IC 240-524416/4	1.0	0.50015	28.9	1156405.0	0.50015	Υ
3	IC 240-524416/5	2.5	1.264105	28.9	1153458.0	0.505642	Υ
4	IC 240-524416/6	6.25	3.012379	28.9	1212122.0	0.481981	Υ
5	IC 240-524416/7	12.5	5.734235	28.9	1274350.0	0.458739	Υ
6	ICIS 240-524416/8	25.0	11.339663	28.9	1311546.0	0.453587	Υ
7	IC 240-524416/9	37.5	16.971366	28.9	1356842.0	0.45257	Υ
8	IC 240-524416/10	50.0	22.004882	28.9	1412270.0	0.440098	Υ
9	IC 240-524416/11	62.5	27.028526	28.9	1434025.0	0.432456	Υ

Calibration / Cyclohexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.4

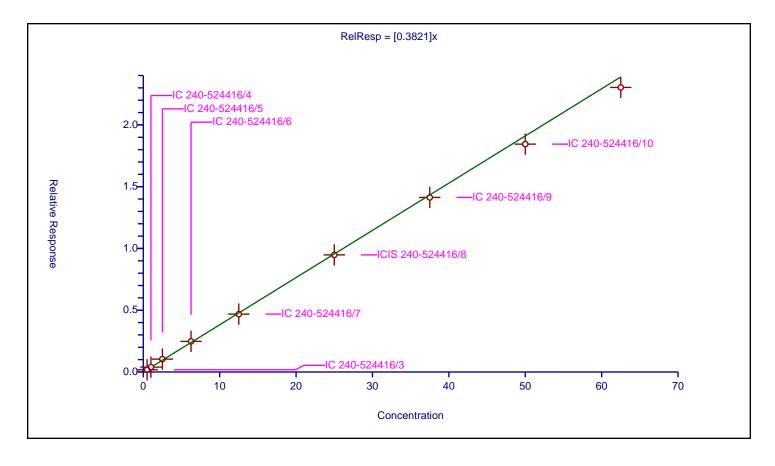
Curve Coefficients

Error Coefficients

Standard Error:657000Relative Standard Error:5.3Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.112492	28.9	1127312.0	0.224983	N
2	IC 240-524416/4	1.0	0.402034	28.9	1156405.0	0.402034	Υ
3	IC 240-524416/5	2.5	1.08674	28.9	1153458.0	0.434696	Υ
4	IC 240-524416/6	6.25	2.681183	28.9	1212122.0	0.428989	Υ
5	IC 240-524416/7	12.5	4.872553	28.9	1274350.0	0.389804	Υ
6	ICIS 240-524416/8	25.0	9.490855	28.9	1311546.0	0.379634	Υ
7	IC 240-524416/9	37.5	14.916181	28.9	1356842.0	0.397765	Υ
8	IC 240-524416/10	50.0	19.345465	28.9	1412270.0	0.386909	Υ
9	IC 240-524416/11	62.5	23.735696	28.9	1434025.0	0.379771	Υ

Calibration / 1,1,1-Trichloroethane

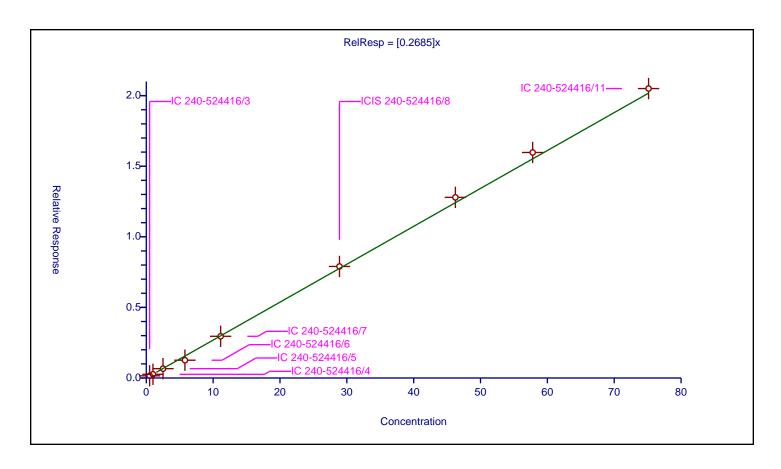

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.3821

Error Coefficients

Standard Error:592000Relative Standard Error:4.6Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.180684	28.9	1127312.0	0.361368	Υ
2	IC 240-524416/4	1.0	0.395911	28.9	1156405.0	0.395911	Υ
3	IC 240-524416/5	2.5	1.043144	28.9	1153458.0	0.417258	Υ
4	IC 240-524416/6	6.25	2.477425	28.9	1212122.0	0.396388	Υ
5	IC 240-524416/7	12.5	4.686388	28.9	1274350.0	0.374911	Υ
6	ICIS 240-524416/8	25.0	9.478691	28.9	1311546.0	0.379148	Υ
7	IC 240-524416/9	37.5	14.129656	28.9	1356842.0	0.376791	Υ
8	IC 240-524416/10	50.0	18.445725	28.9	1412270.0	0.368915	Υ
9	IC 240-524416/11	62.5	23.035438	28.9	1434025.0	0.368567	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients

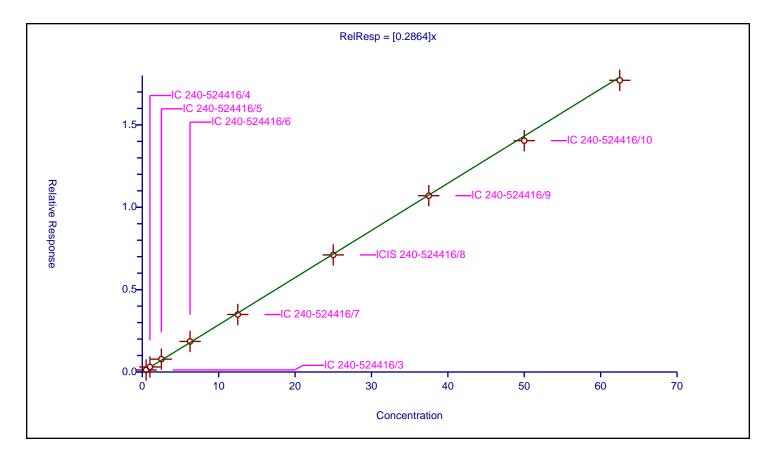
Intercept:	0
Slope:	0.2685

519000
8.7
0.999
0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.154176	28.9	1127312.0	0.308352	Υ
2	IC 240-524416/4	1.0	0.261358	28.9	1156405.0	0.261358	Υ
3	IC 240-524416/5	2.5	0.661054	28.9	1153458.0	0.264421	Υ
4	IC 240-524416/6	5.78	1.259098	28.9	1212122.0	0.217837	Υ
5	IC 240-524416/7	11.12	2.953159	28.9	1274350.0	0.265572	Υ
6	ICIS 240-524416/8	28.9	7.900209	28.9	1311546.0	0.273364	Υ
7	IC 240-524416/9	46.24	12.79303	28.9	1356842.0	0.276666	Υ
8	IC 240-524416/10	57.8	15.97314	28.9	1412270.0	0.276352	Υ
9	IC 240-524416/11	75.14	20.500767	28.9	1434025.0	0.272834	Υ

Calibration / Carbon tetrachloride

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2864

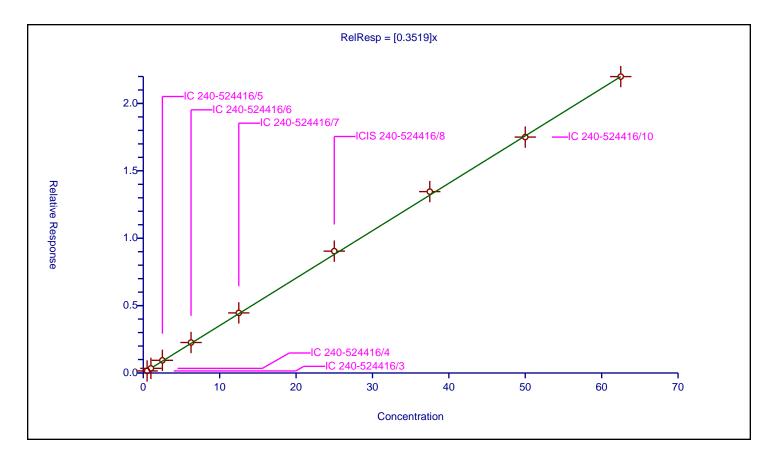
Curve Coefficients

Error Coefficients

Standard Error:451000Relative Standard Error:6.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.124592	28.9	1127312.0	0.249184	Υ
2	IC 240-524416/4	1.0	0.306193	28.9	1156405.0	0.306193	Υ
3	IC 240-524416/5	2.5	0.780566	28.9	1153458.0	0.312227	Υ
4	IC 240-524416/6	6.25	1.855875	28.9	1212122.0	0.29694	Υ
5	IC 240-524416/7	12.5	3.4912	28.9	1274350.0	0.279296	Υ
6	ICIS 240-524416/8	25.0	7.106991	28.9	1311546.0	0.28428	Υ
7	IC 240-524416/9	37.5	10.704426	28.9	1356842.0	0.285451	Υ
8	IC 240-524416/10	50.0	14.044761	28.9	1412270.0	0.280895	Υ
9	IC 240-524416/11	62.5	17.709688	28.9	1434025.0	0.283355	Υ

Calibration / 1,1-Dichloropropene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.3519

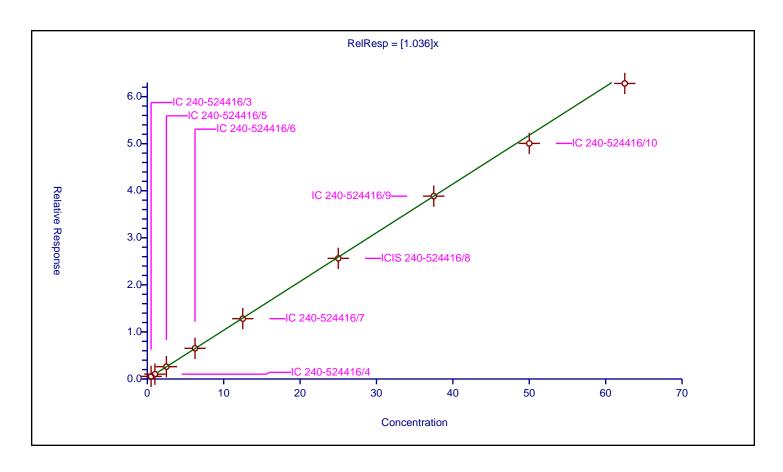
Error Coefficients

Standard Error:563000Relative Standard Error:5.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.153253	28.9	1127312.0	0.306506	Υ
2	IC 240-524416/4	1.0	0.34338	28.9	1156405.0	0.34338	Υ
3	IC 240-524416/5	2.5	0.940117	28.9	1153458.0	0.376047	Υ
4	IC 240-524416/6	6.25	2.262175	28.9	1212122.0	0.361948	Υ
5	IC 240-524416/7	12.5	4.458154	28.9	1274350.0	0.356652	Υ
6	ICIS 240-524416/8	25.0	9.042133	28.9	1311546.0	0.361685	Υ
7	IC 240-524416/9	37.5	13.458744	28.9	1356842.0	0.3589	Υ
8	IC 240-524416/10	50.0	17.505325	28.9	1412270.0	0.350106	Υ
9	IC 240-524416/11	62.5	21.993504	28.9	1434025.0	0.351896	Υ

Calibration / Benzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

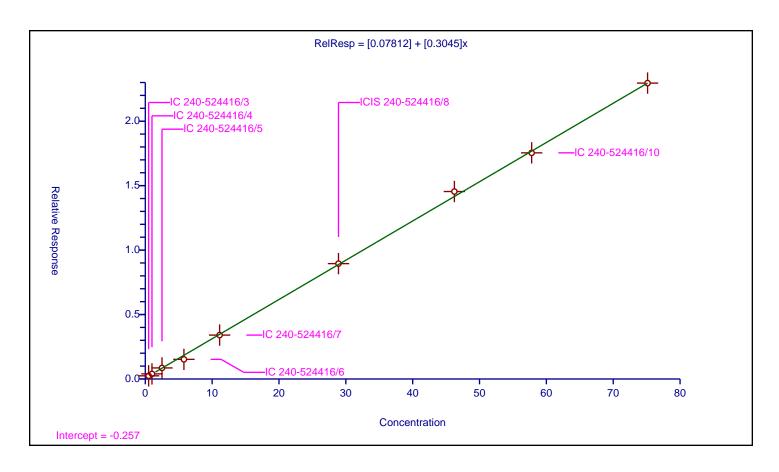

Intercept:	0
Slope:	1.036

Curve Coefficients

Error Coefficients

Standard Error:1610000Relative Standard Error:3.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.556613	28.9	1127312.0	1.113227	Υ
2	IC 240-524416/4	1.0	1.028215	28.9	1156405.0	1.028215	Υ
3	IC 240-524416/5	2.5	2.615326	28.9	1153458.0	1.04613	Υ
4	IC 240-524416/6	6.25	6.521373	28.9	1212122.0	1.04342	Υ
5	IC 240-524416/7	12.5	12.812451	28.9	1274350.0	1.024996	Υ
6	ICIS 240-524416/8	25.0	25.636387	28.9	1311546.0	1.025455	Υ
7	IC 240-524416/9	37.5	38.853216	28.9	1356842.0	1.036086	Υ
8	IC 240-524416/10	50.0	50.057263	28.9	1412270.0	1.001145	Υ
9	IC 240-524416/11	62.5	62.80183	28.9	1434025.0	1.004829	Υ


Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

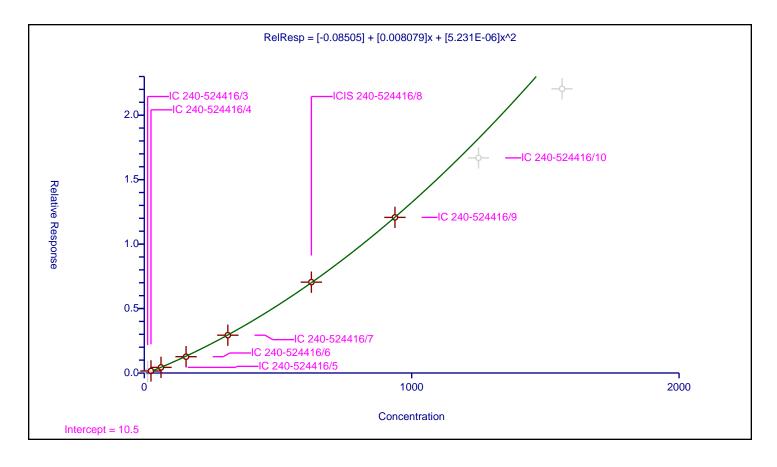
Curve	Coefficients
-------	--------------

Intercept:	0.07812
Slope:	0.3045

Standard Error:	620000
Relative Standard Error:	8.1
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.245723	28.9	1127312.0	0.491446	Υ
2	IC 240-524416/4	1.0	0.395336	28.9	1156405.0	0.395336	Υ
3	IC 240-524416/5	2.5	0.857962	28.9	1153458.0	0.343185	Υ
4	IC 240-524416/6	5.78	1.524131	28.9	1212122.0	0.26369	Υ
5	IC 240-524416/7	11.12	3.405113	28.9	1274350.0	0.306215	Υ
6	ICIS 240-524416/8	28.9	8.950004	28.9	1311546.0	0.309689	Υ
7	IC 240-524416/9	46.24	14.543739	28.9	1356842.0	0.314527	Υ
8	IC 240-524416/10	57.8	17.543284	28.9	1412270.0	0.303517	Υ
9	IC 240-524416/11	75.14	22.953274	28.9	1434025.0	0.305473	Υ

Calibration / Isobutyl alcohol


Curve Type:	Quadratic
Weighting:	None
Origin:	None
Dependency:	Response
Calib Mode:	ISTD
Response Base:	AREA
RF Rounding:	0

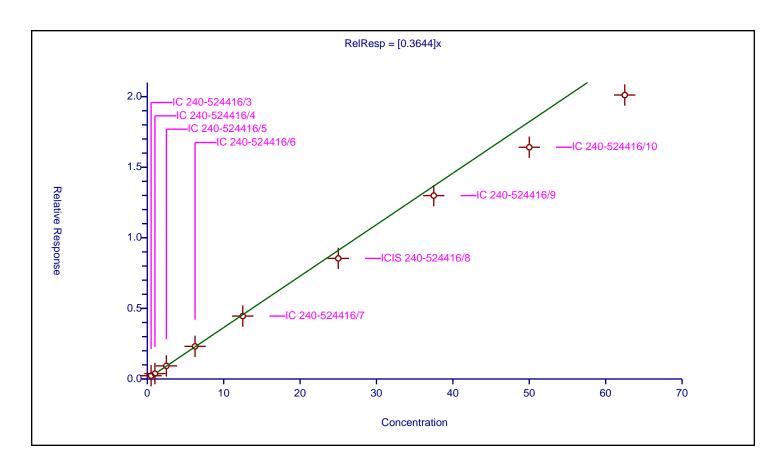
-0.08505
0.008079
5.231E-06

Curve Coefficients

Standard Error:	384000
Relative Standard Error:	10.4
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	12.5	0.098212	28.9	1127312.0	0.007857	N
2	IC 240-524416/4	25.0	0.15752	28.9	1156405.0	0.006301	Υ
3	IC 240-524416/5	62.5	0.436084	28.9	1153458.0	0.006977	Υ
4	IC 240-524416/6	156.25	1.264415	28.9	1212122.0	0.008092	Υ
5	IC 240-524416/7	312.5	2.932295	28.9	1274350.0	0.009383	Υ
6	ICIS 240-524416/8	625.0	7.047717	28.9	1311546.0	0.011276	Υ
7	IC 240-524416/9	937.5	12.071639	28.9	1356842.0	0.012876	Υ
8	IC 240-524416/10	1250.0	16.6866	28.9	1412270.0	0.013349	N
9	IC 240-524416/11	1562.5	22.043464	28.9	1434025.0	0.014108	N

Calibration / 1,2-Dichloroethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.3644

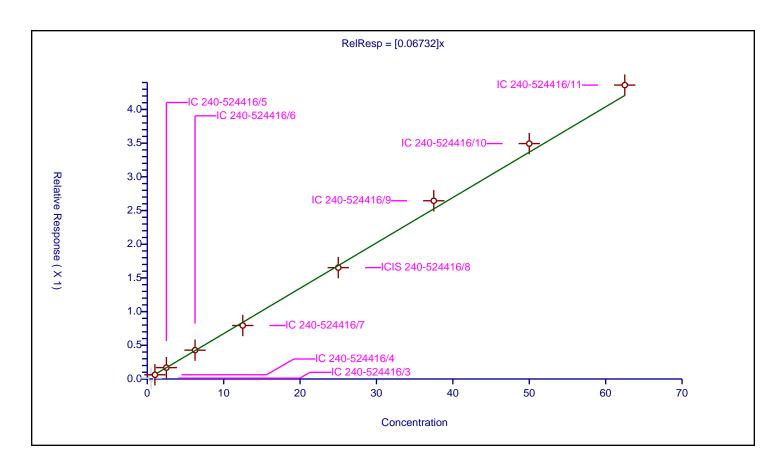
Curve Coefficients

Standard Error:	526000
Relative Standard Error:	11.6
Correlation Coefficient:	1.000
Coefficient of Determination (Adjusted):	0.980

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.231956	28.9	1127312.0	0.463913	Υ
2	IC 240-524416/4	1.0	0.380092	28.9	1156405.0	0.380092	Υ
3	IC 240-524416/5	2.5	0.928542	28.9	1153458.0	0.371417	Υ
4	IC 240-524416/6	6.25	2.309288	28.9	1212122.0	0.369486	Υ
5	IC 240-524416/7	12.5	4.45668	28.9	1274350.0	0.356534	Υ
6	ICIS 240-524416/8	25.0	8.540945	28.9	1311546.0	0.341638	Υ
7	IC 240-524416/9	37.5	12.988687	28.9	1356842.0	0.346365	Υ
8	IC 240-524416/10	50.0	16.41419	28.9	1412270.0	0.328284	Υ
9	IC 240-524416/11	62.5	20.113142	28.9	1434025.0	0.32181	Υ

Calibration / n-Heptane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.06732

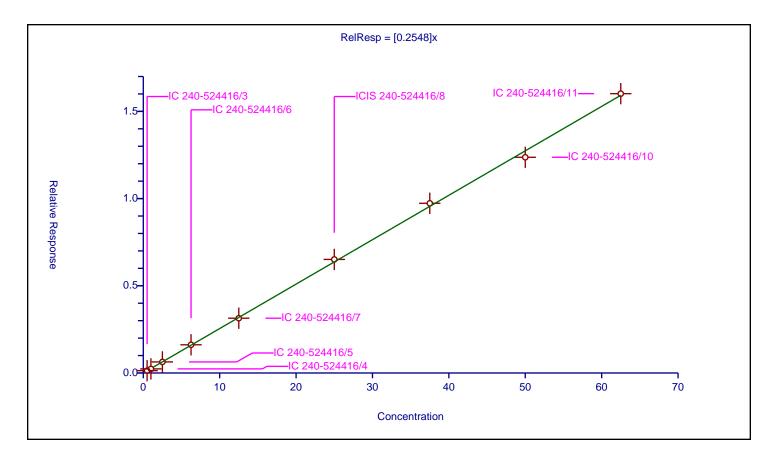
Curve Coefficients

Error Coefficients

Standard Error:119000Relative Standard Error:4.4Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.012485	28.9	1127312.0	0.02497	N
2	IC 240-524416/4	1.0	0.062853	28.9	1156405.0	0.062853	Υ
3	IC 240-524416/5	2.5	0.168621	28.9	1153458.0	0.067448	Υ
4	IC 240-524416/6	6.25	0.42783	28.9	1212122.0	0.068453	Υ
5	IC 240-524416/7	12.5	0.793987	28.9	1274350.0	0.063519	Υ
6	ICIS 240-524416/8	25.0	1.652762	28.9	1311546.0	0.06611	Υ
7	IC 240-524416/9	37.5	2.645158	28.9	1356842.0	0.070538	Υ
8	IC 240-524416/10	50.0	3.49353	28.9	1412270.0	0.069871	Υ
9	IC 240-524416/11	62.5	4.361426	28.9	1434025.0	0.069783	Υ

Calibration / Trichloroethene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.2548

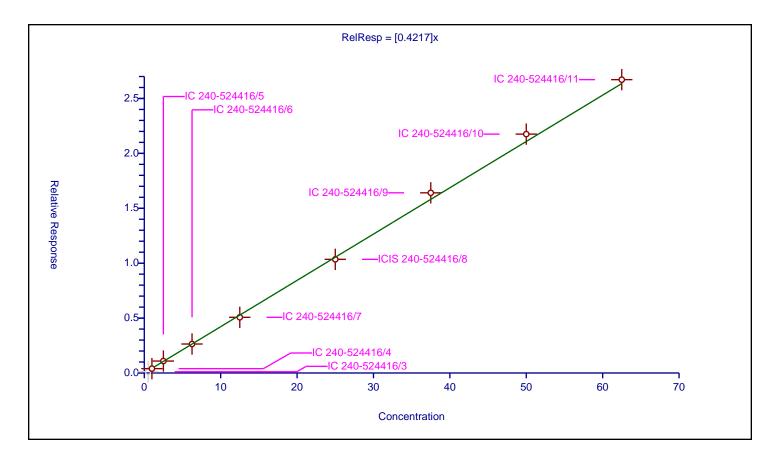
Curve Coefficients

Standard Error:	406000
Relative Standard Error:	3.9
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.135308	28.9	1127312.0	0.270616	Υ
2	IC 240-524416/4	1.0	0.234943	28.9	1156405.0	0.234943	Υ
3	IC 240-524416/5	2.5	0.63437	28.9	1153458.0	0.253748	Υ
4	IC 240-524416/6	6.25	1.616568	28.9	1212122.0	0.258651	Υ
5	IC 240-524416/7	12.5	3.141456	28.9	1274350.0	0.251316	Υ
6	ICIS 240-524416/8	25.0	6.511934	28.9	1311546.0	0.260477	Υ
7	IC 240-524416/9	37.5	9.729976	28.9	1356842.0	0.259466	Υ
8	IC 240-524416/10	50.0	12.368411	28.9	1412270.0	0.247368	Υ
9	IC 240-524416/11	62.5	16.015843	28.9	1434025.0	0.256253	Υ

Calibration / Methylcyclohexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

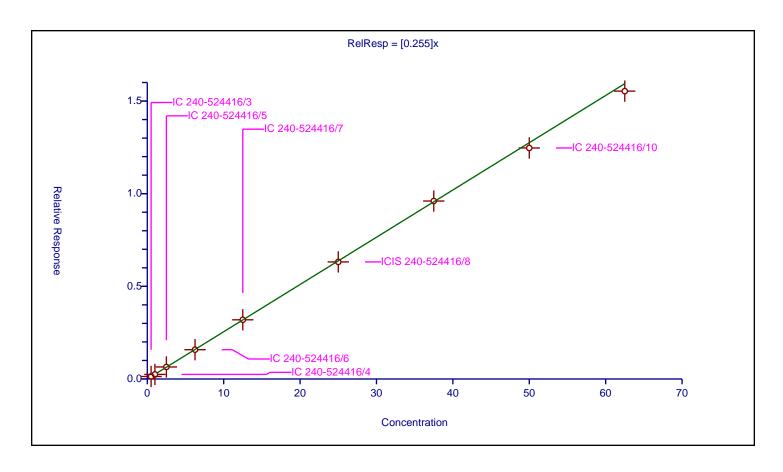

Intercept:	0
Slope:	0.4217

Curve Coefficients

Error Coefficients

Standard Error:733000Relative Standard Error:3.5Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.116337	28.9	1127312.0	0.232674	N
2	IC 240-524416/4	1.0	0.396836	28.9	1156405.0	0.396836	Υ
3	IC 240-524416/5	2.5	1.08704	28.9	1153458.0	0.434816	Υ
4	IC 240-524416/6	6.25	2.638862	28.9	1212122.0	0.422218	Υ
5	IC 240-524416/7	12.5	5.071578	28.9	1274350.0	0.405726	Υ
6	ICIS 240-524416/8	25.0	10.349098	28.9	1311546.0	0.413964	Υ
7	IC 240-524416/9	37.5	16.406675	28.9	1356842.0	0.437511	Υ
8	IC 240-524416/10	50.0	21.754572	28.9	1412270.0	0.435091	Υ
9	IC 240-524416/11	62.5	26.713292	28.9	1434025.0	0.427413	Υ


Calibration / 1,2-Dichloropropane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

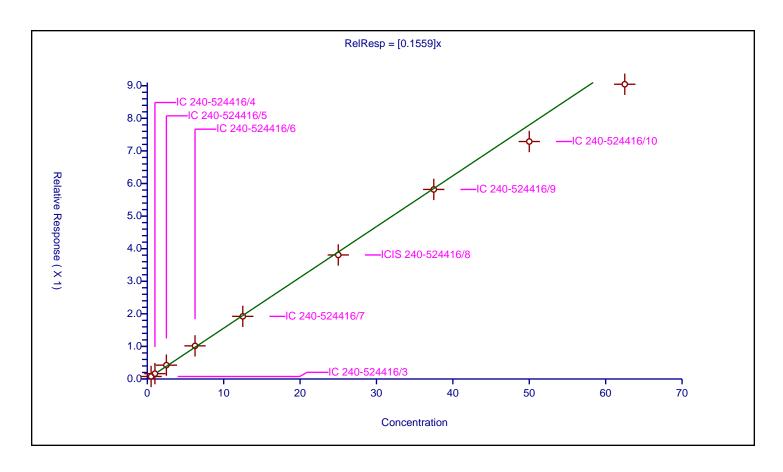
Curve Coefficients				
Intercept:	0			
Slope:	0.255			

399000
2.9
0.999
0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.135821	28.9	1127312.0	0.271641	Υ
2	IC 240-524416/4	1.0	0.248188	28.9	1156405.0	0.248188	Υ
3	IC 240-524416/5	2.5	0.649228	28.9	1153458.0	0.259691	Υ
4	IC 240-524416/6	6.25	1.582163	28.9	1212122.0	0.253146	Υ
5	IC 240-524416/7	12.5	3.194228	28.9	1274350.0	0.255538	Υ
6	ICIS 240-524416/8	25.0	6.318246	28.9	1311546.0	0.25273	Υ
7	IC 240-524416/9	37.5	9.604118	28.9	1356842.0	0.25611	Υ
8	IC 240-524416/10	50.0	12.46684	28.9	1412270.0	0.249337	Υ
9	IC 240-524416/11	62.5	15.534749	28.9	1434025.0	0.248556	Υ

Calibration / Dibromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1559

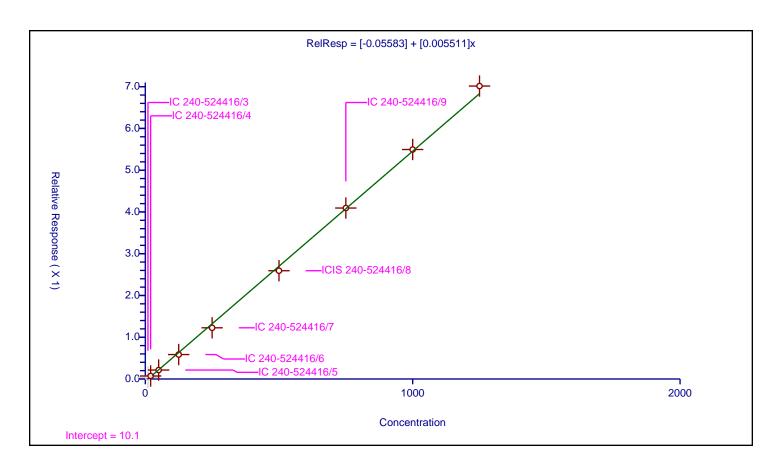
Curve Coefficients

Error Coefficients

Standard Error:235000Relative Standard Error:5.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.077319	28.9	1127312.0	0.154638	Υ
2	IC 240-524416/4	1.0	0.164417	28.9	1156405.0	0.164417	Υ
3	IC 240-524416/5	2.5	0.424483	28.9	1153458.0	0.169793	Υ
4	IC 240-524416/6	6.25	1.017335	28.9	1212122.0	0.162774	Υ
5	IC 240-524416/7	12.5	1.922275	28.9	1274350.0	0.153782	Υ
6	ICIS 240-524416/8	25.0	3.80702	28.9	1311546.0	0.152281	Υ
7	IC 240-524416/9	37.5	5.817798	28.9	1356842.0	0.155141	Υ
8	IC 240-524416/10	50.0	7.288856	28.9	1412270.0	0.145777	Υ
9	IC 240-524416/11	62.5	9.046207	28.9	1434025.0	0.144739	Υ

Calibration / 1,4-Dioxane


Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	-0.05583
Slope:	0.005511

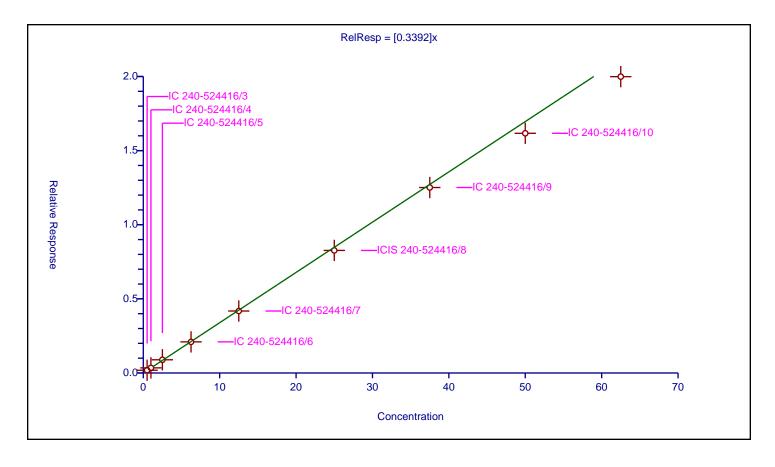
Error Coefficients

Standard Error:203000Relative Standard Error:7.9Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	10.0	0.038711	28.9	1127312.0	0.003871	N
2	IC 240-524416/4	20.0	0.071975	28.9	1156405.0	0.003599	Υ
3	IC 240-524416/5	50.0	0.214346	28.9	1153458.0	0.004287	Υ
4	IC 240-524416/6	125.0	0.585428	28.9	1212122.0	0.004683	Υ
5	IC 240-524416/7	250.0	1.225894	28.9	1274350.0	0.004904	Υ
6	ICIS 240-524416/8	500.0	2.592734	28.9	1311546.0	0.005185	Υ
7	IC 240-524416/9	750.0	4.093841	28.9	1356842.0	0.005458	Υ
8	IC 240-524416/10	1000.0	5.495434	28.9	1412270.0	0.005495	Υ
9	IC 240-524416/11	1250.0	7.01494	28.9	1434025.0	0.005612	Υ

Calibration / Dichlorobromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3392

Curve Coefficients

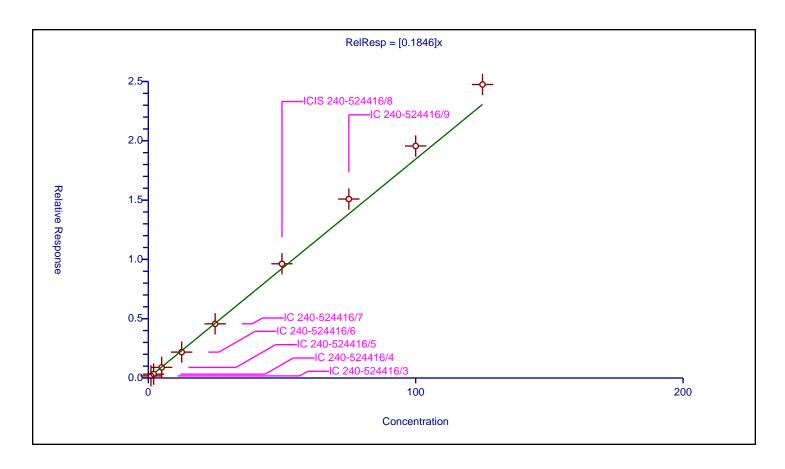
Error Coefficients

Standard Error:517000Relative Standard Error:4.9Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.186068	28.9	1127312.0	0.372135	Υ
2	IC 240-524416/4	1.0	0.346254	28.9	1156405.0	0.346254	Υ
3	IC 240-524416/5	2.5	0.890558	28.9	1153458.0	0.356223	Υ
4	IC 240-524416/6	6.25	2.099378	28.9	1212122.0	0.335901	Υ
5	IC 240-524416/7	12.5	4.181344	28.9	1274350.0	0.334507	Υ
6	ICIS 240-524416/8	25.0	8.268349	28.9	1311546.0	0.330734	Υ
7	IC 240-524416/9	37.5	12.511536	28.9	1356842.0	0.333641	Υ
8	IC 240-524416/10	50.0	16.168812	28.9	1412270.0	0.323376	Υ
9	IC 240-524416/11	62.5	19.989221	28.9	1434025.0	0.319828	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients


 Intercept:
 0

 Slope:
 0.1846

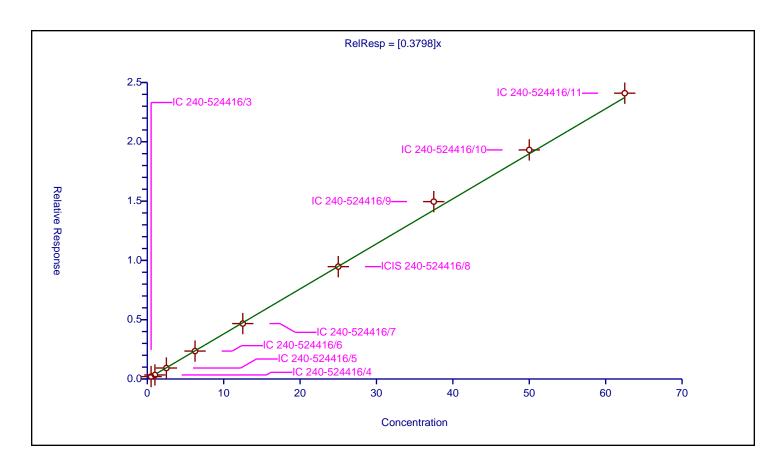
Error Coefficients

Standard Error:629000Relative Standard Error:7.1Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	1.0	0.175659	28.9	1127312.0	0.175659	Υ
2	IC 240-524416/4	2.0	0.324461	28.9	1156405.0	0.162231	Υ
3	IC 240-524416/5	5.0	0.893214	28.9	1153458.0	0.178643	Υ
4	IC 240-524416/6	12.5	2.181754	28.9	1212122.0	0.17454	Υ
5	IC 240-524416/7	25.0	4.567509	28.9	1274350.0	0.1827	Υ
6	ICIS 240-524416/8	50.0	9.630909	28.9	1311546.0	0.192618	Υ
7	IC 240-524416/9	75.0	15.090539	28.9	1356842.0	0.201207	Υ
8	IC 240-524416/10	100.0	19.562092	28.9	1412270.0	0.195621	Υ
9	IC 240-524416/11	125.0	24.745405	28.9	1434025.0	0.197963	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve C	oefficients
---------	-------------


 Intercept:
 0

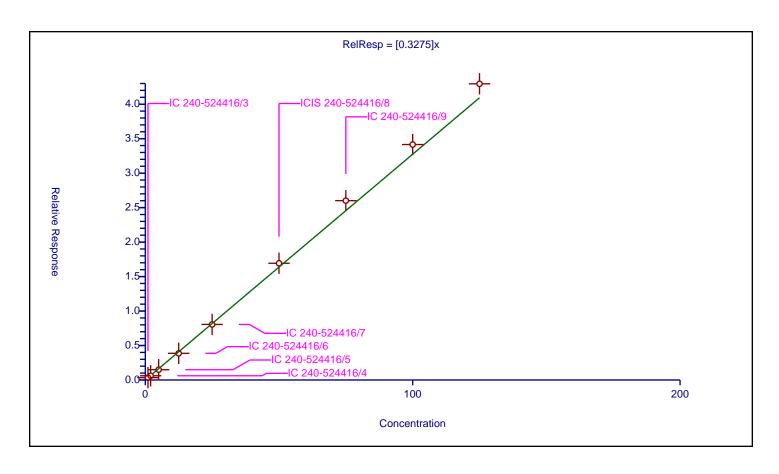
 Slope:
 0.3798

Error Coefficients

Standard Error:618000Relative Standard Error:4.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.203372	28.9	1127312.0	0.406744	Υ
2	IC 240-524416/4	1.0	0.34118	28.9	1156405.0	0.34118	Υ
3	IC 240-524416/5	2.5	0.92561	28.9	1153458.0	0.370244	Υ
4	IC 240-524416/6	6.25	2.354374	28.9	1212122.0	0.3767	Υ
5	IC 240-524416/7	12.5	4.673575	28.9	1274350.0	0.373886	Υ
6	ICIS 240-524416/8	25.0	9.473249	28.9	1311546.0	0.37893	Υ
7	IC 240-524416/9	37.5	14.957098	28.9	1356842.0	0.398856	Υ
8	IC 240-524416/10	50.0	19.314258	28.9	1412270.0	0.386285	Υ
9	IC 240-524416/11	62.5	24.099157	28.9	1434025.0	0.385587	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Curve Coefficients

Intercept:	0
Slope:	0.3275

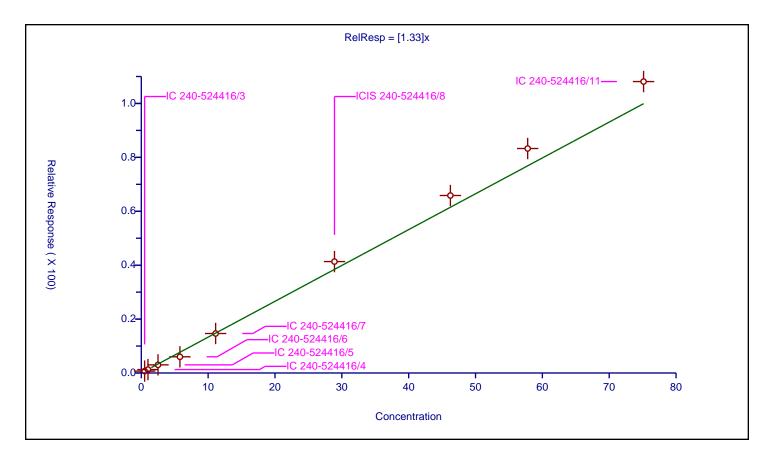
Error Coefficients

Standard Error:1090000Relative Standard Error:5.7Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	1.0	0.340449	28.9	1127312.0	0.340449	Υ
2	IC 240-524416/4	2.0	0.611686	28.9	1156405.0	0.305843	Υ
3	IC 240-524416/5	5.0	1.49178	28.9	1153458.0	0.298356	Υ
4	IC 240-524416/6	12.5	3.868968	28.9	1212122.0	0.309517	Υ
5	IC 240-524416/7	25.0	8.058323	28.9	1274350.0	0.322333	Υ
6	ICIS 240-524416/8	50.0	16.931104	28.9	1311546.0	0.338622	Υ
7	IC 240-524416/9	75.0	26.010558	28.9	1356842.0	0.346807	Υ
8	IC 240-524416/10	100.0	34.14846	28.9	1412270.0	0.341485	Υ
9	IC 240-524416/11	125.0	42.954768	28.9	1434025.0	0.343638	Υ

Calibration / Toluene-d8 (Surr)

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.33

Curve Coefficients

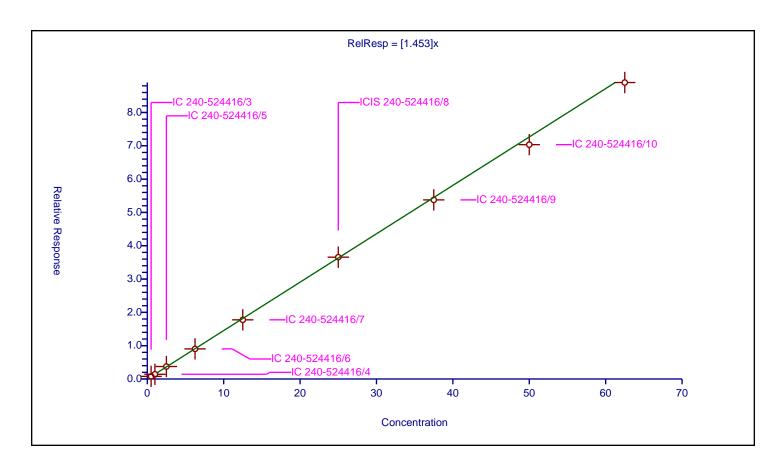
Error Coefficients

Standard Error:1990000Relative Standard Error:10.3Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.987

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.699516	28.9	889827.0	1.399032	Υ
2	IC 240-524416/4	1.0	1.271725	28.9	897798.0	1.271725	Υ
3	IC 240-524416/5	2.5	3.013455	28.9	878761.0	1.205382	Υ
4	IC 240-524416/6	5.78	6.008751	28.9	929571.0	1.039576	Υ
5	IC 240-524416/7	11.12	14.651405	28.9	973519.0	1.317572	Υ
6	ICIS 240-524416/8	28.9	41.336915	28.9	970370.0	1.430343	Υ
7	IC 240-524416/9	46.24	65.855723	28.9	1007341.0	1.424215	Υ
8	IC 240-524416/10	57.8	83.287	28.9	1037487.0	1.440952	Υ
9	IC 240-524416/11	75.14	108.122976	28.9	1049043.0	1.438954	Υ

Calibration / Toluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

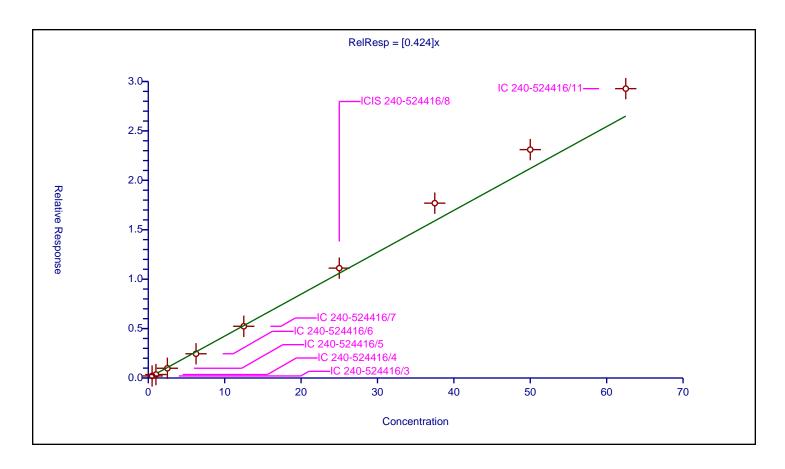

Intercept:	0
Slope:	1.453

Curve Coefficients

Error Coefficients

Standard Error:1670000Relative Standard Error:3.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.784641	28.9	889827.0	1.569283	Υ
2	IC 240-524416/4	1.0	1.416934	28.9	897798.0	1.416934	Υ
3	IC 240-524416/5	2.5	3.743486	28.9	878761.0	1.497394	Υ
4	IC 240-524416/6	6.25	9.034454	28.9	929571.0	1.445513	Υ
5	IC 240-524416/7	12.5	17.759928	28.9	973519.0	1.420794	Υ
6	ICIS 240-524416/8	25.0	36.568863	28.9	970370.0	1.462755	Υ
7	IC 240-524416/9	37.5	53.763517	28.9	1007341.0	1.433694	Υ
8	IC 240-524416/10	50.0	70.346128	28.9	1037487.0	1.406923	Υ
9	IC 240-524416/11	62.5	88.989949	28.9	1049043.0	1.423839	Υ

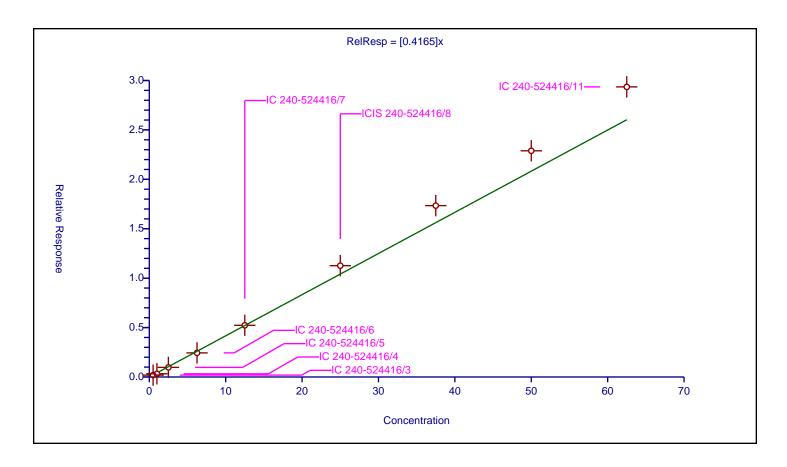

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients

Intercept:	0
Slope:	0.424

545000
9.8
0.998
0.989

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.207341	28.9	889827.0	0.414682	Υ
2	IC 240-524416/4	1.0	0.349679	28.9	897798.0	0.349679	Υ
3	IC 240-524416/5	2.5	0.984906	28.9	878761.0	0.393962	Υ
4	IC 240-524416/6	6.25	2.450048	28.9	929571.0	0.392008	Υ
5	IC 240-524416/7	12.5	5.233128	28.9	973519.0	0.41865	Υ
6	ICIS 240-524416/8	25.0	11.117522	28.9	970370.0	0.444701	Υ
7	IC 240-524416/9	37.5	17.691457	28.9	1007341.0	0.471772	Υ
8	IC 240-524416/10	50.0	23.108952	28.9	1037487.0	0.462179	Υ
9	IC 240-524416/11	62.5	29.277723	28.9	1049043.0	0.468444	Υ


Calibration / Ethyl methacrylate

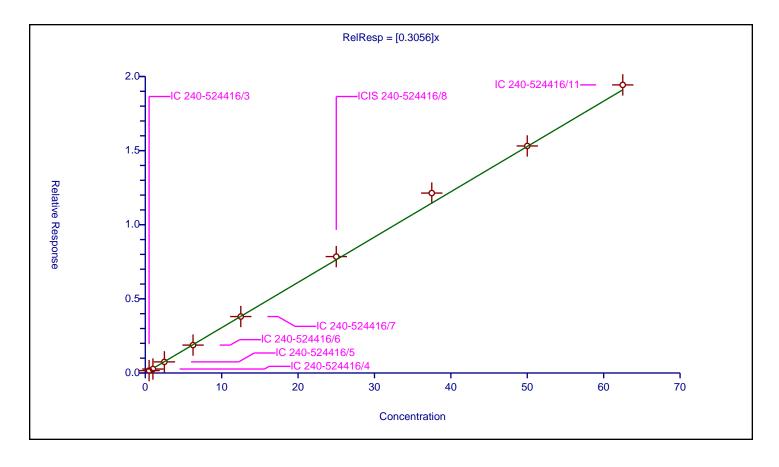
Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Cu	Curve Coefficients				
Intercept:	0				
Slope:	0.4165				

Standard Error:	543000
Relative Standard Error:	11.5
Correlation Coefficient:	0.998
Coefficient of Determination (Adjusted):	0.985

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.192044	28.9	889827.0	0.384087	Υ
2	IC 240-524416/4	1.0	0.326244	28.9	897798.0	0.326244	Υ
3	IC 240-524416/5	2.5	0.972574	28.9	878761.0	0.389029	Υ
4	IC 240-524416/6	6.25	2.440472	28.9	929571.0	0.390476	Υ
5	IC 240-524416/7	12.5	5.229239	28.9	973519.0	0.418339	Υ
6	ICIS 240-524416/8	25.0	11.26155	28.9	970370.0	0.450462	Υ
7	IC 240-524416/9	37.5	17.340098	28.9	1007341.0	0.462403	Υ
8	IC 240-524416/10	50.0	22.887917	28.9	1037487.0	0.457758	Υ
9	IC 240-524416/11	62.5	29.353428	28.9	1049043.0	0.469655	Υ

Calibration / 1,1,2-Trichloroethane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	0.3056			

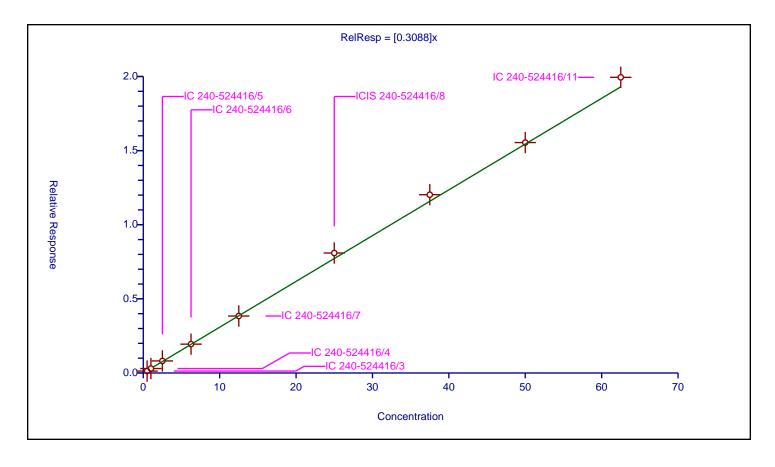
Error Coefficients

Standard Error:366000Relative Standard Error:5.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.161157	28.9	889827.0	0.322314	Υ
2	IC 240-524416/4	1.0	0.267594	28.9	897798.0	0.267594	Υ
3	IC 240-524416/5	2.5	0.749993	28.9	878761.0	0.299997	Υ
4	IC 240-524416/6	6.25	1.881605	28.9	929571.0	0.301057	Υ
5	IC 240-524416/7	12.5	3.807927	28.9	973519.0	0.304634	Υ
6	ICIS 240-524416/8	25.0	7.852531	28.9	970370.0	0.314101	Υ
7	IC 240-524416/9	37.5	12.137506	28.9	1007341.0	0.323667	Υ
8	IC 240-524416/10	50.0	15.316217	28.9	1037487.0	0.306324	Υ
9	IC 240-524416/11	62.5	19.433613	28.9	1049043.0	0.310938	Υ

Calibration / Tetrachloroethene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3088

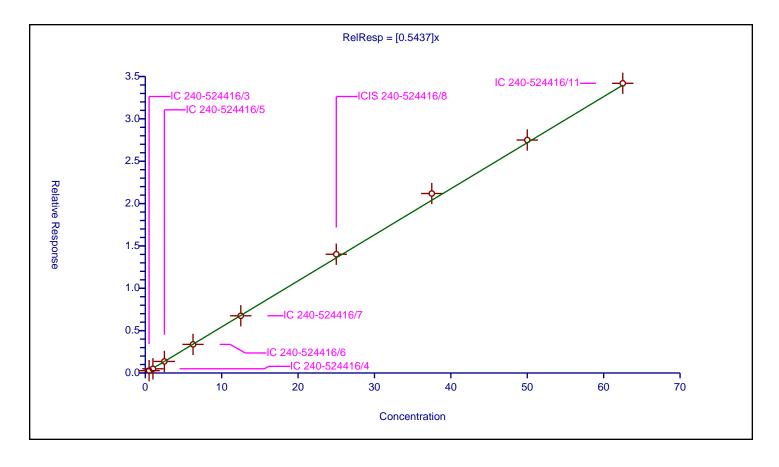
Curve Coefficients

Error Coefficients

Standard Error:372000Relative Standard Error:6.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.13014	28.9	889827.0	0.26028	Υ
2	IC 240-524416/4	1.0	0.300653	28.9	897798.0	0.300653	Υ
3	IC 240-524416/5	2.5	0.813301	28.9	878761.0	0.32532	Υ
4	IC 240-524416/6	6.25	1.94621	28.9	929571.0	0.311394	Υ
5	IC 240-524416/7	12.5	3.84263	28.9	973519.0	0.30741	Υ
6	ICIS 240-524416/8	25.0	8.094514	28.9	970370.0	0.323781	Υ
7	IC 240-524416/9	37.5	12.027396	28.9	1007341.0	0.320731	Υ
8	IC 240-524416/10	50.0	15.544495	28.9	1037487.0	0.31089	Υ
9	IC 240-524416/11	62.5	19.945334	28.9	1049043.0	0.319125	Υ

Calibration / 1,3-Dichloropropane


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	0.5437			

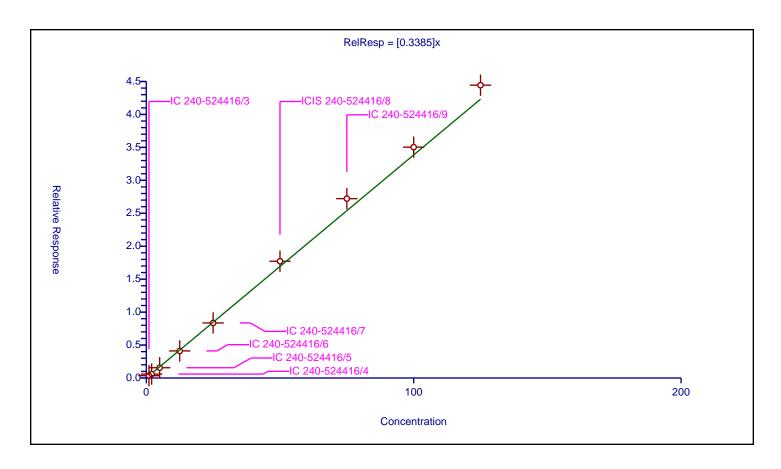
Error Coefficients

Standard Error:647000Relative Standard Error:3.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.274116	28.9	889827.0	0.548232	Υ
2	IC 240-524416/4	1.0	0.496432	28.9	897798.0	0.496432	Υ
3	IC 240-524416/5	2.5	1.364425	28.9	878761.0	0.54577	Υ
4	IC 240-524416/6	6.25	3.374684	28.9	929571.0	0.539949	Υ
5	IC 240-524416/7	12.5	6.754304	28.9	973519.0	0.540344	Υ
6	ICIS 240-524416/8	25.0	14.019644	28.9	970370.0	0.560786	Υ
7	IC 240-524416/9	37.5	21.185796	28.9	1007341.0	0.564955	Υ
8	IC 240-524416/10	50.0	27.501417	28.9	1037487.0	0.550028	Υ
9	IC 240-524416/11	62.5	34.1965	28.9	1049043.0	0.547144	Υ

Calibration / 2-Hexanone

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3385

Curve Coefficients

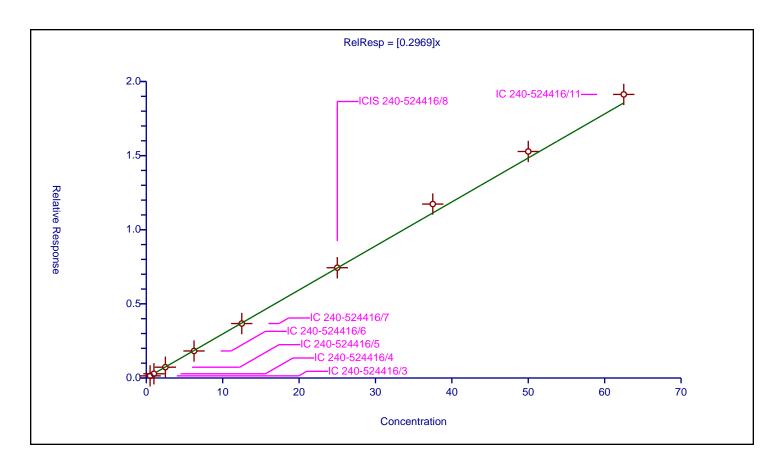
Error Coefficients

Standard Error:832000Relative Standard Error:6.7Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	1.0	0.352973	28.9	889827.0	0.352973	Υ
2	IC 240-524416/4	2.0	0.593066	28.9	897798.0	0.296533	Υ
3	IC 240-524416/5	5.0	1.556453	28.9	878761.0	0.311291	Υ
4	IC 240-524416/6	12.5	4.107528	28.9	929571.0	0.328602	Υ
5	IC 240-524416/7	25.0	8.353496	28.9	973519.0	0.33414	Υ
6	ICIS 240-524416/8	50.0	17.72065	28.9	970370.0	0.354413	Υ
7	IC 240-524416/9	75.0	27.221212	28.9	1007341.0	0.362949	Υ
8	IC 240-524416/10	100.0	35.037072	28.9	1037487.0	0.350371	Υ
9	IC 240-524416/11	125.0	44.44332	28.9	1049043.0	0.355547	Υ

Calibration / Chlorodibromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2969

Curve Coefficients

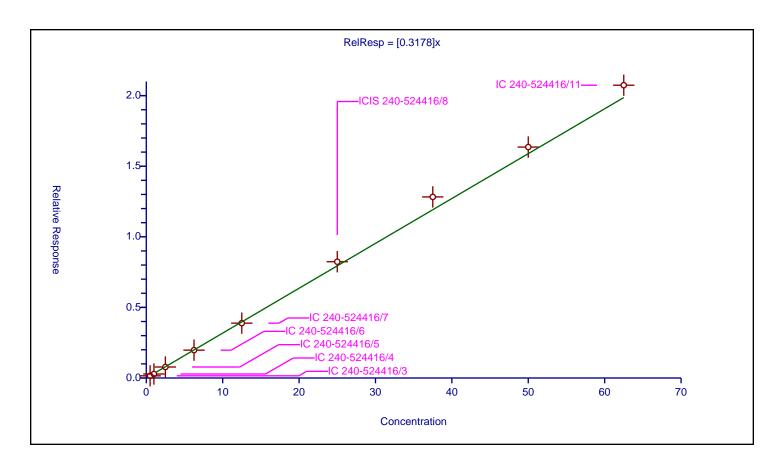
Error Coefficients

Standard Error:359000Relative Standard Error:3.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.144528	28.9	889827.0	0.289056	Υ
2	IC 240-524416/4	1.0	0.284237	28.9	897798.0	0.284237	Υ
3	IC 240-524416/5	2.5	0.72786	28.9	878761.0	0.291144	Υ
4	IC 240-524416/6	6.25	1.823064	28.9	929571.0	0.29169	Υ
5	IC 240-524416/7	12.5	3.672677	28.9	973519.0	0.293814	Υ
6	ICIS 240-524416/8	25.0	7.438436	28.9	970370.0	0.297537	Υ
7	IC 240-524416/9	37.5	11.732699	28.9	1007341.0	0.312872	Υ
8	IC 240-524416/10	50.0	15.279057	28.9	1037487.0	0.305581	Υ
9	IC 240-524416/11	62.5	19.128812	28.9	1049043.0	0.306061	Υ

Calibration / Ethylene Dibromide

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3178

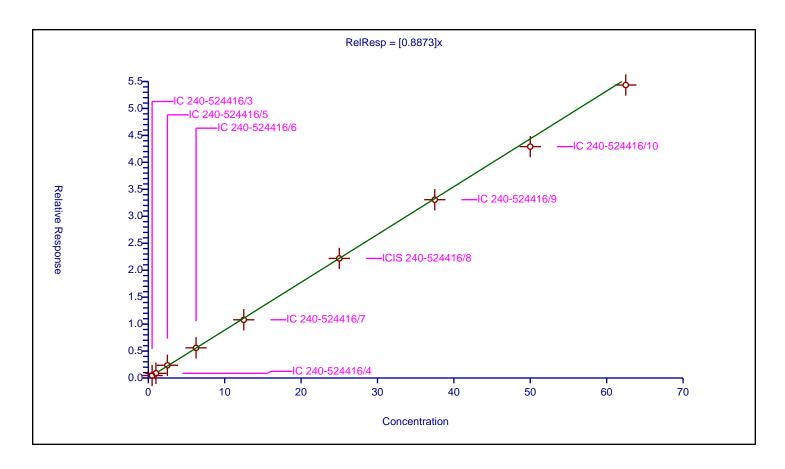
Curve Coefficients

Error Coefficients

Standard Error:389000Relative Standard Error:5.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.154401	28.9	889827.0	0.308803	Υ
2	IC 240-524416/4	1.0	0.28311	28.9	897798.0	0.28311	Υ
3	IC 240-524416/5	2.5	0.778769	28.9	878761.0	0.311508	Υ
4	IC 240-524416/6	6.25	1.972542	28.9	929571.0	0.315607	Υ
5	IC 240-524416/7	12.5	3.884785	28.9	973519.0	0.310783	Υ
6	ICIS 240-524416/8	25.0	8.235712	28.9	970370.0	0.329428	Υ
7	IC 240-524416/9	37.5	12.824932	28.9	1007341.0	0.341998	Υ
8	IC 240-524416/10	50.0	16.356156	28.9	1037487.0	0.327123	Υ
9	IC 240-524416/11	62.5	20.737641	28.9	1049043.0	0.331802	Υ

Calibration / Chlorobenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

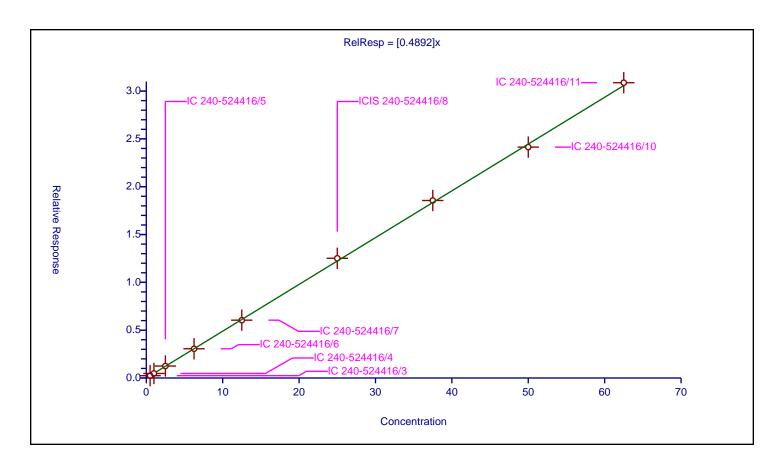
Curve Coefficients	
Intercept:	0
Slope:	0.8873

Error Coefficients

Standard Error:1020000Relative Standard Error:3.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.459989	28.9	889827.0	0.919978	Υ
2	IC 240-524416/4	1.0	0.866551	28.9	897798.0	0.866551	Υ
3	IC 240-524416/5	2.5	2.360217	28.9	878761.0	0.944087	Υ
4	IC 240-524416/6	6.25	5.589414	28.9	929571.0	0.894306	Υ
5	IC 240-524416/7	12.5	10.79883	28.9	973519.0	0.863906	Υ
6	ICIS 240-524416/8	25.0	22.180215	28.9	970370.0	0.887209	Υ
7	IC 240-524416/9	37.5	33.075712	28.9	1007341.0	0.882019	Υ
8	IC 240-524416/10	50.0	42.919782	28.9	1037487.0	0.858396	Υ
9	IC 240-524416/11	62.5	54.351702	28.9	1049043.0	0.869627	Υ

Calibration / Ethylbenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

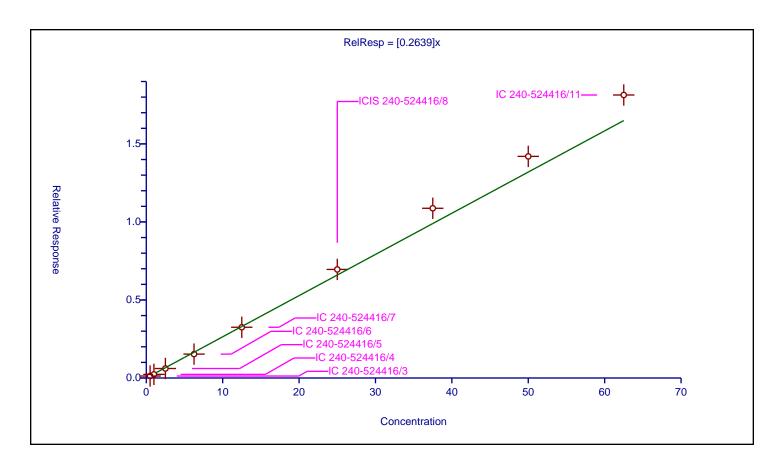
Intercept:	0
Slope:	0.4892

Curve Coefficients

Standard Error:	576000
Relative Standard Error:	1.8
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	1.000

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.242093	28.9	889827.0	0.484185	Υ
2	IC 240-524416/4	1.0	0.473449	28.9	897798.0	0.473449	Υ
3	IC 240-524416/5	2.5	1.250503	28.9	878761.0	0.500201	Υ
4	IC 240-524416/6	6.25	3.055487	28.9	929571.0	0.488878	Υ
5	IC 240-524416/7	12.5	6.046172	28.9	973519.0	0.483694	Υ
6	ICIS 240-524416/8	25.0	12.516553	28.9	970370.0	0.500662	Υ
7	IC 240-524416/9	37.5	18.559483	28.9	1007341.0	0.49492	Υ
8	IC 240-524416/10	50.0	24.138947	28.9	1037487.0	0.482779	Υ
9	IC 240-524416/11	62.5	30.874486	28.9	1049043.0	0.493992	Υ

Calibration


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

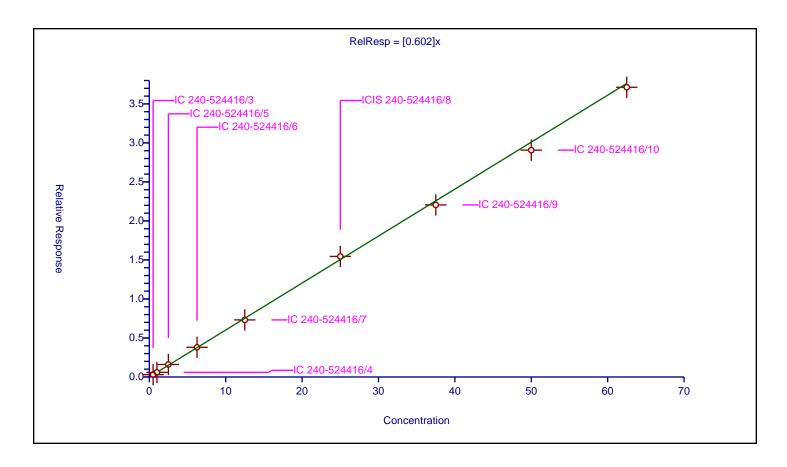
Curve Co	pefficients
----------	-------------

Intercept:	0
Slope:	0.2639

Standard Error:	337000
Relative Standard Error:	8.4
Correlation Coefficient:	0.998
Coefficient of Determination (Adjusted):	0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.126178	28.9	889827.0	0.252356	Υ
2	IC 240-524416/4	1.0	0.232346	28.9	897798.0	0.232346	Υ
3	IC 240-524416/5	2.5	0.608052	28.9	878761.0	0.243221	Υ
4	IC 240-524416/6	6.25	1.53107	28.9	929571.0	0.244971	Υ
5	IC 240-524416/7	12.5	3.25161	28.9	973519.0	0.260129	Υ
6	ICIS 240-524416/8	25.0	6.9573	28.9	970370.0	0.278292	Υ
7	IC 240-524416/9	37.5	10.876177	28.9	1007341.0	0.290031	Υ
8	IC 240-524416/10	50.0	14.201178	28.9	1037487.0	0.284024	Υ
9	IC 240-524416/11	62.5	18.135425	28.9	1049043.0	0.290167	Υ

Calibration


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients

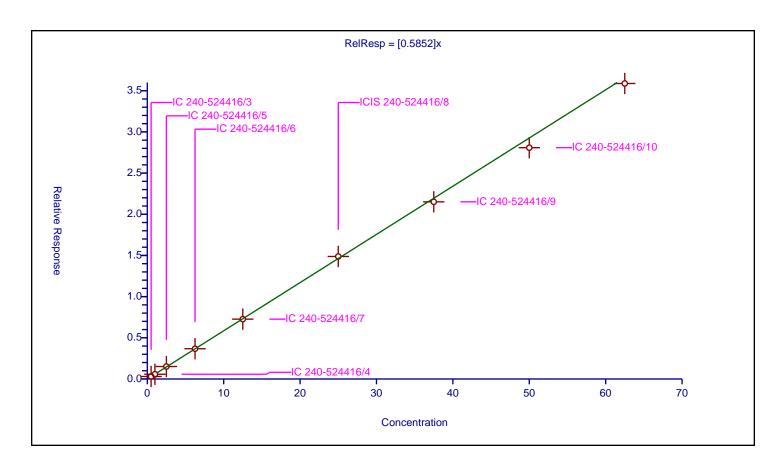
Intercept:	0
Slope:	0.602

Standard Error:	693000
Relative Standard Error:	3.1
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.303477	28.9	889827.0	0.606953	Υ
2	IC 240-524416/4	1.0	0.593839	28.9	897798.0	0.593839	Υ
3	IC 240-524416/5	2.5	1.602462	28.9	878761.0	0.640985	Υ
4	IC 240-524416/6	6.25	3.804094	28.9	929571.0	0.608655	Υ
5	IC 240-524416/7	12.5	7.316678	28.9	973519.0	0.585334	Υ
6	ICIS 240-524416/8	25.0	15.455188	28.9	970370.0	0.618208	Υ
7	IC 240-524416/9	37.5	22.05781	28.9	1007341.0	0.588208	Υ
8	IC 240-524416/10	50.0	29.076411	28.9	1037487.0	0.581528	Υ
9	IC 240-524416/11	62.5	37.135226	28.9	1049043.0	0.594164	Υ

Calibration / o-Xylene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.5852

Curve Coefficients

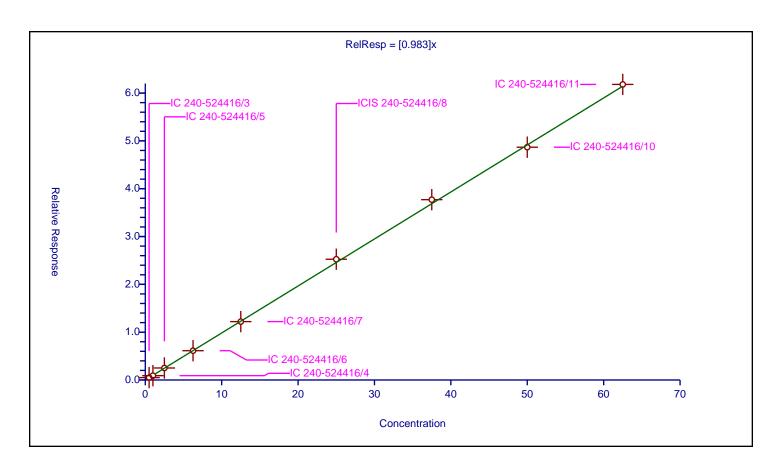
Error Coefficients

Standard Error:671000Relative Standard Error:2.7Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.304873	28.9	889827.0	0.609746	Υ
2	IC 240-524416/4	1.0	0.577712	28.9	897798.0	0.577712	Υ
3	IC 240-524416/5	2.5	1.514062	28.9	878761.0	0.605625	Υ
4	IC 240-524416/6	6.25	3.674046	28.9	929571.0	0.587847	Υ
5	IC 240-524416/7	12.5	7.265885	28.9	973519.0	0.581271	Υ
6	ICIS 240-524416/8	25.0	14.877468	28.9	970370.0	0.595099	Υ
7	IC 240-524416/9	37.5	21.511765	28.9	1007341.0	0.573647	Υ
8	IC 240-524416/10	50.0	28.084968	28.9	1037487.0	0.561699	Υ
9	IC 240-524416/11	62.5	35.880676	28.9	1049043.0	0.574091	Υ

Calibration / Styrene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.983

Curve Coefficients

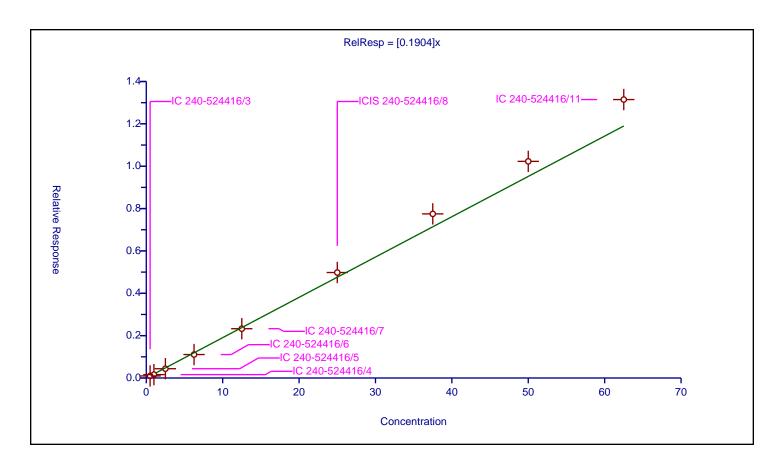
Error Coefficients

Standard Error:1160000Relative Standard Error:3.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.501204	28.9	889827.0	1.002408	Υ
2	IC 240-524416/4	1.0	0.905308	28.9	897798.0	0.905308	Υ
3	IC 240-524416/5	2.5	2.510445	28.9	878761.0	1.004178	Υ
4	IC 240-524416/6	6.25	6.124467	28.9	929571.0	0.979915	Υ
5	IC 240-524416/7	12.5	12.207496	28.9	973519.0	0.9766	Υ
6	ICIS 240-524416/8	25.0	25.254479	28.9	970370.0	1.010179	Υ
7	IC 240-524416/9	37.5	37.710225	28.9	1007341.0	1.005606	Υ
8	IC 240-524416/10	50.0	48.681664	28.9	1037487.0	0.973633	Υ
9	IC 240-524416/11	62.5	61.809111	28.9	1049043.0	0.988946	Υ

Calibration / Bromoform

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1904

Curve Coefficients

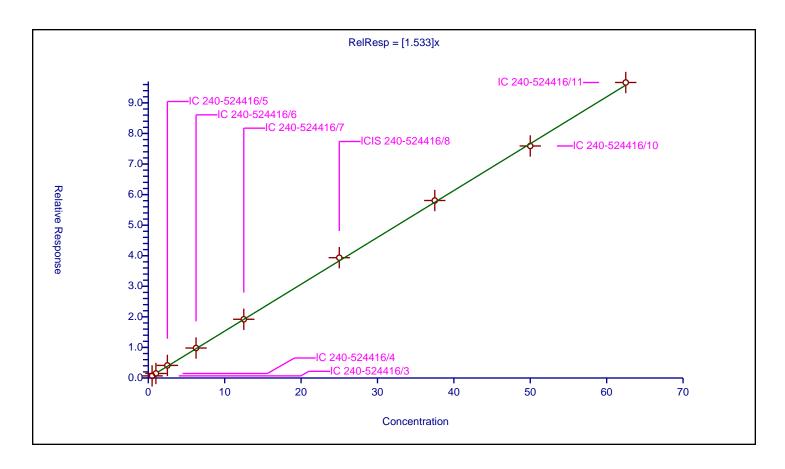
Error Coefficients

Standard Error:243000Relative Standard Error:9.0Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.09724	28.9	889827.0	0.19448	Υ
2	IC 240-524416/4	1.0	0.159694	28.9	897798.0	0.159694	Υ
3	IC 240-524416/5	2.5	0.437696	28.9	878761.0	0.175078	Υ
4	IC 240-524416/6	6.25	1.107288	28.9	929571.0	0.177166	Υ
5	IC 240-524416/7	12.5	2.327154	28.9	973519.0	0.186172	Υ
6	ICIS 240-524416/8	25.0	4.98049	28.9	970370.0	0.19922	Υ
7	IC 240-524416/9	37.5	7.748632	28.9	1007341.0	0.20663	Υ
8	IC 240-524416/10	50.0	10.229252	28.9	1037487.0	0.204585	Υ
9	IC 240-524416/11	62.5	13.147308	28.9	1049043.0	0.210357	Υ

Calibration / Isopropylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.533

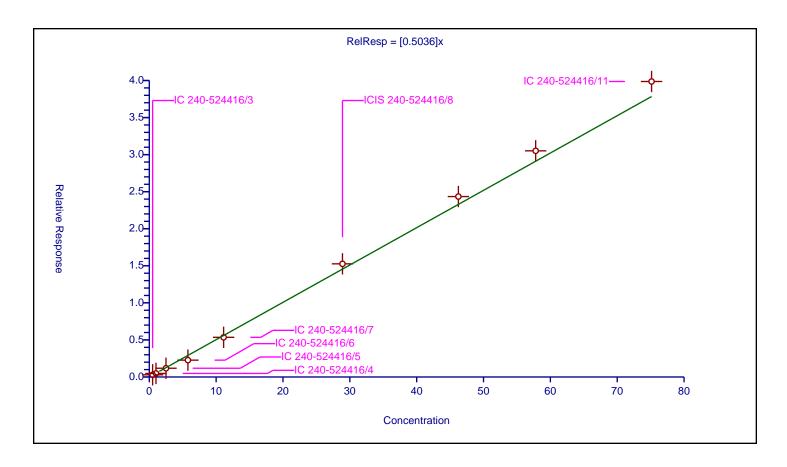
Curve Coefficients

Error Coefficients

Standard Error:1810000Relative Standard Error:4.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.689935	28.9	889827.0	1.37987	Υ
2	IC 240-524416/4	1.0	1.477676	28.9	897798.0	1.477676	Υ
3	IC 240-524416/5	2.5	4.117479	28.9	878761.0	1.646992	Υ
4	IC 240-524416/6	6.25	9.803798	28.9	929571.0	1.568608	Υ
5	IC 240-524416/7	12.5	19.210926	28.9	973519.0	1.536874	Υ
6	ICIS 240-524416/8	25.0	39.359509	28.9	970370.0	1.57438	Υ
7	IC 240-524416/9	37.5	58.065692	28.9	1007341.0	1.548418	Υ
8	IC 240-524416/10	50.0	75.90912	28.9	1037487.0	1.518182	Υ
9	IC 240-524416/11	62.5	96.676923	28.9	1049043.0	1.546831	Υ

Calibration


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients

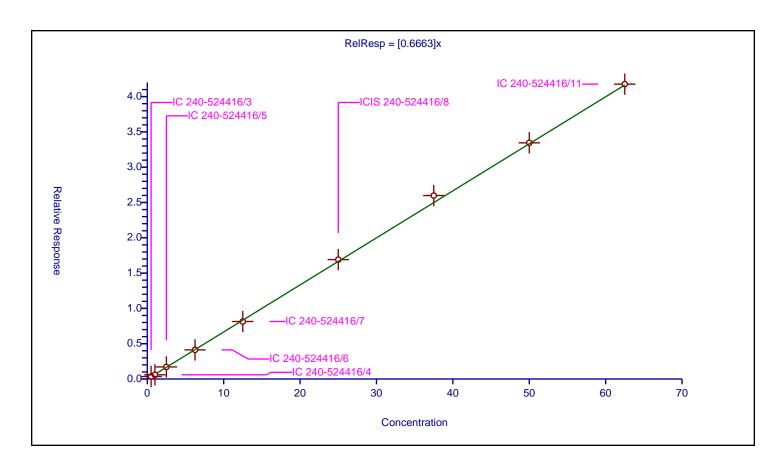
Intercept:	0
Slope:	0.5036

Standard Error:	734000
Relative Standard Error:	11.0
Correlation Coefficient:	0.999
Coefficient of Determination (Adjusted):	0.984

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.296656	28.9	889827.0	0.593312	Υ
2	IC 240-524416/4	1.0	0.478889	28.9	897798.0	0.478889	Υ
3	IC 240-524416/5	2.5	1.181144	28.9	878761.0	0.472458	Υ
4	IC 240-524416/6	5.78	2.273583	28.9	929571.0	0.393353	Υ
5	IC 240-524416/7	11.12	5.351843	28.9	973519.0	0.481281	Υ
6	ICIS 240-524416/8	28.9	15.265414	28.9	970370.0	0.528215	Υ
7	IC 240-524416/9	46.24	24.342346	28.9	1007341.0	0.526435	Υ
8	IC 240-524416/10	57.8	30.510649	28.9	1037487.0	0.527866	Υ
9	IC 240-524416/11	75.14	39.866067	28.9	1049043.0	0.530557	Υ

Calibration / Bromobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.6663

Curve Coefficients

Error Coefficients

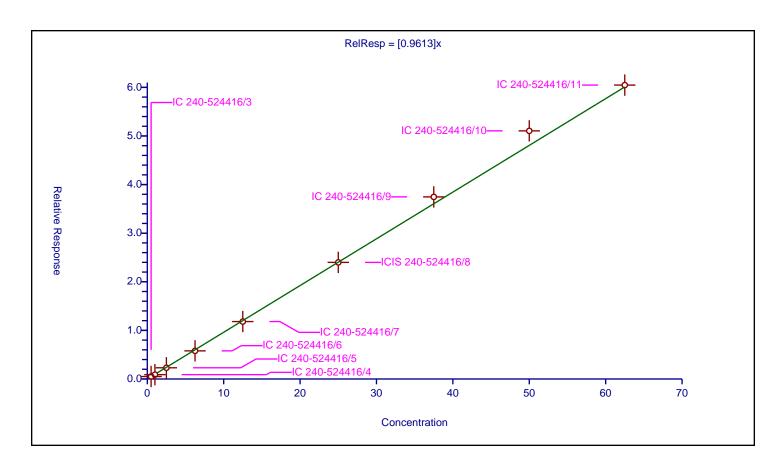
Standard Error:400000Relative Standard Error:4.6Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.349595	28.9	470789.0	0.69919	Υ
2	IC 240-524416/4	1.0	0.596209	28.9	488704.0	0.596209	Υ
3	IC 240-524416/5	2.5	1.708821	28.9	463903.0	0.683528	Υ
4	IC 240-524416/6	6.25	4.124537	28.9	488181.0	0.659926	Υ
5	IC 240-524416/7	12.5	8.143876	28.9	505417.0	0.65151	Υ
6	ICIS 240-524416/8	25.0	16.910971	28.9	502732.0	0.676439	Υ
7	IC 240-524416/9	37.5	25.986051	28.9	509597.0	0.692961	Υ
8	IC 240-524416/10	50.0	33.451736	28.9	520173.0	0.669035	Υ
9	IC 240-524416/11	62.5	41.767786	28.9	534468.0	0.668285	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	icients


 Intercept:
 0

 Slope:
 0.9613

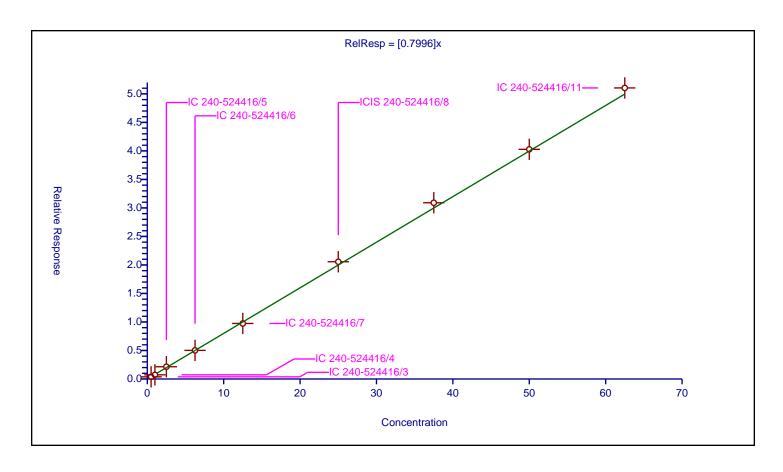
Error Coefficients

Standard Error:587000Relative Standard Error:4.6Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.508463	28.9	470789.0	1.016926	Υ
2	IC 240-524416/4	1.0	0.894787	28.9	488704.0	0.894787	Υ
3	IC 240-524416/5	2.5	2.304385	28.9	463903.0	0.921754	Υ
4	IC 240-524416/6	6.25	5.78727	28.9	488181.0	0.925963	Υ
5	IC 240-524416/7	12.5	11.817152	28.9	505417.0	0.945372	Υ
6	ICIS 240-524416/8	25.0	23.990704	28.9	502732.0	0.959628	Υ
7	IC 240-524416/9	37.5	37.465362	28.9	509597.0	0.999076	Υ
8	IC 240-524416/10	50.0	51.050372	28.9	520173.0	1.021007	Υ
9	IC 240-524416/11	62.5	60.466637	28.9	534468.0	0.967466	Υ

Calibration / N-Propylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

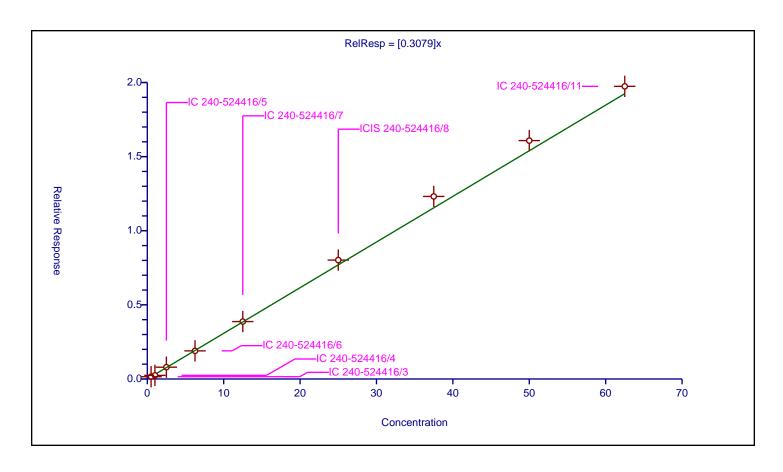

Intercept:	0
Slope:	0.7996

Curve Coefficients

Error Coefficients

Standard Error:485000Relative Standard Error:4.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.377587	28.9	470789.0	0.755174	Υ
2	IC 240-524416/4	1.0	0.729797	28.9	488704.0	0.729797	Υ
3	IC 240-524416/5	2.5	2.150074	28.9	463903.0	0.86003	Υ
4	IC 240-524416/6	6.25	5.017441	28.9	488181.0	0.802791	Υ
5	IC 240-524416/7	12.5	9.740185	28.9	505417.0	0.779215	Υ
6	ICIS 240-524416/8	25.0	20.563568	28.9	502732.0	0.822543	Υ
7	IC 240-524416/9	37.5	30.908324	28.9	509597.0	0.824222	Υ
8	IC 240-524416/10	50.0	40.278702	28.9	520173.0	0.805574	Υ
9	IC 240-524416/11	62.5	51.047972	28.9	534468.0	0.816768	Υ

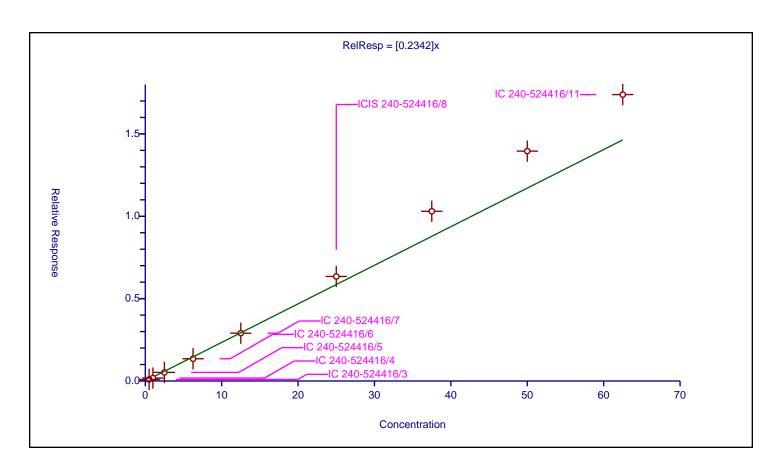

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 0.3079

Error Coefficients

Standard Error:190000Relative Standard Error:8.0Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.153404	28.9	470789.0	0.306809	Υ
2	IC 240-524416/4	1.0	0.245769	28.9	488704.0	0.245769	Υ
3	IC 240-524416/5	2.5	0.795913	28.9	463903.0	0.318365	Υ
4	IC 240-524416/6	6.25	1.898286	28.9	488181.0	0.303726	Υ
5	IC 240-524416/7	12.5	3.874551	28.9	505417.0	0.309964	Υ
6	ICIS 240-524416/8	25.0	8.02141	28.9	502732.0	0.320856	Υ
7	IC 240-524416/9	37.5	12.315295	28.9	509597.0	0.328408	Υ
8	IC 240-524416/10	50.0	16.081501	28.9	520173.0	0.32163	Υ
9	IC 240-524416/11	62.5	19.74191	28.9	534468.0	0.315871	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

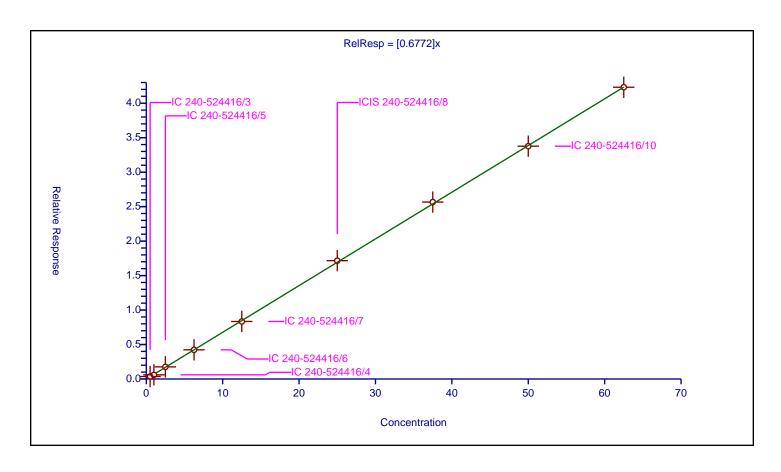
42
3

Error Coefficients

Standard Error:164000Relative Standard Error:16.8Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.970

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.093553	28.9	470789.0	0.187105	Υ
2	IC 240-524416/4	1.0	0.177645	28.9	488704.0	0.177645	Υ
3	IC 240-524416/5	2.5	0.521991	28.9	463903.0	0.208796	Υ
4	IC 240-524416/6	6.25	1.350633	28.9	488181.0	0.216101	Υ
5	IC 240-524416/7	12.5	2.902597	28.9	505417.0	0.232208	Υ
6	ICIS 240-524416/8	25.0	6.346328	28.9	502732.0	0.253853	Υ
7	IC 240-524416/9	37.5	10.303965	28.9	509597.0	0.274772	Υ
8	IC 240-524416/10	50.0	13.954891	28.9	520173.0	0.279098	Υ
9	IC 240-524416/11	62.5	17.387703	28.9	534468.0	0.278203	Υ

Calibration / 2-Chlorotoluene

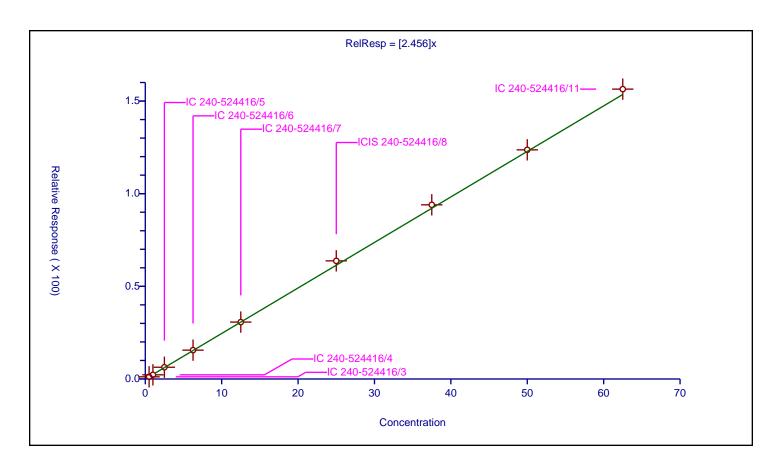

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	efficients
Intercept:	0
Slope:	0.6772

Error Coefficients

Standard Error:404000Relative Standard Error:4.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.360706	28.9	470789.0	0.721412	Υ
2	IC 240-524416/4	1.0	0.60366	28.9	488704.0	0.60366	Υ
3	IC 240-524416/5	2.5	1.758285	28.9	463903.0	0.703314	Υ
4	IC 240-524416/6	6.25	4.228018	28.9	488181.0	0.676483	Υ
5	IC 240-524416/7	12.5	8.340806	28.9	505417.0	0.667264	Υ
6	ICIS 240-524416/8	25.0	17.160518	28.9	502732.0	0.686421	Υ
7	IC 240-524416/9	37.5	25.661151	28.9	509597.0	0.684297	Υ
8	IC 240-524416/10	50.0	33.766086	28.9	520173.0	0.675322	Υ
9	IC 240-524416/11	62.5	42.314026	28.9	534468.0	0.677024	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficient	s
Intercept:	0
Slope:	2.456

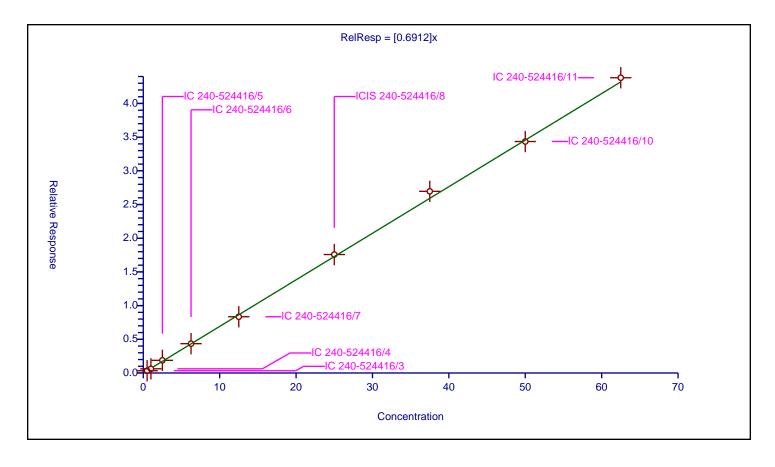
Error Coefficients

Standard Error:1490000Relative Standard Error:4.0Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	1.169962	28.9	470789.0	2.339923	Υ
2	IC 240-524416/4	1.0	2.250184	28.9	488704.0	2.250184	Υ
3	IC 240-524416/5	2.5	6.341699	28.9	463903.0	2.53668	Υ
4	IC 240-524416/6	6.25	15.568305	28.9	488181.0	2.490929	Υ
5	IC 240-524416/7	12.5	30.711021	28.9	505417.0	2.456882	Υ
6	ICIS 240-524416/8	25.0	63.752722	28.9	502732.0	2.550109	Υ
7	IC 240-524416/9	37.5	94.002227	28.9	509597.0	2.506726	Υ
8	IC 240-524416/10	50.0	123.664585	28.9	520173.0	2.473292	Υ
9	IC 240-524416/11	62.5	156.432873	28.9	534468.0	2.502926	Υ

Calibration / 4-Chlorotoluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.6912

Curve Coefficients

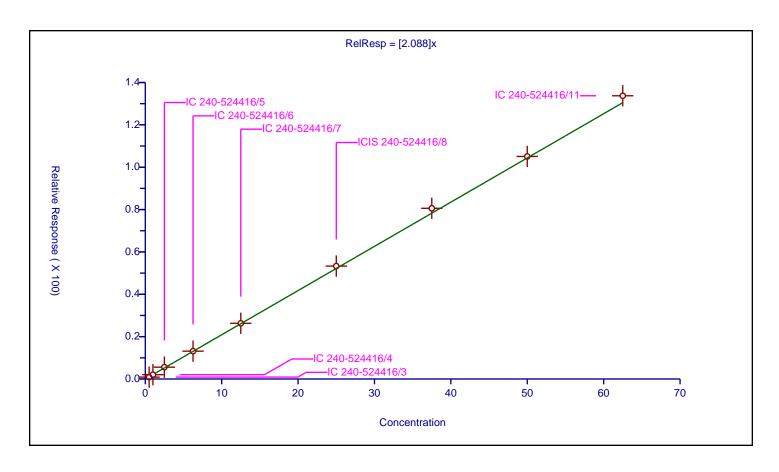
Error Coefficients

Standard Error:416000Relative Standard Error:5.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.336274	28.9	470789.0	0.672548	Υ
2	IC 240-524416/4	1.0	0.622525	28.9	488704.0	0.622525	Υ
3	IC 240-524416/5	2.5	1.87883	28.9	463903.0	0.751532	Υ
4	IC 240-524416/6	6.25	4.350205	28.9	488181.0	0.696033	Υ
5	IC 240-524416/7	12.5	8.347782	28.9	505417.0	0.667823	Υ
6	ICIS 240-524416/8	25.0	17.579877	28.9	502732.0	0.703195	Υ
7	IC 240-524416/9	37.5	26.958482	28.9	509597.0	0.718893	Υ
8	IC 240-524416/10	50.0	34.352505	28.9	520173.0	0.68705	Υ
9	IC 240-524416/11	62.5	43.817673	28.9	534468.0	0.701083	Υ

Calibration / tert-Butylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

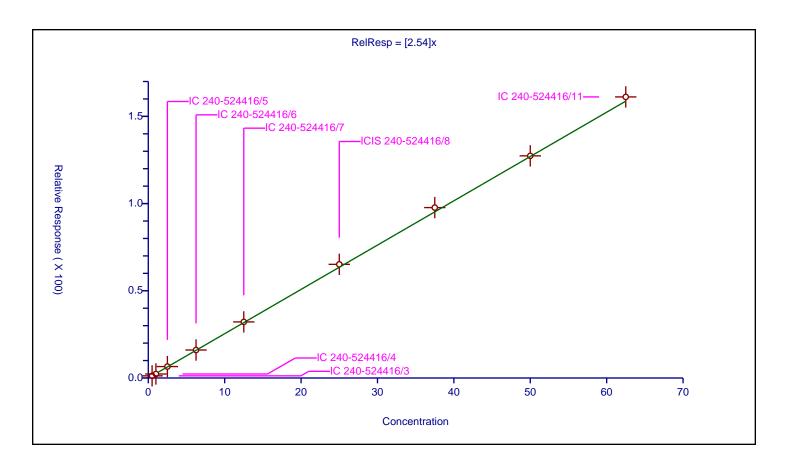

Intercept:	0
Slope:	2.088

Curve Coefficients

Error Coefficients

Standard Error:1270000Relative Standard Error:5.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.898389	28.9	470789.0	1.796777	Υ
2	IC 240-524416/4	1.0	2.027123	28.9	488704.0	2.027123	Υ
3	IC 240-524416/5	2.5	5.584286	28.9	463903.0	2.233714	Υ
4	IC 240-524416/6	6.25	13.142612	28.9	488181.0	2.102818	Υ
5	IC 240-524416/7	12.5	26.308236	28.9	505417.0	2.104659	Υ
6	ICIS 240-524416/8	25.0	53.315295	28.9	502732.0	2.132612	Υ
7	IC 240-524416/9	37.5	80.606522	28.9	509597.0	2.149507	Υ
8	IC 240-524416/10	50.0	105.08401	28.9	520173.0	2.10168	Υ
9	IC 240-524416/11	62.5	133.73374	28.9	534468.0	2.13974	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	2.54

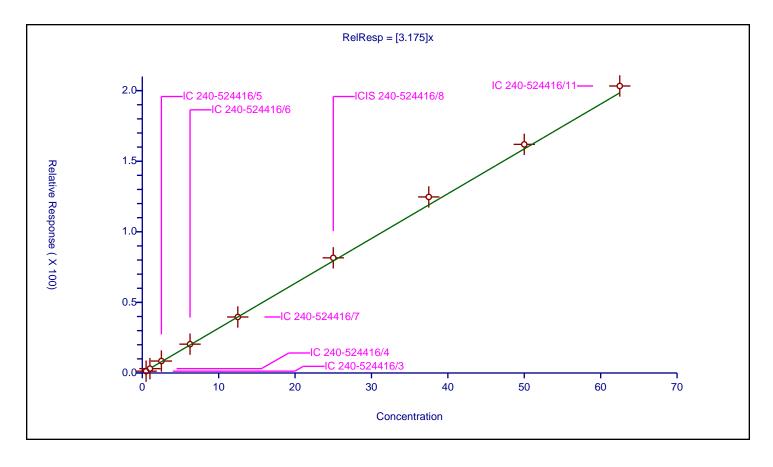
Error Coefficients

Standard Error:1530000Relative Standard Error:4.1Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	1.232637	28.9	470789.0	2.465274	Υ
2	IC 240-524416/4	1.0	2.292998	28.9	488704.0	2.292998	Υ
3	IC 240-524416/5	2.5	6.556065	28.9	463903.0	2.622426	Υ
4	IC 240-524416/6	6.25	16.046932	28.9	488181.0	2.567509	Υ
5	IC 240-524416/7	12.5	32.153685	28.9	505417.0	2.572295	Υ
6	ICIS 240-524416/8	25.0	65.169692	28.9	502732.0	2.606788	Υ
7	IC 240-524416/9	37.5	97.70628	28.9	509597.0	2.605501	Υ
8	IC 240-524416/10	50.0	127.372278	28.9	520173.0	2.547446	Υ
9	IC 240-524416/11	62.5	161.159455	28.9	534468.0	2.578551	Υ

Calibration / sec-Butylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	3.175

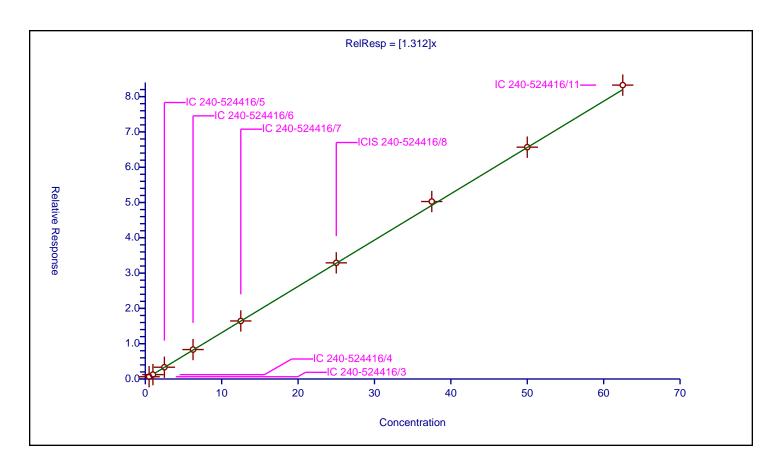
Curve Coefficients

Error Coefficients

Standard Error:1940000Relative Standard Error:7.6Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	1.286166	28.9	470789.0	2.572332	Υ
2	IC 240-524416/4	1.0	3.091394	28.9	488704.0	3.091394	Υ
3	IC 240-524416/5	2.5	8.469533	28.9	463903.0	3.387813	Υ
4	IC 240-524416/6	6.25	20.422416	28.9	488181.0	3.267587	Υ
5	IC 240-524416/7	12.5	39.659656	28.9	505417.0	3.172772	Υ
6	ICIS 240-524416/8	25.0	81.560071	28.9	502732.0	3.262403	Υ
7	IC 240-524416/9	37.5	124.698847	28.9	509597.0	3.325303	Υ
8	IC 240-524416/10	50.0	161.938572	28.9	520173.0	3.238771	Υ
9	IC 240-524416/11	62.5	203.287255	28.9	534468.0	3.252596	Υ

Calibration / 1,3-Dichlorobenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 1.312

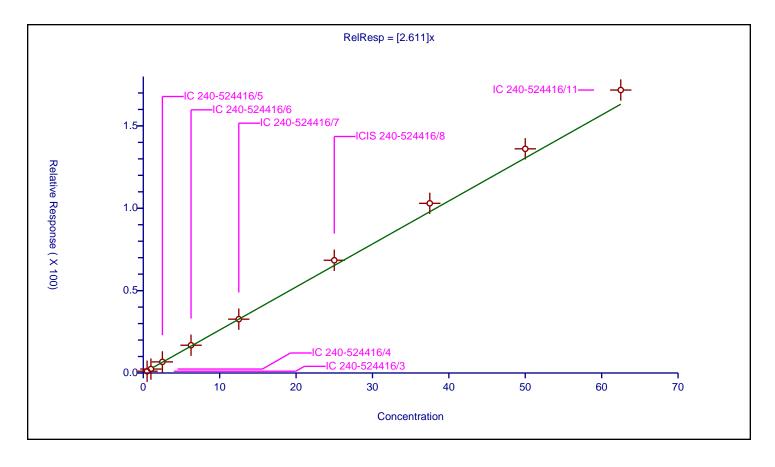
Error Coefficients

Standard Error:790000Relative Standard Error:2.6Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.64118	28.9	470789.0	1.28236	Υ
2	IC 240-524416/4	1.0	1.235883	28.9	488704.0	1.235883	Υ
3	IC 240-524416/5	2.5	3.334848	28.9	463903.0	1.333939	Υ
4	IC 240-524416/6	6.25	8.343971	28.9	488181.0	1.335035	Υ
5	IC 240-524416/7	12.5	16.441397	28.9	505417.0	1.315312	Υ
6	ICIS 240-524416/8	25.0	32.907629	28.9	502732.0	1.316305	Υ
7	IC 240-524416/9	37.5	50.278867	28.9	509597.0	1.34077	Υ
8	IC 240-524416/10	50.0	65.680465	28.9	520173.0	1.313609	Υ
9	IC 240-524416/11	62.5	83.263911	28.9	534468.0	1.332223	Υ

Calibration / 4-Isopropyltoluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.611

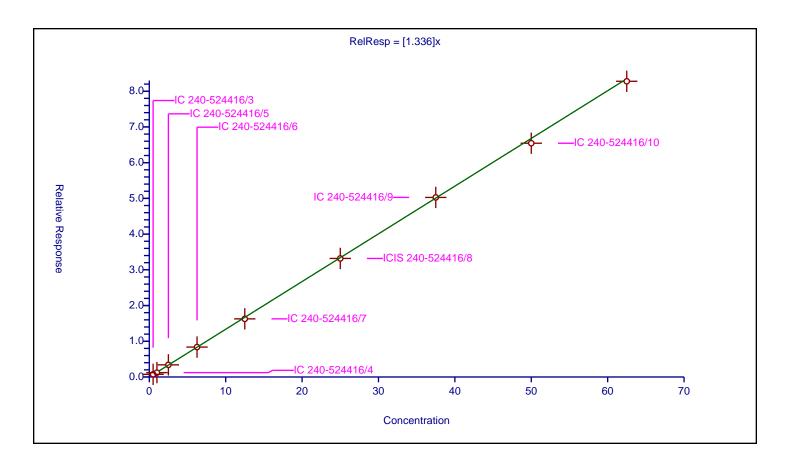
Curve Coefficients

Error Coefficients

Standard Error:1630000Relative Standard Error:8.0Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	1.070086	28.9	470789.0	2.140172	Υ
2	IC 240-524416/4	1.0	2.39554	28.9	488704.0	2.39554	Υ
3	IC 240-524416/5	2.5	6.741649	28.9	463903.0	2.69666	Υ
4	IC 240-524416/6	6.25	16.85157	28.9	488181.0	2.696251	Υ
5	IC 240-524416/7	12.5	32.676544	28.9	505417.0	2.614123	Υ
6	ICIS 240-524416/8	25.0	68.438225	28.9	502732.0	2.737529	Υ
7	IC 240-524416/9	37.5	103.000184	28.9	509597.0	2.746672	Υ
8	IC 240-524416/10	50.0	136.092341	28.9	520173.0	2.721847	Υ
9	IC 240-524416/11	62.5	171.784423	28.9	534468.0	2.748551	Υ

Calibration / 1,4-Dichlorobenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	i
Intercept:	0
Slope:	1.336

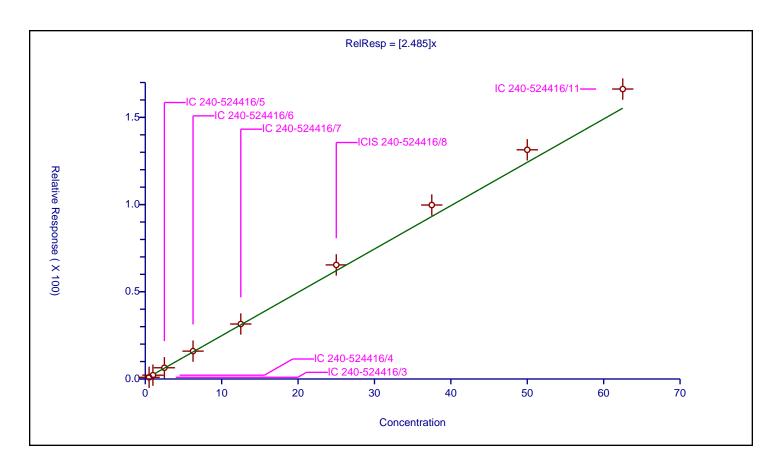
Error Coefficients

Standard Error:787000Relative Standard Error:5.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.74922	28.9	470789.0	1.49844	Υ
2	IC 240-524416/4	1.0	1.22104	28.9	488704.0	1.22104	Υ
3	IC 240-524416/5	2.5	3.397519	28.9	463903.0	1.359008	Υ
4	IC 240-524416/6	6.25	8.374518	28.9	488181.0	1.339923	Υ
5	IC 240-524416/7	12.5	16.271456	28.9	505417.0	1.301717	Υ
6	ICIS 240-524416/8	25.0	33.187413	28.9	502732.0	1.327497	Υ
7	IC 240-524416/9	37.5	50.269623	28.9	509597.0	1.340523	Υ
8	IC 240-524416/10	50.0	65.442508	28.9	520173.0	1.30885	Υ
9	IC 240-524416/11	62.5	82.782234	28.9	534468.0	1.324516	Υ

Calibration / n-Butylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.485

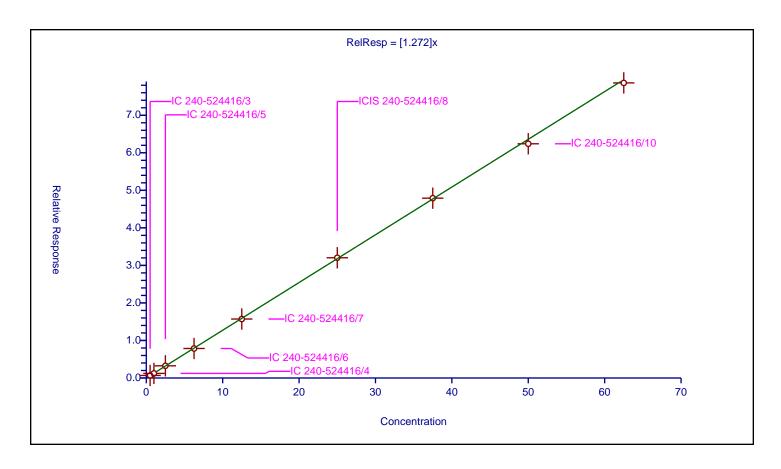
Curve Coefficients

Error Coefficients

Standard Error:1570000Relative Standard Error:9.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.989

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.978436	28.9	470789.0	1.956873	Υ
2	IC 240-524416/4	1.0	2.183065	28.9	488704.0	2.183065	Υ
3	IC 240-524416/5	2.5	6.443493	28.9	463903.0	2.577397	Υ
4	IC 240-524416/6	6.25	15.973703	28.9	488181.0	2.555792	Υ
5	IC 240-524416/7	12.5	31.526072	28.9	505417.0	2.522086	Υ
6	ICIS 240-524416/8	25.0	65.418778	28.9	502732.0	2.616751	Υ
7	IC 240-524416/9	37.5	99.758442	28.9	509597.0	2.660225	Υ
8	IC 240-524416/10	50.0	131.415988	28.9	520173.0	2.62832	Υ
9	IC 240-524416/11	62.5	166.259894	28.9	534468.0	2.660158	Υ

Calibration / 1,2-Dichlorobenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

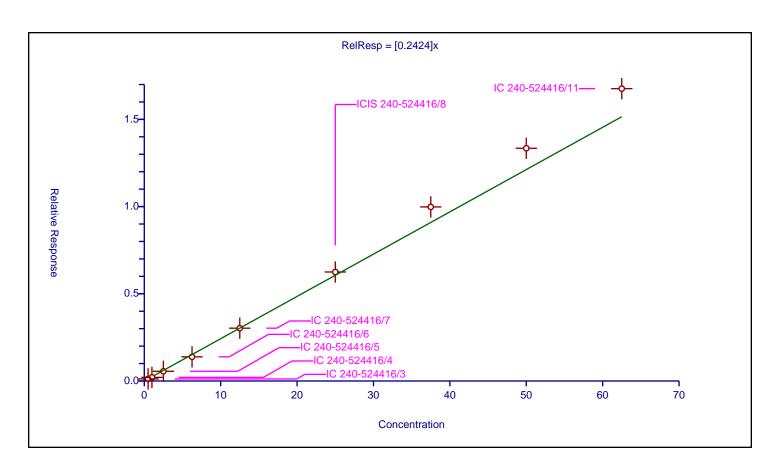
Curve Coefficients	
Intercept:	0
Slope:	1.272

Error Coefficients

Standard Error:750000Relative Standard Error:2.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.673162	28.9	470789.0	1.346325	Υ
2	IC 240-524416/4	1.0	1.223228	28.9	488704.0	1.223228	Υ
3	IC 240-524416/5	2.5	3.2457	28.9	463903.0	1.29828	Υ
4	IC 240-524416/6	6.25	7.861141	28.9	488181.0	1.257783	Υ
5	IC 240-524416/7	12.5	15.710687	28.9	505417.0	1.256855	Υ
6	ICIS 240-524416/8	25.0	32.031832	28.9	502732.0	1.281273	Υ
7	IC 240-524416/9	37.5	47.913885	28.9	509597.0	1.277704	Υ
8	IC 240-524416/10	50.0	62.404183	28.9	520173.0	1.248084	Υ
9	IC 240-524416/11	62.5	78.628225	28.9	534468.0	1.258052	Υ

Calibration


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.2424

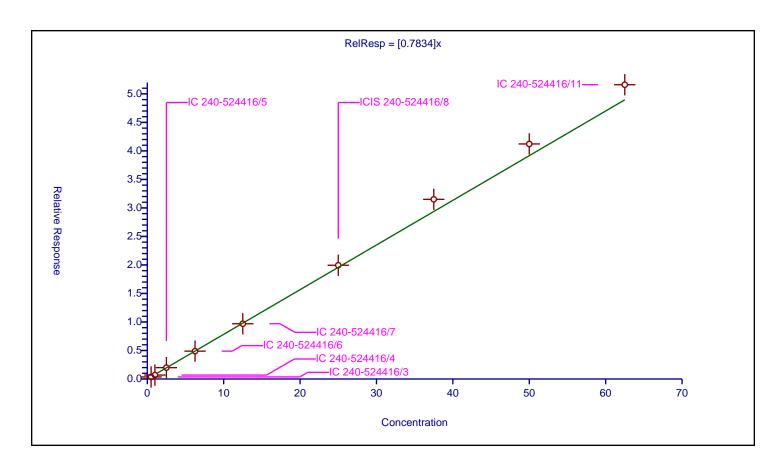
Error Coefficients

Standard Error:158000Relative Standard Error:9.2Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.118476	28.9	470789.0	0.236951	Υ
2	IC 240-524416/4	1.0	0.207094	28.9	488704.0	0.207094	Υ
3	IC 240-524416/5	2.5	0.557002	28.9	463903.0	0.222801	Υ
4	IC 240-524416/6	6.25	1.38491	28.9	488181.0	0.221586	Υ
5	IC 240-524416/7	12.5	3.028051	28.9	505417.0	0.242244	Υ
6	ICIS 240-524416/8	25.0	6.249982	28.9	502732.0	0.249999	Υ
7	IC 240-524416/9	37.5	9.98088	28.9	509597.0	0.266157	Υ
8	IC 240-524416/10	50.0	13.344304	28.9	520173.0	0.266886	Υ
9	IC 240-524416/11	62.5	16.762733	28.9	534468.0	0.268204	Υ

Calibration / 1,2,4-Trichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7834

Curve Coefficients

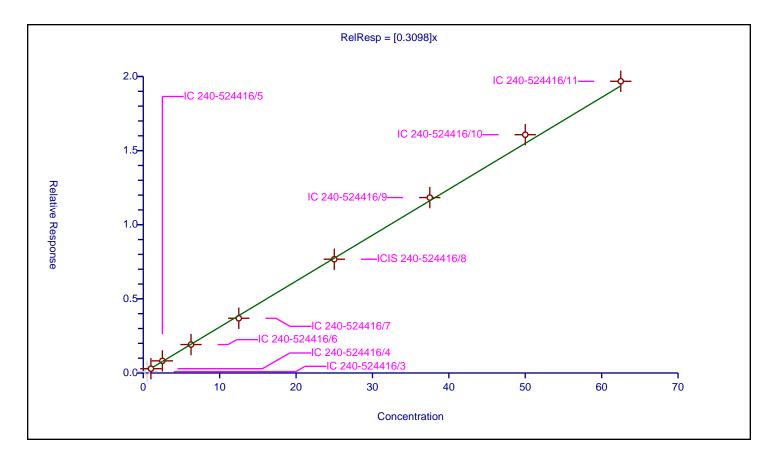
Error Coefficients

Standard Error:491000Relative Standard Error:6.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.360829	28.9	470789.0	0.721657	Υ
2	IC 240-524416/4	1.0	0.688343	28.9	488704.0	0.688343	Υ
3	IC 240-524416/5	2.5	1.988412	28.9	463903.0	0.795365	Υ
4	IC 240-524416/6	6.25	4.883592	28.9	488181.0	0.781375	Υ
5	IC 240-524416/7	12.5	9.690095	28.9	505417.0	0.775208	Υ
6	ICIS 240-524416/8	25.0	19.949618	28.9	502732.0	0.797985	Υ
7	IC 240-524416/9	37.5	31.507651	28.9	509597.0	0.840204	Υ
8	IC 240-524416/10	50.0	41.223806	28.9	520173.0	0.824476	Υ
9	IC 240-524416/11	62.5	51.613408	28.9	534468.0	0.825815	Υ

Calibration / Hexachlorobutadiene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3098

Curve Coefficients

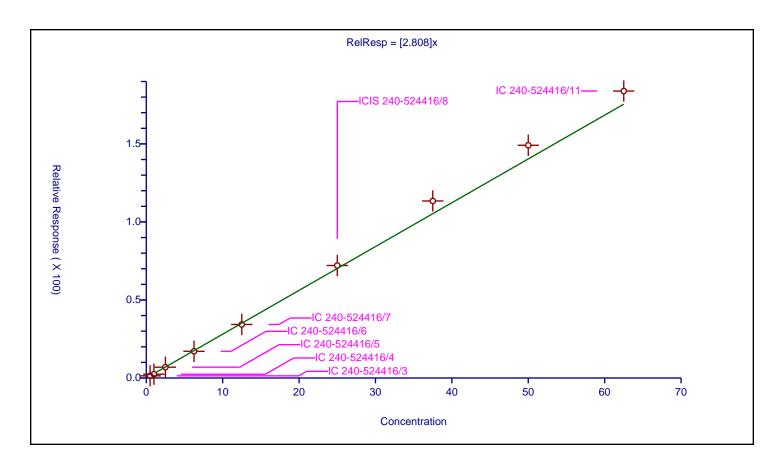
Error Coefficients

Standard Error:201000Relative Standard Error:4.0Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.091773	28.9	470789.0	0.183545	N
2	IC 240-524416/4	1.0	0.290417	28.9	488704.0	0.290417	Υ
3	IC 240-524416/5	2.5	0.817779	28.9	463903.0	0.327112	Υ
4	IC 240-524416/6	6.25	1.919302	28.9	488181.0	0.307088	Υ
5	IC 240-524416/7	12.5	3.69123	28.9	505417.0	0.295298	Υ
6	ICIS 240-524416/8	25.0	7.674942	28.9	502732.0	0.306998	Υ
7	IC 240-524416/9	37.5	11.833474	28.9	509597.0	0.315559	Υ
8	IC 240-524416/10	50.0	16.07439	28.9	520173.0	0.321488	Υ
9	IC 240-524416/11	62.5	19.676968	28.9	534468.0	0.314831	Υ

Calibration / Naphthalene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.808

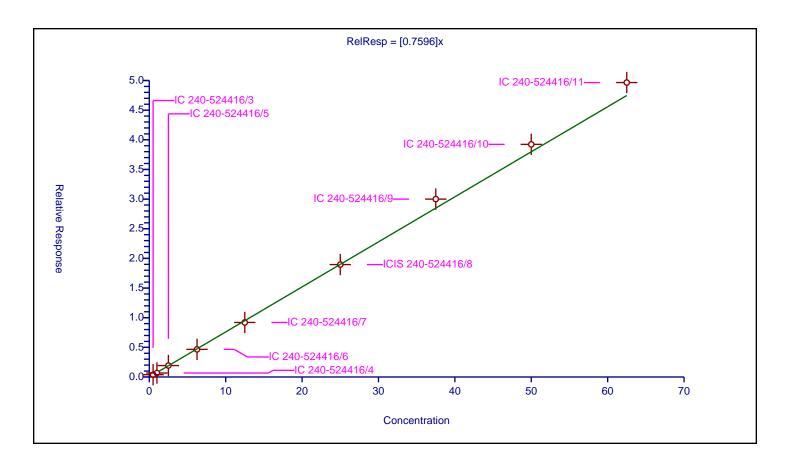
Curve Coefficients

Error Coefficients

Standard Error:1760000Relative Standard Error:6.4Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	1.377816	28.9	470789.0	2.755632	Υ
2	IC 240-524416/4	1.0	2.424872	28.9	488704.0	2.424872	Υ
3	IC 240-524416/5	2.5	6.922997	28.9	463903.0	2.769199	Υ
4	IC 240-524416/6	6.25	17.121519	28.9	488181.0	2.739443	Υ
5	IC 240-524416/7	12.5	34.313507	28.9	505417.0	2.745081	Υ
6	ICIS 240-524416/8	25.0	72.09657	28.9	502732.0	2.883863	Υ
7	IC 240-524416/9	37.5	113.441107	28.9	509597.0	3.025096	Υ
8	IC 240-524416/10	50.0	149.141741	28.9	520173.0	2.982835	Υ
9	IC 240-524416/11	62.5	183.887678	28.9	534468.0	2.942203	Υ

/ 1,2,3-Trichlorobenzene


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 0.7596

Error Coefficients

Standard Error:469000Relative Standard Error:5.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 240-524416/3	0.5	0.387348	28.9	470789.0	0.774695	Υ
2	IC 240-524416/4	1.0	0.670721	28.9	488704.0	0.670721	Υ
3	IC 240-524416/5	2.5	1.93116	28.9	463903.0	0.772464	Υ
4	IC 240-524416/6	6.25	4.657568	28.9	488181.0	0.745211	Υ
5	IC 240-524416/7	12.5	9.19474	28.9	505417.0	0.735579	Υ
6	ICIS 240-524416/8	25.0	18.957757	28.9	502732.0	0.75831	Υ
7	IC 240-524416/9	37.5	29.998445	28.9	509597.0	0.799959	Υ
8	IC 240-524416/10	50.0	39.230647	28.9	520173.0	0.784613	Υ
9	IC 240-524416/11	62.5	49.654957	28.9	534468.0	0.794479	Υ

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: ICV 240-522080/28 Calibration Date: 04/08/2022 01:37

Instrument ID: A3UX22 Calib Start Date: 04/07/2022 15:46

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/07/2022 18:55

Lab File ID: 225060.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dibromofluoromethane (Surr)	Ave	0.2712	0.2586		0.0276	0.0289	-4.6	30.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2973	0.2825		0.0275	0.0289	-5.0	30.0
Toluene-d8 (Surr)	Ave	1.331	1.303		0.0283	0.0289	-2.1	30.0
4-Bromofluorobenzene (Surr)	Ave	0.5049	0.4871		0.0279	0.0289	-3.5	30.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: ICV 240-522080/28 Calibration Date: 04/08/2022 01:37

Instrument ID: A3UX22 Calib Start Date: 04/07/2022 21:40

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/08/2022 00:50

Lab File ID: 225060.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Acetonitrile	Ave	0.0622	0.0570		0.229	0.250	-8.4	30.0
Diisopropyl ether	Ave	0.2011	0.1997		0.0248	0.0250	-0.7	30.0
2-Chloro-1,3-butadiene	Ave	0.3881	0.3766		0.0243	0.0250	-3.0	30.0
Ethyl-t-butyl ether (ETBE)	Ave	0.7036	0.7117		0.0253	0.0250	1.1	30.0
Ethyl acetate	Ave	0.2958	0.3037		0.0513	0.0500	2.7	30.0
Propionitrile	Ave	0.0686	0.0668		0.244	0.250	-2.6	30.0
Methacrylonitrile	Ave	0.1922	0.1961		0.255	0.250	2.1	30.0
Tert-amyl-methyl ether (TAME)	Ave	0.9565	0.9665		0.0253	0.0250	1.0	30.0
n-Butanol	Ave	0.0137	0.0145		0.661	0.625	5.8	30.0
Ethyl acrylate	Ave	0.3851	0.3893		0.0253	0.0250	1.1	30.0
Methyl methacrylate	Ave	0.2378	0.2398		0.0504	0.0500	0.8	30.0
2-Nitropropane	Ave	0.1057	0.0957		0.0453	0.0500	-9.4	30.0
n-Butyl acetate	Ave	0.5940	0.6061		0.0255	0.0250	2.0	30.0
1-Chlorohexane	Ave	0.4836	0.4740		0.0245	0.0250	-2.0	30.0
Cyclohexanone	Ave	0.0292	0.0327		0.281	0.250	12.3	30.0
Pentachloroethane	Ave	0.0584	0.0234		0.0200	0.0500	-59.9*	30.0
1,2,3-Trimethylbenzene	Ave	2.655	2.851		0.0268	0.0250	7.4	30.0
Benzyl chloride	Ave	1.625	1.520		0.0234	0.0250	-6.5	30.0
1,3,5-Trichlorobenzene	Ave	0.8813	0.9467		0.0269	0.0250	7.4	30.0
2-Methylnaphthalene	Ave	1.278	1.353		0.0529	0.0500	5.9	30.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: ICV 240-524416/14 Calibration Date: 04/28/2022 20:14

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 225406.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2760	0.2814	0.1000	0.0255	0.0250	1.9	30.0
Chloromethane	Ave	0.3111	0.3023	0.1000	0.0243	0.0250	-2.8	30.0
Vinyl chloride	Ave	0.3509	0.3444	0.1000	0.0245	0.0250	-1.9	30.0
Butadiene	Ave	0.3466	0.2713		0.0196	0.0250	-21.7	30.0
Bromomethane	Lin1		0.1663	0.0500	0.0294	0.0250	17.8	30.0
Chloroethane	Qua		0.2063	0.0500	0.0243	0.0250	-2.9	30.0
Trichlorofluoromethane	Ave	0.4379	0.3969	0.1000	0.0227	0.0250	-9.3	30.0
Dichlorofluoromethane	Ave	0.5584	0.5110		0.0229	0.0250	-8.5	30.0
Ethyl ether	Ave	0.2372	0.2067		0.0218	0.0250	-12.8	30.0
1,1,2-Trichloro-1,2,2-trichf luoroethane	Ave	0.2330	0.2021	0.0500	0.0217	0.0250	-13.3	30.0
1,1-Dichloroethene	Ave	0.2272	0.2052	0.1000	0.0226	0.0250	-9.7	30.0
Acrolein	Ave	0.0537	0.0409		0.0951	0.125	-23.9	30.0
Acetone	Lin1		0.1224	0.0100	0.0465	0.0500	-6.9	50.0
Iodomethane	Ave	0.2017	0.2089		0.0259	0.0250	3.6	30.0
Carbon disulfide	Ave	0.7226	0.6027	0.1000	0.0209	0.0250	-16.6	30.0
3-Chloro-1-propene	Ave	0.3537	0.3186		0.0225	0.0250	-9.9	30.0
Methyl acetate	Ave	0.2800	0.2622	0.1000	0.0468	0.0500	-6.3	50.0
Methylene Chloride	Ave	0.2714	0.2489	0.1000	0.0229	0.0250	-8.3	50.0
tert-Butyl alcohol	Ave	0.0455	0.0519		0.285	0.250	14.2	30.0
Methyl tert-butyl ether	Ave	0.7279	0.7002	0.1000	0.0240	0.0250	-3.8	30.0
trans-1,2-Dichloroethene	Ave	0.2593	0.2313	0.1000	0.0223	0.0250	-10.8	30.0
Acrylonitrile	Ave	0.1519	0.1467		0.241	0.250	-3.4	30.0
Hexane	Ave	0.3325	0.2869		0.0216	0.0250	-13.7	30.0
1,1-Dichloroethane	Ave	0.4686	0.4207	0.2000	0.0224	0.0250	-10.2	30.0
Vinyl acetate	Ave	0.3689	0.2640		0.0179	0.0250	-28.4	30.0
2,2-Dichloropropane	Ave	0.0644	0.0571		0.0222	0.0250	-11.4	30.0
cis-1,2-Dichloroethene	Ave	0.2889	0.2664	0.1000	0.0230	0.0250	-7.8	30.0
2-Butanone	Ave	0.0512	0.0498	0.0100	0.0486	0.0500	-2.8	50.0
Bromochloromethane	Ave	0.2162	0.1873		0.0217	0.0250	-13.4	30.0
Tetrahydrofuran	Ave	0.1309	0.1232		0.0471	0.0500	-5.9	30.0
Chloroform	Ave	0.4748	0.4320	0.2000	0.0227	0.0250	-9.0	30.0
Cyclohexane	Ave	0.4000	0.3554	0.1000	0.0222	0.0250	-11.1	30.0
1,1,1-Trichloroethane	Ave	0.3821	0.3543	0.1000	0.0232	0.0250	-7.3	30.0
Carbon tetrachloride	Ave	0.2864	0.2649	0.1000	0.0231	0.0250	-7.5	30.0
1,1-Dichloropropene	Ave	0.3519	0.3310		0.0235	0.0250	-5.9	30.0
Benzene	Ave	1.036	0.9709	0.5000	0.0234	0.0250	-6.3	30.0
Isobutyl alcohol	Qua		0.0123		0.669	0.625	7.1	30.0
1,2-Dichloroethane	Ave	0.3644	0.3314	0.1000	0.0227	0.0250	-9.1	30.0
n-Heptane	Ave	0.0673	0.0605		0.0225	0.0250	-10.1	30.0
Trichloroethene	Ave	0.2548	0.2502	0.1500	0.0246	0.0250	-1.8	30.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: ICV 240-524416/14 Calibration Date: 04/28/2022 20:14

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: $0.18 \, (mm)$ Calib End Date: 0.4/28/2022 19:03

Lab File ID: 225406.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4217	0.3833	0.1000	0.0227	0.0250	-9.1	30.0
1,2-Dichloropropane	Ave	0.2550	0.2452	0.1000	0.0240	0.0250	-3.8	30.0
Dibromomethane	Ave	0.1559	0.1462		0.0234	0.0250	-6.2	30.0
1,4-Dioxane	Lin1		0.0057		0.530	0.500	5.9	50.0
Bromodichloromethane	Ave	0.3392	0.3193	0.1500	0.0235	0.0250	-5.9	30.0
2-Chloroethyl vinyl ether	Ave	0.1846	0.1822		0.0247	0.0250	-1.3	30.0
cis-1,3-Dichloropropene	Ave	0.3798	0.3620	0.1500	0.0238	0.0250	-4.7	50.0
4-Methyl-2-pentanone	Ave	0.3275	0.3209	0.0500	0.0490	0.0500	-2.0	50.0
Toluene	Ave	1.453	1.372	0.4000	0.0236	0.0250	-5.6	30.0
trans-1,3-Dichloropropene	Ave	0.4240	0.4319	0.1000	0.0255	0.0250	1.9	30.0
Ethyl methacrylate	Ave	0.4165	0.4478		0.0269	0.0250	7.5	30.0
1,1,2-Trichloroethane	Ave	0.3056	0.3048	0.1000	0.0249	0.0250	-0.3	30.0
Tetrachloroethene	Ave	0.3088	0.3064	0.1500	0.0248	0.0250	-0.8	30.0
1,3-Dichloropropane	Ave	0.5437	0.5342		0.0246	0.0250	-1.8	30.0
2-Hexanone	Ave	0.3385	0.3423	0.0500	0.0506	0.0500	1.1	50.0
Dibromochloromethane	Ave	0.2969	0.2956		0.0249	0.0250	-0.4	30.0
1,2-Dibromoethane	Ave	0.3178	0.3201		0.0252	0.0250	0.7	30.0
Chlorobenzene	Ave	0.8873	0.8622	0.3000	0.0243	0.0250	-2.8	30.0
Ethylbenzene	Ave	0.4892	0.4786		0.0245	0.0250	-2.2	30.0
1,1,1,2-Tetrachloroethane	Ave	0.2639	0.2676		0.0253	0.0250	1.4	30.0
m-Xylene & p-Xylene	Ave	0.6020	0.5822		0.0242	0.0250	-3.3	30.0
o-Xylene	Ave	0.5852	0.5802		0.0248	0.0250	-0.8	30.0
Styrene	Ave	0.9830	0.9718	0.3000	0.0247	0.0250	-1.1	30.0
Bromoform	Ave	0.1904	0.1938	0.1000	0.0255	0.0250	1.8	30.0
Isopropylbenzene	Ave	1.533	1.517	0.1000	0.0247	0.0250	-1.0	30.0
Bromobenzene	Ave	0.6663	0.6628		0.0249	0.0250	-0.5	30.0
1,1,2,2-Tetrachloroethane	Ave	0.9613	0.9334	0.3000	0.0243	0.0250	-2.9	30.0
n-Propylbenzene	Ave	0.7996	0.8082		0.0253	0.0250	1.1	30.0
1,2,3-Trichloropropane	Ave	0.3079	0.3122		0.0253	0.0250	1.4	30.0
trans-1,4-Dichloro-2-butene	Ave	0.2342	0.2533		0.0270	0.0250	8.2	30.0
2-Chlorotoluene	Ave	0.6772	0.6792		0.0251	0.0250	0.3	30.0
1,3,5-Trimethylbenzene	Ave	2.456	2.514		0.0256	0.0250	2.4	30.0
4-Chlorotoluene	Ave	0.6912	0.6957		0.0252	0.0250	0.7	30.0
tert-Butylbenzene	Ave	2.088	2.126		0.0255	0.0250	1.8	30.0
1,2,4-Trimethylbenzene	Ave	2.540	2.571		0.0253	0.0250	1.2	30.0
sec-Butylbenzene	Ave	3.175	3.225		0.0254	0.0250	1.6	30.0
1,3-Dichlorobenzene	Ave	1.312	1.310	0.6000	0.0250	0.0250	-0.1	30.0
p-Isopropyltoluene	Ave	2.611	2.716		0.0260	0.0250	4.0	30.0
1,4-Dichlorobenzene	Ave	1.336	1.338	0.5000	0.0251	0.0250	0.2	30.0
n-Butylbenzene	Ave	2.485	2.542		0.0256	0.0250	2.3	30.0
1,2-Dichlorobenzene	Ave	1.272	1.282	0.4000	0.0252	0.0250	0.8	30.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: ICV 240-524416/14 Calibration Date: 04/28/2022 20:14

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 225406.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.2424	0.2457	0.0500	0.0253	0.0250	1.3	50.0
1,2,4-Trichlorobenzene	Ave	0.7834	0.7984	0.2000	0.0255	0.0250	1.9	50.0
Hexachlorobutadiene	Ave	0.3098	0.3072		0.0248	0.0250	-0.9	50.0
Naphthalene	Ave	2.808	2.856		0.0254	0.0250	1.7	50.0
1,2,3-Trichlorobenzene	Ave	0.7596	0.7503		0.0247	0.0250	-1.2	30.0
Dibromofluoromethane (Surr)	Ave	0.2685	0.2730		0.0294	0.0289	1.7	30.0
1,2-Dichloroethane-d4 (Surr)	Lin1		0.3064		0.0288	0.0289	-0.2	30.0
Toluene-d8 (Surr)	Ave	1.330	1.399		0.0304	0.0289	5.2	30.0
4-Bromofluorobenzene (Surr)	Ave	0.5036	0.5164		0.0296	0.0289	2.5	30.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540508/3 Calibration Date: 08/29/2022 11:30

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 227976.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2760	0.2962	0.1000	0.0268	0.0250	7.3	20.0
Chloromethane	Ave	0.3111	0.2889	0.1000	0.0232	0.0250	-7.1	20.0
Vinyl chloride	Ave	0.3509	0.3143	0.1000	0.0224	0.0250	-10.4	20.0
Butadiene	Ave	0.3466	0.2783		0.0201	0.0250	-19.7	20.0
Bromomethane	Lin1		0.0837	0.0500	0.0144	0.0250	-42.2*	20.0
Chloroethane	Qua		0.1435	0.0500	0.0155	0.0250	-38.2*	20.0
Trichlorofluoromethane	Ave	0.4379	0.3651	0.1000	0.0208	0.0250	-16.6	20.0
Dichlorofluoromethane	Ave	0.5584	0.4368		0.0196	0.0250	-21.8*	20.0
Ethyl ether	Ave	0.2372	0.1965		0.0207	0.0250	-17.2	20.0
1,1,2-Trichloro-1,2,2-trichf luoroethane	Ave	0.2330	0.2411	0.0500	0.0259	0.0250	3.5	20.0
1,1-Dichloroethene	Ave	0.2272	0.2238	0.1000	0.0246	0.0250	-1.5	20.0
Acrolein	Ave	0.0537	0.0319		0.0743	0.125	-40.5*	20.0
Acetone	Lin1		0.1327	0.0100	0.0506	0.0500	1.3	50.0
Iodomethane	Ave	0.2017	0.1416		0.0175	0.0250	-29.8*	20.0
Carbon disulfide	Ave	0.7226	0.7116	0.1000	0.0246	0.0250	-1.5	20.0
3-Chloro-1-propene	Ave	0.3537	0.3346		0.0236	0.0250	-5.4	20.0
Methyl acetate	Ave	0.2800	0.2777	0.1000	0.0496	0.0500	-0.8	50.0
Methylene Chloride	Ave	0.2714	0.2711	0.1000	0.0250	0.0250	-0.1	50.0
tert-Butyl alcohol	Ave	0.0455	0.0551		0.303	0.250	21.2*	20.0
Methyl tert-butyl ether	Ave	0.7279	0.7100	0.1000	0.0244	0.0250	-2.5	20.0
trans-1,2-Dichloroethene	Ave	0.2593	0.2618	0.1000	0.0252	0.0250	1.0	20.0
Acrylonitrile	Ave	0.1519	0.1563		0.257	0.250	2.9	20.0
Hexane	Ave	0.3325	0.3482		0.0262	0.0250	4.7	20.0
1,1-Dichloroethane	Ave	0.4686	0.4645	0.2000	0.0248	0.0250	-0.9	20.0
Vinyl acetate	Ave	0.3689	0.4444		0.0301	0.0250	20.5*	20.0
2,2-Dichloropropane	Ave	0.0644	0.0696		0.0270	0.0250	8.1	20.0
cis-1,2-Dichloroethene	Ave	0.2889	0.2821	0.1000	0.0244	0.0250	-2.4	20.0
2-Butanone	Ave	0.0512	0.0549	0.0100	0.0536	0.0500	7.2	50.0
Bromochloromethane	Ave	0.2162	0.2030		0.0235	0.0250	-6.1	20.0
Tetrahydrofuran	Ave	0.1309	0.1326		0.0506	0.0500	1.3	20.0
Chloroform	Ave	0.4748	0.4525	0.2000	0.0238	0.0250	-4.7	20.0
Cyclohexane	Ave	0.4000	0.3929	0.1000	0.0246	0.0250	-1.8	20.0
1,1,1-Trichloroethane	Ave	0.3821	0.3851	0.1000	0.0252	0.0250	0.8	20.0
Carbon tetrachloride	Ave	0.2864	0.3335	0.1000	0.0291	0.0250	16.4	20.0
1,1-Dichloropropene	Ave	0.3519	0.3733		0.0265	0.0250	6.1	20.0
Benzene	Ave	1.036	1.078	0.5000	0.0260	0.0250	4.0	20.0
Isobutyl alcohol	Qua		0.0155		0.799	0.625	27.8*	20.0
1,2-Dichloroethane	Ave	0.3644	0.3414	0.1000	0.0234	0.0250	-6.3	20.0
n-Heptane	Ave	0.0673	0.0607		0.0225	0.0250	-9.8	20.0
Trichloroethene	Ave	0.2548	0.2737	0.1500	0.0269	0.0250	7.4	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540508/3 Calibration Date: 08/29/2022 11:30

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 227976.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4217	0.4048	0.1000	0.0240	0.0250	-4.0	20.0
1,2-Dichloropropane	Ave	0.2550	0.2581	0.1000	0.0253	0.0250	1.2	20.0
Dibromomethane	Ave	0.1559	0.1723		0.0276	0.0250	10.5	20.0
1,4-Dioxane	Lin1		0.0068		0.631	0.500	26.2	50.0
Bromodichloromethane	Ave	0.3392	0.3281	0.1500	0.0242	0.0250	-3.3	20.0
2-Chloroethyl vinyl ether	Ave	0.1846	0.1949		0.0528	0.0500	5.6	20.0
cis-1,3-Dichloropropene	Ave	0.3798	0.3989	0.1500	0.0263	0.0250	5.0	50.0
4-Methyl-2-pentanone	Ave	0.3275	0.3458	0.0500	0.0528	0.0500	5.6	50.0
Toluene	Ave	1.453	1.500	0.4000	0.0258	0.0250	3.2	20.0
trans-1,3-Dichloropropene	Ave	0.4240	0.4701	0.1000	0.0277	0.0250	10.9	20.0
Ethyl methacrylate	Ave	0.4165	0.4473		0.0268	0.0250	7.4	20.0
1,1,2-Trichloroethane	Ave	0.3056	0.3205	0.1000	0.0262	0.0250	4.9	20.0
Tetrachloroethene	Ave	0.3088	0.3718	0.1500	0.0301	0.0250	20.4*	20.0
1,3-Dichloropropane	Ave	0.5437	0.5712		0.0263	0.0250	5.1	20.0
2-Hexanone	Ave	0.3385	0.3601	0.0500	0.0532	0.0500	6.4	50.0
Dibromochloromethane	Ave	0.2969	0.3327		0.0280	0.0250	12.1	20.0
1,2-Dibromoethane	Ave	0.3178	0.3366		0.0265	0.0250	5.9	20.0
Chlorobenzene	Ave	0.8873	0.9439	0.3000	0.0266	0.0250	6.4	20.0
Ethylbenzene	Ave	0.4892	0.4989		0.0255	0.0250	2.0	20.0
1,1,1,2-Tetrachloroethane	Ave	0.2639	0.3231		0.0306	0.0250	22.4*	20.0
m-Xylene & p-Xylene	Ave	0.6020	0.6167		0.0256	0.0250	2.4	20.0
o-Xylene	Ave	0.5852	0.5997		0.0256	0.0250	2.5	20.0
Styrene	Ave	0.9830	1.053	0.3000	0.0268	0.0250	7.2	20.0
Bromoform	Ave	0.1904	0.2631	0.1000	0.0346	0.0250	38.2*	20.0
Isopropylbenzene	Ave	1.533	1.590	0.1000	0.0259	0.0250	3.7	20.0
Bromobenzene	Ave	0.6663	0.7492		0.0281	0.0250	12.4	20.0
1,1,2,2-Tetrachloroethane	Ave	0.9613	1.030	0.3000	0.0268	0.0250	7.1	20.0
n-Propylbenzene	Ave	0.7996	0.8141		0.0255	0.0250	1.8	20.0
1,2,3-Trichloropropane	Ave	0.3079	0.3240		0.0263	0.0250	5.2	20.0
trans-1,4-Dichloro-2-butene	Ave	0.2342	0.2916		0.0311	0.0250	24.5*	20.0
2-Chlorotoluene	Ave	0.6772	0.7326		0.0270	0.0250	8.2	20.0
1,3,5-Trimethylbenzene	Ave	2.456	2.475		0.0252	0.0250	0.7	20.0
4-Chlorotoluene	Ave	0.6912	0.7584		0.0274	0.0250	9.7	20.0
tert-Butylbenzene	Ave	2.088	2.080		0.0249	0.0250	-0.3	20.0
1,2,4-Trimethylbenzene	Ave	2.540	2.545		0.0250	0.0250	0.2	20.0
sec-Butylbenzene	Ave	3.175	3.040		0.0239	0.0250	-4.2	20.0
1,3-Dichlorobenzene	Ave	1.312	1.434	0.6000	0.0273	0.0250	9.3	20.0
p-Isopropyltoluene	Ave	2.611	2.606		0.0249	0.0250	-0.2	20.0
1,4-Dichlorobenzene	Ave	1.336	1.433	0.5000	0.0268	0.0250	7.2	20.0
n-Butylbenzene	Ave	2.485	2.338		0.0235	0.0250	-5.9	20.0
1,2-Dichlorobenzene	Ave	1.272	1.347	0.4000	0.0265	0.0250	5.9	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540508/3 Calibration Date: 08/29/2022 11:30

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 227976.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.2424	0.2906	0.0500	0.0300	0.0250	19.9	50.0
1,2,4-Trichlorobenzene	Ave	0.7834	0.8080	0.2000	0.0258	0.0250	3.1	50.0
Hexachlorobutadiene	Ave	0.3098	0.3046		0.0246	0.0250	-1.7	50.0
Naphthalene	Ave	2.808	2.693		0.0240	0.0250	-4.1	50.0
1,2,3-Trichlorobenzene	Ave	0.7596	0.7681		0.0253	0.0250	1.1	20.0
Dibromofluoromethane (Surr)	Ave	0.2685	0.2804		0.0302	0.0289	4.4	20.0
1,2-Dichloroethane-d4 (Surr)	Lin1		0.2958		0.0278	0.0289	-3.7	20.0
Toluene-d8 (Surr)	Ave	1.330	1.448		0.0315	0.0289	8.9	20.0
4-Bromofluorobenzene (Surr)	Ave	0.5036	0.5341		0.0307	0.0289	6.1	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCV 240-540508/4 Calibration Date: 08/29/2022 11:54

Instrument ID: A3UX22 Calib Start Date: 04/07/2022 21:40

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/08/2022 00:50

Lab File ID: 227977.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Acetonitrile	Ave	0.0622	0.0609		0.245	0.250	-2.1	20.0
Diisopropyl ether	Ave	0.2011	0.2075		0.0258	0.0250	3.2	20.0
2-Chloro-1,3-butadiene	Ave	0.3881	0.3880		0.0250	0.0250	0.0	20.0
Ethyl-t-butyl ether (ETBE)	Ave	0.7036	0.6860		0.0244	0.0250	-2.5	20.0
Ethyl acetate	Ave	0.2958	0.3390		0.0573	0.0500	14.6	20.0
Propionitrile	Ave	0.0686	0.0714		0.260	0.250	4.1	20.0
Methacrylonitrile	Ave	0.1922	0.2195		0.286	0.250	14.2	20.0
Tert-amyl-methyl ether (TAME)	Ave	0.9565	0.8660		0.0226	0.0250	-9.5	20.0
n-Butanol	Ave	0.0137	0.0130		0.593	0.625	-5.1	20.0
Methyl methacrylate	Ave	0.2378	0.2634		0.0554	0.0500	10.8	20.0
2-Nitropropane	Ave	0.1057	0.0990		0.0468	0.0500	-6.4	20.0
n-Butyl acetate	Ave	0.5940	0.5307		0.0223	0.0250	-10.7	20.0
1-Chlorohexane	Ave	0.4836	0.4592		0.0237	0.0250	-5.0	20.0
Cyclohexanone	Ave	0.0292	0.0252		0.216	0.250	-13.7	20.0
Pentachloroethane	Ave	0.0584	0.2693		0.231	0.0500	361.2*	20.0
1,2,3-Trimethylbenzene	Ave	2.655	2.559		0.0241	0.0250	-3.6	20.0
Benzyl chloride	Ave	1.625	1.358		0.0209	0.0250	-16.4	20.0
1,3,5-Trichlorobenzene	Ave	0.8813	0.9382		0.0266	0.0250	6.5	20.0
2-Methylnaphthalene	Ave	1.278	0.9825		0.0385	0.0500	-23.1*	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540740/3 Calibration Date: 08/30/2022 14:10

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 228006.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2760	0.3118	0.1000	0.0282	0.0250	13.0	20.0
Chloromethane	Ave	0.3111	0.2831	0.1000	0.0227	0.0250	-9.0	20.0
Vinyl chloride	Ave	0.3509	0.3085	0.1000	0.0220	0.0250	-12.1	20.0
Butadiene	Ave	0.3466	0.2834		0.0204	0.0250	-18.2	20.0
Bromomethane	Lin1		0.1126	0.0500	0.0197	0.0250	-21.2*	20.0
Chloroethane	Qua		0.1639	0.0500	0.0181	0.0250	-27.6*	20.0
Trichlorofluoromethane	Ave	0.4379	0.3958	0.1000	0.0226	0.0250	-9.6	20.0
Dichlorofluoromethane	Ave	0.5584	0.4663		0.0209	0.0250	-16.5	20.0
Ethyl ether	Ave	0.2372	0.2208		0.0233	0.0250	-6.9	20.0
1,1,2-Trichloro-1,2,2-trichf luoroethane	Ave	0.2330	0.2566	0.0500	0.0275	0.0250	10.1	20.0
1,1-Dichloroethene	Ave	0.2272	0.2411	0.1000	0.0265	0.0250	6.1	20.0
Acrolein	Ave	0.0537	0.0344		0.0800	0.125	-36.0*	20.0
Acetone	Lin1		0.1453	0.0100	0.0557	0.0500	11.3	50.0
Iodomethane	Ave	0.2017	0.1638		0.0203	0.0250	-18.8	20.0
Carbon disulfide	Ave	0.7226	0.7699	0.1000	0.0266	0.0250	6.5	20.0
3-Chloro-1-propene	Ave	0.3537	0.3328		0.0235	0.0250	-5.9	20.0
Methyl acetate	Ave	0.2800	0.2855	0.1000	0.0510	0.0500	2.0	50.0
Methylene Chloride	Ave	0.2714	0.2643	0.1000	0.0243	0.0250	-2.6	50.0
tert-Butyl alcohol	Ave	0.0455	0.0561		0.308	0.250	23.4*	20.0
Methyl tert-butyl ether	Ave	0.7279	0.6877	0.1000	0.0236	0.0250	-5.5	20.0
trans-1,2-Dichloroethene	Ave	0.2593	0.2573	0.1000	0.0248	0.0250	-0.8	20.0
Acrylonitrile	Ave	0.1519	0.1550		0.255	0.250	2.1	20.0
Hexane	Ave	0.3325	0.3314		0.0249	0.0250	-0.3	20.0
1,1-Dichloroethane	Ave	0.4686	0.4354	0.2000	0.0232	0.0250	-7.1	20.0
Vinyl acetate	Ave	0.3689	0.4625		0.0313	0.0250	25.4*	20.0
2,2-Dichloropropane	Ave	0.0644	0.0686		0.0266	0.0250	6.6	20.0
cis-1,2-Dichloroethene	Ave	0.2889	0.2756	0.1000	0.0238	0.0250	-4.6	20.0
2-Butanone	Ave	0.0512	0.0559	0.0100	0.0546	0.0500	9.3	50.0
Bromochloromethane	Ave	0.2162	0.1981		0.0229	0.0250	-8.4	20.0
Tetrahydrofuran	Ave	0.1309	0.1307		0.0499	0.0500	-0.2	20.0
Chloroform	Ave	0.4748	0.4571	0.2000	0.0241	0.0250	-3.7	20.0
Cyclohexane	Ave	0.4000	0.3855	0.1000	0.0241	0.0250	-3.6	20.0
1,1,1-Trichloroethane	Ave	0.3821	0.3986	0.1000	0.0261	0.0250	4.3	20.0
Carbon tetrachloride	Ave	0.2864	0.3426	0.1000	0.0299	0.0250	19.6	20.0
1,1-Dichloropropene	Ave	0.3519	0.3538		0.0251	0.0250	0.5	20.0
Benzene	Ave	1.036	1.035	0.5000	0.0250	0.0250	-0.1	20.0
Isobutyl alcohol	Qua		0.0173		0.866	0.625	38.6*	20.0
1,2-Dichloroethane	Ave	0.3644	0.3412	0.1000	0.0234	0.0250	-6.4	20.0
n-Heptane	Ave	0.0673	0.0606		0.0225	0.0250	-10.0	20.0
Trichloroethene	Ave	0.2548	0.2736	0.1500	0.0268	0.0250	7.4	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540740/3 Calibration Date: 08/30/2022 14:10

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: $0.18 \, (mm)$ Calib End Date: 0.4/28/2022 19:03

Lab File ID: 228006.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4217	0.4001	0.1000	0.0237	0.0250	-5.1	20.0
1,2-Dichloropropane	Ave	0.2550	0.2509	0.1000	0.0246	0.0250	-1.6	20.0
Dibromomethane	Ave	0.1559	0.1761		0.0282	0.0250	13.0	20.0
1,4-Dioxane	Lin1		0.0067		0.620	0.500	24.0	50.0
Bromodichloromethane	Ave	0.3392	0.3466	0.1500	0.0255	0.0250	2.2	20.0
2-Chloroethyl vinyl ether	Ave	0.1846	0.1882		0.0510	0.0500	1.9	20.0
cis-1,3-Dichloropropene	Ave	0.3798	0.3993	0.1500	0.0263	0.0250	5.1	50.0
4-Methyl-2-pentanone	Ave	0.3275	0.3582	0.0500	0.0547	0.0500	9.4	50.0
Toluene	Ave	1.453	1.389	0.4000	0.0239	0.0250	-4.4	20.0
trans-1,3-Dichloropropene	Ave	0.4240	0.4361	0.1000	0.0257	0.0250	2.9	20.0
Ethyl methacrylate	Ave	0.4165	0.4255		0.0255	0.0250	2.2	20.0
1,1,2-Trichloroethane	Ave	0.3056	0.3060	0.1000	0.0250	0.0250	0.1	20.0
Tetrachloroethene	Ave	0.3088	0.3446	0.1500	0.0279	0.0250	11.6	20.0
1,3-Dichloropropane	Ave	0.5437	0.5079		0.0234	0.0250	-6.6	20.0
2-Hexanone	Ave	0.3385	0.3489	0.0500	0.0515	0.0500	3.1	50.0
Dibromochloromethane	Ave	0.2969	0.3360		0.0283	0.0250	13.2	20.0
1,2-Dibromoethane	Ave	0.3178	0.3367		0.0265	0.0250	6.0	20.0
Chlorobenzene	Ave	0.8873	0.9280	0.3000	0.0261	0.0250	4.6	20.0
Ethylbenzene	Ave	0.4892	0.5114		0.0261	0.0250	4.5	20.0
1,1,1,2-Tetrachloroethane	Ave	0.2639	0.3344		0.0317	0.0250	26.7*	20.0
m-Xylene & p-Xylene	Ave	0.6020	0.6165		0.0256	0.0250	2.4	20.0
o-Xylene	Ave	0.5852	0.5534		0.0236	0.0250	-5.4	20.0
Styrene	Ave	0.9830	0.9877	0.3000	0.0251	0.0250	0.5	20.0
Bromoform	Ave	0.1904	0.2531	0.1000	0.0332	0.0250	32.9*	20.0
Isopropylbenzene	Ave	1.533	1.467	0.1000	0.0239	0.0250	-4.3	20.0
Bromobenzene	Ave	0.6663	0.7011		0.0263	0.0250	5.2	20.0
1,1,2,2-Tetrachloroethane	Ave	0.9613	0.9835	0.3000	0.0256	0.0250	2.3	20.0
n-Propylbenzene	Ave	0.7996	0.7884		0.0247	0.0250	-1.4	20.0
1,2,3-Trichloropropane	Ave	0.3079	0.3296		0.0268	0.0250	7.0	20.0
trans-1,4-Dichloro-2-butene	Ave	0.2342	0.3019		0.0322	0.0250	28.9*	20.0
2-Chlorotoluene	Ave	0.6772	0.6834		0.0252	0.0250	0.9	20.0
1,3,5-Trimethylbenzene	Ave	2.456	2.384		0.0243	0.0250	-2.9	20.0
4-Chlorotoluene	Ave	0.6912	0.7110		0.0257	0.0250	2.9	20.0
tert-Butylbenzene	Ave	2.088	1.960		0.0235	0.0250	-6.1	20.0
1,2,4-Trimethylbenzene	Ave	2.540	2.424		0.0239	0.0250	-4.6	20.0
sec-Butylbenzene	Ave	3.175	2.936		0.0231	0.0250	-7.5	20.0
1,3-Dichlorobenzene	Ave	1.312	1.380	0.6000	0.0263	0.0250	5.2	20.0
p-Isopropyltoluene	Ave	2.611	2.526		0.0242	0.0250	-3.2	20.0
1,4-Dichlorobenzene	Ave	1.336	1.407	0.5000	0.0263	0.0250	5.3	20.0
n-Butylbenzene	Ave	2.485	2.206		0.0222	0.0250	-11.2	20.0
1,2-Dichlorobenzene	Ave	1.272	1.304	0.4000	0.0256	0.0250	2.5	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCVIS 240-540740/3 Calibration Date: 08/30/2022 14:10

Instrument ID: A3UX22 Calib Start Date: 04/28/2022 15:53

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/28/2022 19:03

Lab File ID: 228006.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.2424	0.2852	0.0500	0.0294	0.0250	17.6	50.0
1,2,4-Trichlorobenzene	Ave	0.7834	0.7405	0.2000	0.0236	0.0250	-5.5	50.0
Hexachlorobutadiene	Ave	0.3098	0.2732		0.0220	0.0250	-11.8	50.0
Naphthalene	Ave	2.808	2.630		0.0234	0.0250	-6.3	50.0
1,2,3-Trichlorobenzene	Ave	0.7596	0.7167		0.0236	0.0250	-5.6	20.0
Dibromofluoromethane (Surr)	Ave	0.2685	0.2913		0.0314	0.0289	8.5	20.0
1,2-Dichloroethane-d4 (Surr)	Lin1		0.3039		0.0286	0.0289	-1.1	20.0
Toluene-d8 (Surr)	Ave	1.330	1.387		0.0302	0.0289	4.3	20.0
4-Bromofluorobenzene (Surr)	Ave	0.5036	0.5024		0.0288	0.0289	-0.2	20.0

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Lab Sample ID: CCV 240-540740/4 Calibration Date: 08/30/2022 14:34

Instrument ID: A3UX22 Calib Start Date: 04/07/2022 21:40

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 04/08/2022 00:50

Lab File ID: 228007.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Acetonitrile	Ave	0.0622	0.0613		0.246	0.250	-1.4	20.0
Diisopropyl ether	Ave	0.2011	0.2052		0.0255	0.0250	2.1	20.0
2-Chloro-1,3-butadiene	Ave	0.3881	0.3685		0.0237	0.0250	-5.0	20.0
Ethyl-t-butyl ether (ETBE)	Ave	0.7036	0.6442		0.0229	0.0250	-8.4	20.0
Ethyl acetate	Ave	0.2958	0.3537		0.0598	0.0500	19.6	20.0
Propionitrile	Ave	0.0686	0.0700		0.255	0.250	2.1	20.0
Methacrylonitrile	Ave	0.1922	0.2267		0.295	0.250	18.0	20.0
Tert-amyl-methyl ether (TAME)	Ave	0.9565	0.8601		0.0225	0.0250	-10.1	20.0
n-Butanol	Ave	0.0137	0.0145		0.658	0.625	5.2	20.0
Methyl methacrylate	Ave	0.2378	0.2730		0.0574	0.0500	14.8	20.0
2-Nitropropane	Ave	0.1057	0.1101		0.0521	0.0500	4.1	20.0
n-Butyl acetate	Ave	0.5940	0.5537		0.0233	0.0250	-6.8	20.0
1-Chlorohexane	Ave	0.4836	0.4467		0.0231	0.0250	-7.6	20.0
Cyclohexanone	Ave	0.0292	0.0276		0.236	0.250	-5.5	20.0
Pentachloroethane	Ave	0.0584	0.2785		0.238	0.0500	376.9*	20.0
1,2,3-Trimethylbenzene	Ave	2.655	2.584		0.0243	0.0250	-2.7	20.0
Benzyl chloride	Ave	1.625	1.521		0.0234	0.0250	-6.4	20.0
1,3,5-Trichlorobenzene	Ave	0.8813	0.8484		0.0241	0.0250	-3.7	20.0
2-Methylnaphthalene	Ave	1.278	0.9196		0.0360	0.0500	-28.0*	20.0

Lab Name: Eurofins Canton	Job No.: 240-171981-1				
SDG No.: MSA Frog Mortar Creek					
Client Sample ID:	Lab Sample ID: MB 240-540508/8				
Matrix: Water	Lab File ID: 227981.D				
Analysis Method: 8260C	Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 08/29/2022 13:29				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)				
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH:				
% Moisture: % Solids:	Level: (low/med) Low				
Analysis Batch No.: 540508	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton	Job No.: 240-171981-1				
SDG No.: MSA Frog Mortar Creek					
Client Sample ID:	Lab Sample ID: MB 240-540508/8				
Matrix: Water	Lab File ID: 227981.D				
Analysis Method: 8260C	Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 08/29/2022 13:29				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)				
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH:				
% Moisture: % Solids:	Level: (low/med) Low				
Analysis Batch No.: 540508	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: Lab Sample ID: MB 240-540508/8 Matrix: Water Lab File ID: 227981.D Analysis Method: 8260C Date Collected: Date Analyzed: 08/29/2022 13:29 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm) Purge Volume: 5.0(mL) _____ Heated Purge: (Y/N) N____ pH: _____ % Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		56-136
1868-53-7	Dibromofluoromethane (Surr)	104		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	113		78-122

Lab Name: Eurofins Canton	Job No.: 240-171981-1				
SDG No.: MSA Frog Mortar Creek					
Client Sample ID:	Lab Sample ID: MB 240-540740/8				
Matrix: Water	Lab File ID: 228011.D				
Analysis Method: 8260C	Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 08/30/2022 16:09				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH:				
% Moisture: % Solids:	Level: (low/med) Low				
Analysis Batch No.: 540740	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	5.4	U	10	5.4
71-43-2	Benzene	0.42	U	1.0	0.42
108-86-1	Bromobenzene	0.50	U	1.0	0.50
74-97-5	Bromochloromethane	0.54	U	1.0	0.54
75-27-4	Bromodichloromethane	0.17	U	1.0	0.17
75-25-2	Bromoform	0.76	U	1.0	0.76
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone	1.2	U	10	1.2
75-15-0	Carbon disulfide	0.59	U	1.0	0.59
56-23-5	Carbon tetrachloride	0.26	U	1.0	0.26
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
75-00-3	Chloroethane	0.83	U	1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	1.5	U	10	1.5
67-66-3	Chloroform	0.47	U	1.0	0.47
74-87-3	Chloromethane	0.63	U	1.0	0.63
95-49-8	2-Chlorotoluene	0.57	U	1.0	0.57
106-43-4	4-Chlorotoluene	0.43	U	1.0	0.43
156-59-2	cis-1,2-Dichloroethene	0.46	U	1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	0.61	U	1.0	0.61
124-48-1	Dibromochloromethane	0.39	U	1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	0.91	U	2.0	0.91
106-93-4	1,2-Dibromoethane	0.41	U	1.0	0.41
74-95-3	Dibromomethane	0.40	U	1.0	0.40
95-50-1	1,2-Dichlorobenzene	0.48	U	1.0	0.48
541-73-1	1,3-Dichlorobenzene	0.45	U	1.0	0.45
106-46-7	1,4-Dichlorobenzene	0.41	U	1.0	0.41
75-71-8	Dichlorodifluoromethane	0.35	U	1.0	0.35
75-34-3	1,1-Dichloroethane	0.47	U	1.0	0.47
107-06-2	1,2-Dichloroethane	0.21	U	1.0	0.21
75-35-4	1,1-Dichloroethene	0.49	U	1.0	0.49
78-87-5	1,2-Dichloropropane	0.47	U	1.0	0.47
142-28-9	1,3-Dichloropropane	0.21	U	1.0	0.21
594-20-7	2,2-Dichloropropane	0.78	U	1.0	0.78
563-58-6	1,1-Dichloropropene	0.36	U	1.0	0.36

Lab Name: Eurofins Canton	Job No.: 240-171981-1				
SDG No.: MSA Frog Mortar Creek					
Client Sample ID:	Lab Sample ID: MB 240-540740/8				
Matrix: Water	Lab File ID: 228011.D				
Analysis Method: 8260C	Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 08/30/2022 16:09				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)				
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH:				
% Moisture: % Solids:	Level: (low/med) Low				
Analysis Batch No.: 540740	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	0.17	U	10	0.17
100-41-4	Ethylbenzene	0.42	U	1.0	0.42
637-92-3	Ethyl-t-butyl ether (ETBE)	0.40	U	5.0	0.40
87-68-3	Hexachlorobutadiene	0.83	U	1.0	0.83
591-78-6	2-Hexanone	1.1	U	10	1.1
98-82-8	Isopropylbenzene	0.49	U	1.0	0.49
75-09-2	Methylene Chloride	2.6	U	5.0	2.6
108-10-1	4-Methyl-2-pentanone	0.99	U	10	0.99
1634-04-4	Methyl tert-butyl ether	0.47	U	1.0	0.47
179601-23-1	m-Xylene & p-Xylene	0.42	U	2.0	0.42
91-20-3	Naphthalene	0.80	U	1.0	0.80
104-51-8	n-Butylbenzene	0.60	U	1.0	0.60
103-65-1	n-Propylbenzene	0.57	U	1.0	0.57
95-47-6	o-Xylene	0.42	U	1.0	0.42
99-87-6	p-Isopropyltoluene	0.56	U	1.0	0.56
135-98-8	sec-Butylbenzene	0.53	U	1.0	0.53
100-42-5	Styrene	0.45	U	1.0	0.45
994-05-8	Tert-amyl-methyl ether (TAME)	0.43	U	5.0	0.43
75-65-0	tert-Butyl alcohol	7.2	U	40	7.2
98-06-6	tert-Butylbenzene	0.48	U	1.0	0.48
630-20-6	1,1,1,2-Tetrachloroethane	0.43	U	1.0	0.43
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	1.0	0.60
127-18-4	Tetrachloroethene	0.44	U	1.0	0.44
108-88-3	Toluene	0.44	U	1.0	0.44
156-60-5	trans-1,2-Dichloroethene	0.51	U	1.0	0.51
10061-02-6	trans-1,3-Dichloropropene	0.67	U	1.0	0.67
87-61-6	1,2,3-Trichlorobenzene	0.54	U	1.0	0.54
120-82-1	1,2,4-Trichlorobenzene	0.77	U	1.0	0.77
71-55-6	1,1,1-Trichloroethane	0.48	U	1.0	0.48
79-01-6	Trichloroethene	0.44	U	1.0	0.44
75-69-4	Trichlorofluoromethane	0.45	U	1.0	0.45
96-18-4	1,2,3-Trichloropropane	0.52	U	1.0	0.52
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	0.41	U	1.0	0.41

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Client Sample ID: Lab Sample ID: MB 240-540740/8 Matrix: Water Lab File ID: 228011.D Analysis Method: 8260C Date Collected: Date Analyzed: 08/30/2022 16:09 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm) Purge Volume: 5.0(mL) ____ Heated Purge: (Y/N) N___ pH: _____ % Moisture: _____ % Solids: ____ Level: (low/med) <u>Low</u> Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
526-73-8	1,2,3-Trimethylbenzene	0.31	U	5.0	0.31
95-63-6	1,2,4-Trimethylbenzene	0.52	U	1.0	0.52
108-05-4	Vinyl acetate	0.61	U	2.0	0.61
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.42	U	2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	97		56-136
1868-53-7	Dibromofluoromethane (Surr)	113		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		62-137
2037-26-5	Toluene-d8 (Surr)	101		78-122

Lab Name: Eurofins Canton		Job No.: 240-171981-1					
SDG No.: MSA Frog	Mortar Creek						
Client Sample ID:		Lab Sample ID: LCS 240-540508/5					
Matrix: Water		 Lab File ID: 227978.D					
Analysis Method: 8260C		Date Collected:					
Sample wt/vol: 5(mL)		Date Analyzed: 08/29/2022 12:1	Date Analyzed: 08/29/2022 12:18				
Soil Aliquot Vol:		Dilution Factor: 1					
Soil Extract Vol.	:	GC Column: DB-624 ID:	0.18(mm)				
Purge Volume: 5.0	(mL)	Heated Purge: (Y/N) N pH:					
% Moisture:	% Solids:	Level: (low/med) Low					
Analysis Batch No.	· 540508	IInits· ua/I.					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	47.6		10	5.4
71-43-2	Benzene	24.3		1.0	0.42
108-86-1	Bromobenzene	27.5		1.0	0.50
74-97-5	Bromochloromethane	21.5		1.0	0.54
75-27-4	Bromodichloromethane	23.7		1.0	0.17
75-25-2	Bromoform	31.6		1.0	0.76
74-83-9	Bromomethane	13.6		1.0	0.42
78-93-3	2-Butanone	51.3		10	1.2
75-15-0	Carbon disulfide	22.8		1.0	0.59
56-23-5	Carbon tetrachloride	27.1		1.0	0.26
108-90-7	Chlorobenzene	25.3		1.0	0.38
75-00-3	Chloroethane	13.0		1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	24.3		10	1.5
67-66-3	Chloroform	22.6		1.0	0.47
74-87-3	Chloromethane	20.1		1.0	0.63
95-49-8	2-Chlorotoluene	25.8		1.0	0.57
106-43-4	4-Chlorotoluene	26.7		1.0	0.43
156-59-2	cis-1,2-Dichloroethene	23.2		1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	24.7		1.0	0.61
124-48-1	Dibromochloromethane	27.2		1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	27.6		2.0	0.91
106-93-4	1,2-Dibromoethane	25.6		1.0	0.41
74-95-3	Dibromomethane	27.3		1.0	0.40
95-50-1	1,2-Dichlorobenzene	25.9		1.0	0.48
541-73-1	1,3-Dichlorobenzene	26.1		1.0	0.45
106-46-7	1,4-Dichlorobenzene	26.1		1.0	0.41
75-71-8	Dichlorodifluoromethane	18.9		1.0	0.35
75-34-3	1,1-Dichloroethane	22.9		1.0	0.47
107-06-2	1,2-Dichloroethane	22.0		1.0	0.21
75-35-4	1,1-Dichloroethene	24.3		1.0	0.49
78-87-5	1,2-Dichloropropane	24.1		1.0	0.47
142-28-9	1,3-Dichloropropane	24.9		1.0	0.21
594-20-7	2,2-Dichloropropane	24.2		1.0	0.78
563-58-6	1,1-Dichloropropene	24.7		1.0	0.36

Lab Name: Eurofins Canton	Job No.: 240-171981-1				
SDG No.: MSA Frog Mortar Creek					
Client Sample ID:	Lab Sample ID: LCS 240-540508/5				
Matrix: Water	Lab File ID: 227978.D				
Analysis Method: 8260C	Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 08/29/2022 12:18				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH:				
% Moisture: % Solids:	Level: (low/med) Low				
Analysis Batch No.: 540508	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
CAS NO.	COMPOUND NAME	KESULI	Q	KL	יוחוא
100-41-4	Ethylbenzene	24.6		1.0	0.42
87-68-3	Hexachlorobutadiene	24.9		1.0	0.83
591-78-6	2-Hexanone	51.9		10	1.
98-82-8	Isopropylbenzene	24.5		1.0	0.49
75-09-2	Methylene Chloride	23.7		5.0	2.
108-10-1	4-Methyl-2-pentanone	50.5		10	0.9
1634-04-4	Methyl tert-butyl ether	23.4		1.0	0.4
179601-23-1	m-Xylene & p-Xylene	24.5		2.0	0.43
91-20-3	Naphthalene	23.7		1.0	0.8
104-51-8	n-Butylbenzene	22.2		1.0	0.6
103-65-1	n-Propylbenzene	24.9		1.0	0.5
95-47-6	o-Xylene	24.5		1.0	0.4
99-87-6	p-Isopropyltoluene	24.0		1.0	0.5
135-98-8	sec-Butylbenzene	23.2		1.0	0.5
100-42-5	Styrene	24.9		1.0	0.4
75-65-0	tert-Butyl alcohol	286		40	7.3
98-06-6	tert-Butylbenzene	24.0		1.0	0.4
630-20-6	1,1,1,2-Tetrachloroethane	29.1		1.0	0.4
79-34-5	1,1,2,2-Tetrachloroethane	26.3		1.0	0.6
127-18-4	Tetrachloroethene	28.5		1.0	0.4
108-88-3	Toluene	24.3		1.0	0.4
156-60-5	trans-1,2-Dichloroethene	23.4		1.0	0.5
10061-02-6	trans-1,3-Dichloropropene	26.2		1.0	0.6
87-61-6	1,2,3-Trichlorobenzene	25.1		1.0	0.5
120-82-1	1,2,4-Trichlorobenzene	25.9		1.0	0.7
71-55-6	1,1,1-Trichloroethane	23.7		1.0	0.4
79-01-6	Trichloroethene	26.5		1.0	0.4
75-69-4	Trichlorofluoromethane	17.8		1.0	0.4
96-18-4	1,2,3-Trichloropropane	25.9		1.0	0.5
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	25.0		1.0	0.4
95-63-6	1,2,4-Trimethylbenzene	24.3		1.0	0.5
108-05-4	Vinyl acetate	24.1		2.0	0.6
75-01-4	Vinyl chloride	20.6		1.0	0.4

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Lab Sample ID: LCS 240-540508/5 Client Sample ID: Matrix: Water Lab File ID: 227978.D Analysis Method: 8260C Date Collected: Date Analyzed: 08/29/2022 12:18 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm) Purge Volume: 5.0 (mL) _____ Heated Purge: (Y/N) N____ pH: _____ % Moisture: _____ % Solids: ____ Level: (low/med) Low Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1330-20-7	Xylenes, Total	49.0		2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	102		56-136
1868-53-7	Dibromofluoromethane (Surr)	102		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		62-137
2037-26-5	Toluene-d8 (Surr)	107		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Lab Sample ID: LCS 240-540508/6 Client Sample ID: Matrix: Water Lab File ID: 227979.D Analysis Method: 8260C Date Collected: Date Analyzed: 08/29/2022 12:41 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm) Purge Volume: 5.0(mL) _____ Heated Purge: (Y/N) N____ pH: _____ % Moisture: _____ % Solids: _____ Level: (low/med) Low Analysis Batch No.: 540508 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	25.4		10	0.17
637-92-3	Ethyl-t-butyl ether (ETBE)	23.9		5.0	0.40
994-05-8	Tert-amyl-methyl ether (TAME)	22.3		5.0	0.43
526-73-8	1,2,3-Trimethylbenzene	23.5		5.0	0.31

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	102		56-136
1868-53-7	Dibromofluoromethane (Surr)	103		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	104		78-122

Lab Name: Eurofins Canton	Job No.: 240-171981-1				
SDG No.: MSA Frog Mortar Creek					
Client Sample ID:	Lab Sample ID: LCS 240-540740/5				
Matrix: Water	Lab File ID: 228008.D				
Analysis Method: 8260C	Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 08/30/2022 14:58				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH:				
% Moisture: % Solids:	Level: (low/med) Low				
Analysis Batch No.: 540740	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	49.6		10	5.4
71-43-2	Benzene	24.8		1.0	0.42
108-86-1	Bromobenzene	26.1		1.0	0.50
74-97-5	Bromochloromethane	22.3		1.0	0.54
75-27-4	Bromodichloromethane	24.9		1.0	0.17
75-25-2	Bromoform	34.9		1.0	0.76
74-83-9	Bromomethane	20.1		1.0	0.42
78-93-3	2-Butanone	53.6		10	1.2
75-15-0	Carbon disulfide	23.8		1.0	0.59
56-23-5	Carbon tetrachloride	28.7		1.0	0.26
108-90-7	Chlorobenzene	26.0		1.0	0.38
75-00-3	Chloroethane	17.9		1.0	0.83
110-75-8	2-Chloroethyl vinyl ether	24.5		10	1.5
67-66-3	Chloroform	23.6		1.0	0.47
74-87-3	Chloromethane	20.4		1.0	0.63
95-49-8	2-Chlorotoluene	24.9		1.0	0.57
106-43-4	4-Chlorotoluene	26.7		1.0	0.43
156-59-2	cis-1,2-Dichloroethene	23.8		1.0	0.46
10061-01-5	cis-1,3-Dichloropropene	24.8		1.0	0.61
124-48-1	Dibromochloromethane	30.3		1.0	0.39
96-12-8	1,2-Dibromo-3-Chloropropane	29.3		2.0	0.91
106-93-4	1,2-Dibromoethane	26.7		1.0	0.41
74-95-3	Dibromomethane	28.0		1.0	0.40
95-50-1	1,2-Dichlorobenzene	26.0		1.0	0.48
541-73-1	1,3-Dichlorobenzene	26.8		1.0	0.45
106-46-7	1,4-Dichlorobenzene	26.4		1.0	0.41
75-71-8	Dichlorodifluoromethane	22.3		1.0	0.35
75-34-3	1,1-Dichloroethane	23.0		1.0	0.47
107-06-2	1,2-Dichloroethane	22.9		1.0	0.21
75-35-4	1,1-Dichloroethene	25.1		1.0	0.49
78-87-5	1,2-Dichloropropane	24.1		1.0	0.47
142-28-9	1,3-Dichloropropane	25.3		1.0	0.21
594-20-7	2,2-Dichloropropane	24.9		1.0	0.78
563-58-6	1,1-Dichloropropene	24.1		1.0	0.36

Lab Name: Eurofins Canton	Job No.: 240-171981-1			
SDG No.: MSA Frog Mortar Creek				
Client Sample ID:	Lab Sample ID: LCS 240-540740/5			
Matrix: Water	Lab File ID: 228008.D			
Analysis Method: 8260C	Date Collected:			
Sample wt/vol: 5(mL)	Date Analyzed: 08/30/2022 14:58			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
Purge Volume: 5.0 (mL)	Heated Purge: (Y/N) N pH:			
% Moisture: % Solids:	Level: (low/med) Low			
Analysis Batch No.: 540740	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
100-41-4	Ethylbenzene	25.2		1.0	0.42
87-68-3	Hexachlorobutadiene	21.1		1.0	0.83
591-78-6	2-Hexanone	57.5		10	1.1
98-82-8	Isopropylbenzene	25.1		1.0	0.49
75-09-2	Methylene Chloride	24.3		5.0	2.6
108-10-1	4-Methyl-2-pentanone	54.7		10	0.99
1634-04-4	Methyl tert-butyl ether	23.7		1.0	0.4
179601-23-1	m-Xylene & p-Xylene	25.5		2.0	0.42
91-20-3	Naphthalene	24.4		1.0	0.80
104-51-8	n-Butylbenzene	22.5		1.0	0.60
103-65-1	n-Propylbenzene	24.2		1.0	0.5
95-47-6	o-Xylene	25.6		1.0	0.42
99-87-6	p-Isopropyltoluene	24.5		1.0	0.5
135-98-8	sec-Butylbenzene	23.8		1.0	0.5
100-42-5	Styrene	25.8		1.0	0.4
75-65-0	tert-Butyl alcohol	311		40	7.2
98-06-6	tert-Butylbenzene	24.2		1.0	0.4
630-20-6	1,1,1,2-Tetrachloroethane	31.3		1.0	0.4
79-34-5	1,1,2,2-Tetrachloroethane	25.7		1.0	0.60
127-18-4	Tetrachloroethene	29.3		1.0	0.4
108-88-3	Toluene	24.9		1.0	0.4
156-60-5	trans-1,2-Dichloroethene	24.4		1.0	0.5
10061-02-6	trans-1,3-Dichloropropene	27.3		1.0	0.6
87-61-6	1,2,3-Trichlorobenzene	24.1		1.0	0.5
120-82-1	1,2,4-Trichlorobenzene	24.2		1.0	0.7
71-55-6	1,1,1-Trichloroethane	25.3		1.0	0.4
79-01-6	Trichloroethene	26.6		1.0	0.4
75-69-4	Trichlorofluoromethane	21.2		1.0	0.4
96-18-4	1,2,3-Trichloropropane	26.4		1.0	0.5
76-13-1	1,1,2-Trichloro-1,2,2-trichfluoroeth ane	25.3		1.0	0.4
95-63-6	1,2,4-Trimethylbenzene	24.9		1.0	0.5
108-05-4	Vinyl acetate	30.9		2.0	0.6
75-01-4	Vinyl chloride	20.7		1.0	0.4

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Lab Sample ID: LCS 240-540740/5 Client Sample ID: Matrix: Water Lab File ID: 228008.D Analysis Method: 8260C Date Collected: Date Analyzed: 08/30/2022 14:58 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624 ID: 0.18 (mm) Soil Extract Vol.: Purge Volume: 5.0(mL) ____ Heated Purge: (Y/N) N___ pH: _____ % Moisture: _____ % Solids: _____ Level: (low/med) Low Analysis Batch No.: 540740 Units: ug/L

	CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
Ī	1330-20-7	Xylenes, Total	51.1		2.0	0.42

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	104		56-136
1868-53-7	Dibromofluoromethane (Surr)	105		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		62-137
2037-26-5	Toluene-d8 (Surr)	108		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Lab Sample ID: LCS 240-540740/6 Client Sample ID: Matrix: Water Lab File ID: 228009.D Analysis Method: 8260C Date Collected: Date Analyzed: 08/30/2022 15:21 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm) Purge Volume: 5.0(mL) ____ Heated Purge: (Y/N) N___ pH: _____ % Moisture: _____ % Solids: _____ Level: (low/med) Low Analysis Batch No.: 540740 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-20-3	Diisopropyl ether	25.1		10	0.17
637-92-3	Ethyl-t-butyl ether (ETBE)	23.6		5.0	0.40
994-05-8	Tert-amyl-methyl ether (TAME)	22.5		5.0	0.43
526-73-8	1,2,3-Trimethylbenzene	24.2		5.0	0.31

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	102		56-136
1868-53-7	Dibromofluoromethane (Surr)	105		73-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		62-137
2037-26-5	Toluene-d8 (Surr)	102		78-122

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 Start Date: 04/07/2022 15:03

Analysis Batch Number: 522080 End Date: 04/08/2022 02:48

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-522080/1		04/07/2022 15:03	1	BFB22244.D	DB-624 0.18 (mm)
IC 240-522080/3		04/07/2022 15:46	1	225035.D	DB-624 0.18 (mm)
IC 240-522080/4		04/07/2022 16:09	1	225036.D	DB-624 0.18(mm)
IC 240-522080/5		04/07/2022 16:33	1	225037.D	DB-624 0.18(mm)
IC 240-522080/6		04/07/2022 16:56	1	225038.D	DB-624 0.18(mm)
IC 240-522080/7		04/07/2022 17:20	1	225039.D	DB-624 0.18(mm)
ICIS 240-522080/8		04/07/2022 17:44	1	225040.D	DB-624 0.18(mm)
IC 240-522080/9		04/07/2022 18:07	1	225041.D	DB-624 0.18(mm)
IC 240-522080/10		04/07/2022 18:31	1	225042.D	DB-624 0.18(mm)
IC 240-522080/11		04/07/2022 18:55	1	225043.D	DB-624 0.18(mm)
ICV 240-522080/13		04/07/2022 19:42	1		DB-624 0.18(mm)
ZZZZZ		04/07/2022 20:06	1		DB-624 0.18(mm)
ZZZZZ		04/07/2022 20:29	1		DB-624 0.18(mm)
ZZZZZ		04/07/2022 20:53	1		DB-624 0.18(mm)
ZZZZZ		04/07/2022 21:17	1		DB-624 0.18(mm)
IC 240-522080/18		04/07/2022 21:40	1	225050.D	DB-624 0.18(mm)
IC 240-522080/19		04/07/2022 22:04	1	225051.D	DB-624 0.18(mm)
IC 240-522080/20		04/07/2022 22:28	1	225052.D	DB-624 0.18(mm)
IC 240-522080/21		04/07/2022 22:52	1	225053.D	DB-624 0.18(mm)
IC 240-522080/22		04/07/2022 23:15	1	225054.D	DB-624 0.18(mm)
IC 240-522080/23		04/07/2022 23:39	1	225055.D	DB-624 0.18(mm)
IC 240-522080/24		04/08/2022 00:02	1	225056.D	DB-624 0.18(mm)
IC 240-522080/25		04/08/2022 00:26	1	225057.D	DB-624 0.18(mm)
IC 240-522080/26		04/08/2022 00:50	1	225058.D	DB-624 0.18(mm)
ICV 240-522080/28		04/08/2022 01:37	1	225060.D	DB-624 0.18(mm)
ZZZZZ		04/08/2022 02:01	1		DB-624 0.18(mm)
ZZZZZ		04/08/2022 02:24	1		DB-624 0.18(mm)
ZZZZZ		04/08/2022 02:48	1		DB-624 0.18(mm)

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 Start Date: 04/28/2022 15:10

Analysis Batch Number: 524416 End Date: 04/28/2022 22:13

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-524416/1		04/28/2022 15:10	1	BFB22256.D	DB-624 0.18 (mm)
IC 240-524416/3		04/28/2022 15:53	1	225395.D	DB-624 0.18 (mm)
IC 240-524416/4		04/28/2022 16:16	1	225396.D	DB-624 0.18(mm)
IC 240-524416/5		04/28/2022 16:40	1	225397.D	DB-624 0.18(mm)
IC 240-524416/6		04/28/2022 17:04	1	225398.D	DB-624 0.18(mm)
IC 240-524416/7		04/28/2022 17:27	1	225399.D	DB-624 0.18(mm)
ICIS 240-524416/8		04/28/2022 17:51	1	225400.D	DB-624 0.18(mm)
IC 240-524416/9		04/28/2022 18:15	1	225401.D	DB-624 0.18(mm)
IC 240-524416/10		04/28/2022 18:39	1	225402.D	DB-624 0.18(mm)
IC 240-524416/11		04/28/2022 19:03	1	225403.D	DB-624 0.18(mm)
CCV 240-524416/13		04/28/2022 19:50	1		DB-624 0.18(mm)
ICV 240-524416/14		04/28/2022 20:14	1	225406.D	DB-624 0.18(mm)
ZZZZZ		04/28/2022 20:37	1		DB-624 0.18(mm)
ZZZZZ		04/28/2022 21:01	1		DB-624 0.18(mm)
ZZZZZ		04/28/2022 21:25	1		DB-624 0.18(mm)
ZZZZZ		04/28/2022 21:49	1		DB-624 0.18(mm)
ZZZZZ		04/28/2022 22:13	1		DB-624 0.18(mm)

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 Start Date: 08/29/2022 10:47

Analysis Batch Number: 540508 End Date: 08/29/2022 22:10

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-540508/1		08/29/2022 10:47	1	BFB22344.D	DB-624 0.18 (mm)
CCVIS 240-540508/3		08/29/2022 11:30	1	227976.D	DB-624 0.18(mm)
CCV 240-540508/4		08/29/2022 11:54	1	227977.D	DB-624 0.18(mm)
LCS 240-540508/5		08/29/2022 12:18	1	227978.D	DB-624 0.18(mm)
LCS 240-540508/6		08/29/2022 12:41	1	227979.D	DB-624 0.18(mm)
ZZZZZ		08/29/2022 13:05	1		DB-624 0.18(mm)
MB 240-540508/8		08/29/2022 13:29	1	227981.D	DB-624 0.18(mm)
240-171981-1	MSA-SW37A-082222	08/29/2022 13:53	1	227982.D	DB-624 0.18(mm)
240-171981-2	MSA-SW37B-082222	08/29/2022 14:17	1	227983.D	DB-624 0.18(mm)
240-171981-3	MSA-SW37C-082222	08/29/2022 14:40	1	227984.D	DB-624 0.18(mm)
240-171981-4	MSA-SW37D-082222	08/29/2022 15:04	1	227985.D	DB-624 0.18(mm)
240-171981-5	MSA-SW38A-082222	08/29/2022 15:27	1	227986.D	DB-624 0.18(mm)
240-171981-6	MSA-SW38B-082222	08/29/2022 15:51	1	227987.D	DB-624 0.18(mm)
240-171981-7	MSA-SW38C-082222	08/29/2022 16:15	1	227988.D	DB-624 0.18(mm)
240-171981-8	MSA-SW38D-082222	08/29/2022 16:38	1	227989.D	DB-624 0.18(mm)
240-171981-9	MSA-SW40A-082222	08/29/2022 17:02	1	227990.D	DB-624 0.18(mm)
240-171981-10	MSA-SW40B-082222	08/29/2022 17:26	1	227991.D	DB-624 0.18(mm)
240-171981-11	MSA-SW40C-082222	08/29/2022 17:49	1	227992.D	DB-624 0.18(mm)
240-171981-12	MSA-SW40D-082222	08/29/2022 18:13	1	227993.D	DB-624 0.18(mm)
240-171981-13	MSA-SW41A-082222	08/29/2022 18:37	1	227994.D	DB-624 0.18(mm)
240-171981-14	MSA-SW41B-082222	08/29/2022 19:01	1	227995.D	DB-624 0.18(mm)
240-171981-15	MSA-SW41C-082222	08/29/2022 19:24	1	227996.D	DB-624 0.18(mm)
240-171981-16	MSA-SW41D-082222	08/29/2022 19:48	1	227997.D	DB-624 0.18(mm)
240-171981-17	MSA-SW42A-082222	08/29/2022 20:11	1	227998.D	DB-624 0.18(mm)
240-171981-18	MSA-SW42B-082222	08/29/2022 20:35	1	227999.D	DB-624 0.18(mm)
240-171981-19	MSA-SW42C-082222	08/29/2022 20:59	1	228000.D	DB-624 0.18(mm)
ZZZZZ		08/29/2022 21:22	5		DB-624 0.18(mm)
ZZZZZ		08/29/2022 21:46	5		DB-624 0.18(mm)
ZZZZZ		08/29/2022 22:10	5		DB-624 0.18(mm)

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Instrument ID: A3UX22 Start Date: 08/30/2022 13:27

Analysis Batch Number: 540740 End Date: 08/31/2022 00:51

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-540740/10		08/30/2022 13:27	1	BFB22346.D	DB-624 0.18 (mm)
CCVIS 240-540740/3		08/30/2022 14:10	1	228006.D	DB-624 0.18(mm)
CCV 240-540740/4		08/30/2022 14:34	1	228007.D	DB-624 0.18(mm)
LCS 240-540740/5		08/30/2022 14:58	1	228008.D	DB-624 0.18(mm)
LCS 240-540740/6		08/30/2022 15:21	1	228009.D	DB-624 0.18(mm)
ZZZZZ		08/30/2022 15:45	1		DB-624 0.18(mm)
MB 240-540740/8		08/30/2022 16:09	1	228011.D	DB-624 0.18(mm)
ZZZZZ		08/30/2022 16:33	1		DB-624 0.18(mm)
240-171981-25	TB-082222	08/30/2022 16:57	1	228013.D	DB-624 0.18(mm)
240-171981-30	MSA-SWEQB-082222	08/30/2022 17:20	1	228014.D	DB-624 0.18(mm)
240-171981-20	MSA-SW42D-082222	08/30/2022 17:44	1	228015.D	DB-624 0.18(mm)
240-171981-21	MSA-SW43A-082222	08/30/2022 18:08	1	228016.D	DB-624 0.18(mm)
240-171981-22	MSA-SW43B-082222	08/30/2022 18:31	1	228017.D	DB-624 0.18(mm)
240-171981-23	MSA-SW43C-082222	08/30/2022 18:55	1	228018.D	DB-624 0.18(mm)
240-171981-24	MSA-SW43D-082222	08/30/2022 19:18	1	228019.D	DB-624 0.18 (mm)
240-171981-26	MSA-SW46A-082222	08/30/2022 19:42	1	228020.D	DB-624 0.18 (mm)
240-171981-27	MSA-SW47A-082222	08/30/2022 20:06	1	228021.D	DB-624 0.18 (mm)
240-171981-28	MSA-SW48A-082222	08/30/2022 20:29	1	228022.D	DB-624 0.18 (mm)
240-171981-29	MSA-SW49A-082222	08/30/2022 20:53	1	228023.D	DB-624 0.18 (mm)
ZZZZZ		08/30/2022 21:17	1		DB-624 0.18 (mm)
ZZZZZ		08/30/2022 21:41	1		DB-624 0.18 (mm)
ZZZZZ		08/30/2022 22:04	1		DB-624 0.18 (mm)
ZZZZZ		08/30/2022 22:28	1		DB-624 0.18 (mm)
ZZZZZ		08/30/2022 22:52	50		DB-624 0.18(mm)
ZZZZZ		08/30/2022 23:16	50		DB-624 0.18(mm)
ZZZZZ		08/30/2022 23:40	50		DB-624 0.18(mm)
ZZZZZ		08/31/2022 00:03	400		DB-624 0.18(mm)
ZZZZZ		08/31/2022 00:27	400		DB-624 0.18(mm)
ZZZZZ		08/31/2022 00:51	400		DB-624 0.18(mm)

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 522080 Batch Start Date: 04/07/22 15:03 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	vm25UX18IS 00004	vm25UX18SS 00005	vm50ss 00470	VMAROLISTDW 00432
BFB 240-522080/1		8260C		5 mL	5 mL				
IC 240-522080/3		8260C		5 mL	5 mL	5.78 uL		0.4 uL	0.4 uL
IC 240-522080/4		8260C		5 mL	5 mL	5.78 uL		0.8 uL	0.8 uL
IC 240-522080/5		8260C		5 mL	5 mL	5.78 uL		2 uL	2 uL
IC 240-522080/6		8260C		5 mL	5 mL	5.78 uL	1.156 uL		5 uL
IC 240-522080/7		8260C		5 mL	5 mL	5.78 uL	2.224 uL		10 uL
ICIS 240-522080/8		8260C		5 mL	5 mL	5.78 uL	5.78 uL		20 uL
IC 240-522080/9		8260C		5 mL	5 mL	5.78 uL	9.248 uL		30 uL
IC 240-522080/10		8260C		5 mL	5 mL	5.78 uL	11.56 uL		40 uL
IC 240-522080/11		8260C		5 mL	5 mL	5.78 uL	15.028 uL		50 uL
IC 240-522080/18		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/19		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/20		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/21		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/22		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/23		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/24		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/25		8260C		5 mL	5 mL	5.78 uL			
IC 240-522080/26		8260C		5 mL	5 mL	5.78 uL			
ICV 240-522080/28		8260C		5 mL	5 mL	5.78 uL	5.78 uL		

Lab Sample ID	Client Sample ID	Method Chain	Basis	vmbfb 00028	VMFASA9W 00354	VMRA9W 00430	VMRGAS 00421	VMRPRIMW 00476	
BFB 240-522080/1		8260C		1 uL					

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 1 of 3

Lab Name: Eurofins Canton	Job No.: 240-171981-1
---------------------------	-----------------------

SDG No.: MSA Frog Mortar Creek

Batch Number: 522080 Batch Start Date: 04/07/22 15:03 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Basis	vmbfb 00028	VMFASA9W 00354	VMRA9W 00430	VMRGAS 00421	VMRPRIMW 00476
IC 240-522080/3		8260C					0.4 uL	0.4 uL
IC 240-522080/4		8260C					0.8 uL	0.8 uL
IC 240-522080/5		8260C					2 uL	2 uL
IC 240-522080/6		8260C					5 uL	5 uL
IC 240-522080/7		8260C					10 uL	10 uL
ICIS 240-522080/8		8260C					20 uL	20 uL
IC 240-522080/9		8260C					30 uL	30 uL
IC 240-522080/10		8260C					40 uL	40 uL
IC 240-522080/11		8260C					50 uL	50 uL
IC 240-522080/18		8260C				0.4 uL		
IC 240-522080/19		8260C				0.8 uL		
IC 240-522080/20		8260C				2 uL		
IC 240-522080/21		8260C				5 uL		
IC 240-522080/22		8260C				10 uL		
IC 240-522080/23		8260C				20 uL		
IC 240-522080/24		8260C				30 uL		
IC 240-522080/25		8260C				40 uL		
IC 240-522080/26		8260C				50 uL		
ICV 240-522080/28		8260C			20 uL			

	Batch Notes
f	

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 522080 Batch Start Date: 04/07/22 15:03 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Basis	Basis Description

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 524416 Batch Start Date: 04/28/22 15:10 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	vm25UX18IS 00004	vm25UX18SS 00005	vm50ss 00472	VMAROLISTDW 00435
BFB 240-524416/1		8260C		5 mL	5 mL				
IC 240-524416/3		8260C		5 mL	5 mL	5.78 uL		0.4 uL	0.4 uL
IC 240-524416/4		8260C		5 mL	5 mL	5.78 uL		0.8 uL	0.8 uL
IC 240-524416/5		8260C		5 mL	5 mL	5.78 uL		2 uL	2 uL
IC 240-524416/6		8260C		5 mL	5 mL	5.78 uL	1.156 uL		5 uL
IC 240-524416/7		8260C		5 mL	5 mL	5.78 uL	2.224 uL		10 uL
ICIS 240-524416/8		8260C		5 mL	5 mL	5.78 uL	5.78 uL		20 uL
IC 240-524416/9		8260C		5 mL	5 mL	5.78 uL	9.248 uL		30 uL
IC 240-524416/10		8260C		5 mL	5 mL	5.78 uL	11.56 uL		40 uL
IC 240-524416/11		8260C		5 mL	5 mL	5.78 uL	15.028 uL		50 uL
ICV 240-524416/14		8260C		5 mL	5 mL	5.78 uL	5.78 uL		

Lab Sample ID	Client Sample ID	Method Chain	Basis	vmbfb 00028	VMFASAW 00415	VMFASGW 00452	VMFASPW 00441	VMRGAS 00424	VMRPRIMW 00479
BFB 240-524416/1		8260C		1 uL					
IC 240-524416/3		8260C						0.4 uL	0.4 uL
IC 240-524416/4		8260C						0.8 uL	0.8 uL
IC 240-524416/5		8260C						2 uL	2 uL
IC 240-524416/6		8260C						5 uL	5 uL
IC 240-524416/7		8260C						10 uL	10 uL
ICIS 240-524416/8		8260C						20 uL	20 uL
IC 240-524416/9		8260C						30 uL	30 uL
IC 240-524416/10		8260C						40 uL	40 uL
IC 240-524416/11		8260C						50 uL	50 uL
ICV 240-524416/14		8260C			20 uL	20 uL	20 uL		

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 1 of 2

Lab Name: Eurofins Canton		
SDG No.: MSA Frog Mortar Creek		
Batch Number: 524416	Batch Start Date: 04/28/22 15:10	Batch Analyst: Macenczak, Steven
Batch Method: 8260C	Batch End Date:	
	Batch Notes	

Basis	Basis Description

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 540508 Batch Start Date: 08/29/22 10:47 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	vm25UX18IS 00005	vm25UX18SS 00006	VMAROLISTDW 00451
BFB 240-540508/1		8260C		5 mL	5 mL				
CCVIS 240-540508/3		8260C		5 mL	5 mL		5.78 uL	5.78 uL	20 uL
CCV 240-540508/4		8260C		5 mL	5 mL		5.78 uL		
LCS 240-540508/5		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
LCS 240-540508/6		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
MB 240-540508/8		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
240-171981-B-1	MSA-SW37A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-2	MSA-SW37B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-3	MSA-SW37C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-4	MSA-SW37D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-5	MSA-SW38A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-6	MSA-SW38B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-7	MSA-SW38C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-C-8	MSA-SW38D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-9	MSA-SW40A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-10	MSA-SW40B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-11	MSA-SW40C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-12	MSA-SW40D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-13	MSA-SW41A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-14	MSA-SW41B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-15	MSA-SW41C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-16	MSA-SW41D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-17	MSA-SW42A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-18	MSA-SW42B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-19	MSA-SW42C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
Lab Sample TD	Client Sample ID	Method Chain	Basis	vmbfb 00030	VMFASA9W 00371	VMFASAW 00431	VMFASGW 00469	VMFASPW 00456	VMRA9W 00448

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 1 of 4

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Batch Number: 540508 Batch Start Date: 08/29/22 10:47 Batch Analyst: Macenczak, Steven Batch Method: 8260C Batch End Date: Lab Sample ID | Client Sample ID | Method Chain | Basis vmbfb 00030 VMFASA9W 00371 VMFASAW 00431 VMFASGW 00469 VMFASPW 00456 VMRA9W 00448 8260C BFB 1 uL 240-540508/1 CCVIS 8260C 240-540508/3 CCV 8260C 20 uL 240-540508/4 8260C 20 uL 20 uL 20 uL 240-540508/5 LCS 8260C 20 uT. 240-540508/6 MB 240-540508/8 8260C 240-171981-B-1 MSA-SW37A-082222 8260C Т 240-171981-B-2 MSA-SW37B-082222 8260C Т 240-171981-B-3 MSA-SW37C-082222 8260C Т 240-171981-B-4 MSA-SW37D-082222 8260C Т 240-171981-B-5 MSA-SW38A-082222 8260C Т 240-171981-B-6 MSA-SW38B-082222 8260C Т 240-171981-B-7 MSA-SW38C-082222 8260C Т

Lab Sample ID	Client Sample ID	Mothod Chain	Pagig	VMRGAS 00439	VMRPRIMW 00495		I
Lab Sample ID	CITER Sample ID		Dasis	VMRGAS 00439	VMRFRIMW 00493		
BFB 240-540508/1		8260C					

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C

240-171981-C-8 MSA-SW38D-082222 8260C

240-171981-B-9 MSA-SW40A-082222 8260C

240-171981-B-10 MSA-SW40B-082222 8260C

240-171981-B-11 MSA-SW40C-082222 8260C

240-171981-B-12 MSA-SW40D-082222 8260C

240-171981-B-13 MSA-SW41A-082222 8260C

240-171981-B-14 MSA-SW41B-082222 8260C

240-171981-B-15 MSA-SW41C-082222 8260C

240-171981-B-16 MSA-SW41D-082222 8260C

240-171981-B-17 MSA-SW42A-082222 8260C

240-171981-B-18 MSA-SW42B-082222 8260C

240-171981-B-19 MSA-SW42C-082222 8260C

Т

Т

Т

Т

Т

Т

Т

Т

Τ

Т

Т

Page 2 of 4

Lab Name:	Eurofins Canton	Job No.: 240-171981-1	
SDG No.:	MSA Frog Mortar Creek		

Batch Number: 540508 Batch Start Date: 08/29/22 10:47 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date: ____

Lab Sample ID	Client Sample ID	Method Chain	Basis	VMRGAS 00439	VMRPRIMW 00495		
CCVIS 240-540508/3		8260C		20 uL	20 uL		
CCV 240-540508/4		8260C					
LCS 240-540508/5		8260C					
LCS 240-540508/6		8260C					
MB 240-540508/8		8260C					
240-171981-B-1	MSA-SW37A-082222	8260C	Т				
240-171981-B-2	MSA-SW37B-082222	8260C	Т				
240-171981-B-3	MSA-SW37C-082222	8260C	Т				
240-171981-B-4	MSA-SW37D-082222	8260C	Т				
240-171981-B-5	MSA-SW38A-082222	8260C	Т				
240-171981-B-6	MSA-SW38B-082222	8260C	Т				
240-171981-B-7	MSA-SW38C-082222	8260C	Т				
240-171981-C-8	MSA-SW38D-082222	8260C	Т				
240-171981-B-9	MSA-SW40A-082222	8260C	Т				
240-171981-B-10	MSA-SW40B-082222	8260C	Т				
240-171981-B-11	MSA-SW40C-082222	8260C	Т				
240-171981-B-12	MSA-SW40D-082222	8260C	Т				
240-171981-B-13	MSA-SW41A-082222	8260C	Т				
240-171981-B-14	MSA-SW41B-082222	8260C	Т				
240-171981-B-15	MSA-SW41C-082222	8260C	Т				
240-171981-B-16	MSA-SW41D-082222	8260C	Т				
240-171981-B-17	MSA-SW42A-082222	8260C	Т				
240-171981-B-18	MSA-SW42B-082222	8260C	Т				
240-171981-B-19	MSA-SW42C-082222	8260C	Т				

	Batch Notes	
pH Indicator ID	HC281827	

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 3 of 4

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 540508 Batch Start Date: 08/29/22 10:47 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C

Page 4 of 4

Lab Name: Eurofins Canton Job No.: 240-171981-1

SDG No.: MSA Frog Mortar Creek

Batch Number: 540740 Batch Start Date: 08/30/22 13:27 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	vm25UX18IS 00005	vm25UX18SS 00006	VMAROLISTDW 00452
CCVIS 240-540740/3		8260C		5 mL	5 mL		5.78 uL	5.78 uL	20 uL
CCV 240-540740/4		8260C		5 mL	5 mL		5.78 uL		
LCS 240-540740/5		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
LCS 240-540740/6		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
MB 240-540740/8		8260C		5 mL	5 mL		5.78 uL	5.78 uL	
BFB 240-540740/10		8260C		5 mL	5 mL				
240-171981-A-25	TB-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-30	MSA-SWEQB-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-20	MSA-SW42D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-21	MSA-SW43A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-22	MSA-SW43B-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-C-23	MSA-SW43C-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-C-24	MSA-SW43D-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-26	MSA-SW46A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-27	MSA-SW47A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-28	MSA-SW48A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	
240-171981-B-29	MSA-SW49A-082222	8260C	Т	5 mL	5 mL	<2 SU	5.78 uL	5.78 uL	

Lab Sample ID	Client Sample ID	Method Chain	Basis	vmbfb 00030	VMFASA9W 00371	VMFASAW 00431	VMFASGW 00470	VMFASPW 00457	VMRA9W 00448
CCVIS 240-540740/3		8260C							
CCV 240-540740/4		8260C							20 uL
LCS 240-540740/5		8260C				20 uL	20 uL	20 uL	
LCS 240-540740/6		8260C			20 uL				
MB 240-540740/8		8260C							
BFB 240-540740/10		8260C		1 uL					

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 1 of 3

Lab Name: Eurofins Canton Job No.: 240-171981-1 SDG No.: MSA Frog Mortar Creek Batch Number: 540740 Batch Start Date: 08/30/22 13:27 Batch Analyst: Macenczak, Steven Batch Method: 8260C Batch End Date: Lab Sample ID | Client Sample ID | Method Chain | Basis VMFASA9W 00371 VMFASAW 00431 VMFASGW 00470 VMFASPW 00457 VMRA9W 00448 vmbfb 00030 240-171981-A-25 TB-082222 8260C 240-171981-B-30 MSA-SWEQB-082222 8260C Т 240-171981-B-20 MSA-SW42D-082222 8260C Т 240-171981-B-21 MSA-SW43A-082222 8260C 240-171981-B-22 MSA-SW43B-082222 8260C 240-171981-C-23 MSA-SW43C-082222 8260C Т 240-171981-C-24 MSA-SW43D-082222 8260C 240-171981-B-26 MSA-SW46A-082222 8260C 240-171981-B-27 MSA-SW47A-082222 8260C 240-171981-B-28 MSA-SW48A-082222 8260C Т 240-171981-B-29 MSA-SW49A-082222 8260C Lab Sample ID | Client Sample ID | Method Chain | Basis VMRGAS 00439 VMRPRIMW 00495 CCVIS 8260C 20 uL 20 uL 240-540740/3 CCV 82.60C 240-540740/4 LCS 8260C 240-540740/5 8260C LCS 240-540740/6 MB 240-540740/8 8260C BFB 8260C 240-540740/10 240-171981-A-25 TB-082222 8260C Т 240-171981-B-30 MSA-SWEQB-082222 8260C Т 240-171981-B-20 MSA-SW42D-082222 8260C Т 240-171981-B-21 MSA-SW43A-082222 8260C Т 240-171981-B-22 MSA-SW43B-082222 8260C Т 240-171981-C-23 MSA-SW43C-082222 8260C Т 240-171981-C-24 MSA-SW43D-082222 8260C Τ

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Т

Т

240-171981-B-26 MSA-SW46A-082222 8260C

240-171981-B-27 MSA-SW47A-082222 8260C

8260C Page 2 of 3

Lab Name:	Eurofins	Canton	Job No.:	240-171981-1	

SDG No.: MSA Frog Mortar Creek

Batch Number: 540740 Batch Start Date: 08/30/22 13:27 Batch Analyst: Macenczak, Steven

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	VMRGAS 00439	VMRPRIMW 00495		
240-171981-B-28	MSA-SW48A-082222	8260C	Т				
240-171981-B-29	MSA-SW49A-082222	8260C	Т				

Batch	Notes
pH Indicator ID	HC178690

	Basis	Basis Description
f	Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 3 of 3

Shipping and Receiving Documents

3.6/3.6

Baltimore #201

CANTON

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

CANTON 180 S. VAN BUREN AVE		Chain of Custody Record		THE LEADER IN ENVIRONMENTAL TESTING
BARBERTON, OH, 44203				TestAmerica Laboratories, Inc.
Client Contact	Project Manager: Josh Mullis	Site Contact: Josh Mullis	Date: 8/232022	COC No
Tetra Tech	Tel/Fax: 410-279-2700	Lab Contact: Roxanne Cisneros	Carrier: Fedex	1 of 3 COCs
20251 Century Blvd, Suite 200	Analysis Turnaround Time	(c		Job No.
Germantown, MD 20874	Calendar (C) or Work Days (W)	0097		
(301) 528-3021 Phone	TAT if different from Below STANDARD			
(301) 528-3000 FAX	2 weeks			SDG No.
Project Name: MSA Surface Water Sampling	l week	· 72.		
Site: MSA Frog Mortar Creek	2 days			
PROJECT # 112IC09567	I day			Sampler: J Mullis
Sample Identification	Sample Date Time Type M	Matrix Cont. Cont. Filtered Su Filtered Su		Sample Specific Notes:
MSA-SW37A-082 3 -22		Water 3 x		
MSA-SW37B-082 12 -2	8/2 2 2022 1742 SW W.	Water 3 N		
d MSA-SW37C-082 12 2	SW	Water 3 x		
a MSA-SW37D-082 2 22	8/22/2022 (247) SW W.	Water 3 x		
MSA-SW38A-082 2 22	8/212022 /15 3 sw W.	Water 3 x		
o MSA-SW38B-082 2 22	8/2 Z 2022 //55 sw w.	Water 3 x		
MSA-SW38C-082 % 2	8.28.2022 1958 sw W.	Water 3 x		
MSA-SW38D-082 2 22	8/2 \$ /2022 (100 0 sw	Water 3 x		
MSA-SW40A-082822	SW	Water 3 x		
MSA-SW40B-082 1 22	8/22/2022 12 14 SW W.	Water 3 x 240-171981 C	240-171981 Chain of Custody	
MSA-SW40C-082 \$ 22	8/22/22/12/17 SW W.	Water 3 x		
MSA-SW40D-082 2 2	8.2 2 2022 1220 SW	Water 3 x		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NaOH; 6= Other	2		
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B — hknown		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Monti	etained longer than 1 month) Archive For Months
Special Instructions/QC Requirements & Comments:				
Relinquished by my Mark	Company. De Let	Date/Time: Received by:	Company & 150	Date Time 19 19 19 19 19
Relinquished by:		Bate Time. Received by	2 De Company	Date/Time Date/Time
Rel@quished by:	Company		J. Fr.	020-12

Form No. CA-C-W1-002, Rev. 2, dated 03/06/2012

Company

Received by

Date/Time:

Company

CANTON 180 S. VAN BUREN AVE BARBERTON, OH, 44203

Chain of Custody Record

TestAmerica

ng Calen Sample I Sample I 82342	urnaround Ti ork Days (W) orn Below STAP weeks week 2 days 1 day Sample Type Sw SW SW	# of XX Cant.	VOCs + Freon 113/22 + TIC (8260C) VOCs + Freon 113/22 + TIC (8260C)	Carrier: Fedex	2 of 3 COCs Job No. SDG No.
Calen Calen Sample I 82372	ork Days (W) from Below STAM from Below STAM from Below STAM 1 week 2 days 1 day From Sample Type SW SW SW	∑			Job No. SDG No.
Calen Calen Sample I 8237.2	ork Days (W) from Below STAP from Below STAP 1 week 2 days 1 day Sample Type SW SW SW	™ ™ Eilecred Sample			SDG No.
Sample I 82%2	from Below STAP 2 weeks 2 days 1 day Frype SW SW SW SW	S S Editored Sample			SDG No.
- R	2 weeks 1 week 2 days 1 day Type Sw SW SW	∑ Ci. Filtered Sample			SDG No.
I A	1 week 2 days 1 day	w w jiered Sample			
Identification Sar W41A-0821/22	2 days 1 day Type Sample Type SW SW SW	~ ~ Eiltered Sample			
A-SW41 A-0827622	SW SW SW	ω ω Filtered Sampl			
Sai	Sample Type SW SW SW	Conf. Filtered Sa			Sampler, J Mullis
	SW SW SW	E E			Sample Specific Notes.
	SW	3			
	SW	_			
MSA-SW41C-082922 NSA-SW41C-082922 // 43		ler 3 N			
MSA-SW41D-082 22 22	143 SW Water	er 3 x			
MSA-SW42A-082 2 22	xx6 SW Water	ter 3 x			
MSA-SW42B-082 % 2 (12.2%)	228 SW Water	ler 3 x			
MSA-SW42C-082122 8/24/2022 7 3	> 3 / Sw Water	ter 3 x			
MSA-SW42D-082 2 22	235 SW Water	ter 3 x			
MSA-SW43A-082 9 22	1112 SW Water	ter 3 x			
MSA-SW43B-082 B 22	17 Sw Water	ter 3 x			
MSA-SW43C-082 % 2	119 SW Water	ler 3 x			
MSA-SW43D-082 2 22	1125 SW Water	ter 3 x			
Preservation Used: 1= lee, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other		2			
Possible Hazard Identification Non-Hazard Flammable Skm Irritant Posson B	[] (Inknown	Sampl	ne Disposal (A fee may be a Return To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mont	ed longer than 1 month)
Special Instructions/QC Requirements & Comments:					
Relinanished by A		Descriptions	1		

Form No. CA-C-WI-002, Rev. 2, dated 03/06/2012

Company

Received by

Date Time:

Company

Relinquished by:

15 40

Date/Time: R. Date/Time / Co. R. S/ W/W.

Battimore #201

CANTON 180 S. VAN BUREN AVE BARBERTON, OH, 44203

Chain of Custody Record

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING

Client Confact	Project Manager: Josh Mullis	Sign	Site Contact: Jach Mullis	Parts: 9/24/9/22	TestAmerica Laboratories, Inc.
	comme measurement and a	311	Contact. Jose Mullis	Date: 6/24/2022	LLX NO
letra lech	Tel/Fax: 410-279-2700	La	Lab Contact: Roxanne Cisneros	Carrier: Fedex	3 of 3 COCs
20251 Century Blvd, Suite 200	Analysis Turnaround Time	ne	(:		Job No
Germantown, MD 20874	Calendar (C) or Work Days (W))093		
(301) 528-3021 Phone	TAT if different from Below STANDARD	DARD	(87		
(301) 528-3000 FAX	2 weeks		- 11(C		SDG No
Project Name: MSA Surface Water Sampling	week.		+ 777		
Site MSA Frog Mortar Creek	2 days	į	//٤١١		
PROJECT # 112IC09567	l day	oldma	reon		Sampler J Mullis
Sample Identification	Sample Date Time Type	# of Watrix Cont.	AOC ² + E		Sample Specific Notes
TB-082222	8/23/2022 0000 SW	Water 2			
MSA-SW46A-082 2 22	8/22/2022 17 2 7 SW	Water 3	×		
— MSA-SW47A-082 2 2	8.222022 12.0 S.W	Water 3			
6 MSA-SW48A-082 1 22	8.222022 1/48 SW	Water 3	×		
25 MSA-SW49A-082 12 2	ws C11 22022 8	Water 3	×		
MSA-SWEQB-082 7 22	8.2 2 2022 0000 SW	Water 3	×		
53					
9					
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4 4=HNO3; 5=NaOH; 6= Other	OII; 6= Other		2		
Possible Hazard Identification Non-Hazard Islammable	Parson R		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are retain	ed longer than 1 month)
Requirements & Co			Netari 10 Cilent	Usposar By Lab Archiv	Archive For Months
Relinquished by: 2m Jan 2002	Etta Fech	Date/Time:	Received by:	Company	Date Time Min 1549
Relinquished by:		Jan R	Received by Jampala B.	Company	Des Time 12 15.20
Refigurshed by:	Company:	Date/Time:	Received by:	Company	
022				Form No.	Form No. CA-C-WI-002, Rev. 2, dated 03/06/2012

Eurofins - Canton Sample Receipt Form/Narrative Login#: 17 1 18
Barberton Facility Client 104V () +0(h) Site Name Cooler unpacked by:
Chem 101 Chem She Name V 22 22
FedEx: 1" Grd Exp UPS FAS Clipper Client Drop Off Eurofins Courier Other
Receipt After-hours: Drop-off Date/Time Storage Location
Eurofins Cooler # 7/7 Foam Box Client Cooler Box Other
Packing material used: Bubble Wrop Foam Plastic Bag None Other
COOLANT: Vet Ice Blue Ice Dry Ice Water None
1. Cooler temperature upon receipt IR GUN# IR-13 (CF 0.0 °C) Observed Cooler Temp. 3.6 °C Corrected Cooler Temp. 3.6 °C
IR GUN# IR-13 (CF 0.0 °C) Observed Cooler Temp. O °C Corrected Cooler Temp.
IR GUN #IR-15 (CF -0.7°C) Observed Cooler Temp°C Corrected Cooler Temp°C
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity Yes No Tests that are not
-Were the seals on the outside of the cooler(s) signed & dated? Yes No NA checked for pH by
-Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes No Receiving:
-Were tamper/custody seals intact and uncompromised? (Yes No NA
3. Shippers' packing slip attached to the cooler(s)?
4. Did custody papers accompany the sample(s)? Oil and Grease TOC
5. Were the custody papers relinquished & signed in the appropriate place? Yes No
6. Was/were the person(s) who collected the samples clearly identified on the COC? (Yet No
7. Did all bottles arrive in good condition (Unbroken)?
8 Could all hootle labels (ID/Date/Time) be reconciled with the COC? Vet. No.
9. For each sample, does the COC specify preservatives (Y/N), # of container (Y/N), and sample type of grab/comp(Y/O)
10. Were correct bottle(s) used for the test(s) indicated?
11. Sufficient quantity received to perform indicated analyses?
12. Are these work share samples and all listed on the COC? Yes No
If we Operations 13-17 have been checked at the originating laboratory
13. Were all preserved sample(s) at the correct pH upon receipt? Yes No No pH Strip Lot# HC39999
14. Were VOAs on the COC? (Yes No
15. Were air bubbles >6 mm in any VOA vials? Larger than this.
16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #
17. Was a LL Hg or Me Hg trip blank present?
17. Was a LL rig of Me rig dip chank present:
Contacted PM Date by via Verbal Voice Mail Other
Concerning
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page Samples processed by:
19. SAMPLE CONDITION
Sample(s) were received after the recommended holding time had expired.
Sample(s) were received in a broken container.
Sample(s) 5 W38 B, 5 40 A, 5 W 40 B were received with bubble >6 mm in diameter. (Notify PM)
DEUTIE, DUTIC SWYSU, PRIND DW 481
20. SAMPLE PRESERVATION
on the laboratory
Sample(s) were further preserved in the laboratory.
Time preserved:Preservative(s) added/Lot number(s):
VOA Sample Preservation - Date/Time VOAs Frozen:
Total Sample Fleseration Date Fine 4 Ons Floren.

APPENDIX C – FINAL ANALYTICAL DATA AUGUST 2022

Appendix C Analytical Results for August 2022 Surface Water Sampling in Frog Mortar Creek Middle River, Maryland

Page 1 of 7

LOCATION	MSA-SW37A	MSA-SW37B	MSA-SW37C	MSA-SW37D
SAMPLE ID	MSA-SW37A-082222	MSA-SW37B-082222	MSA-SW37C-082222	MSA-SW37D-082222
SAMPLE DATE	20220822	20220822	20220822	20220822
Volatile organic compounds (μg/L)				
1,1,1,2-TETRACHLOROETHANE	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ
1,1,1-TRICHLOROETHANE	0.48 U	0.48 U	0.48 U	0.48 U
1,1,2,2-TETRACHLOROETHANE 1.1.2-TRICHLOROTRIFLUOROETHANE	0.6 U 0.41 U	0.6 U 0.41 U	0.6 U 0.41 U	0.6 U 0.41 U
1,1-DICHLOROETHANE	0.47 U	0.47 U	0.47 U	0.47 U
1,1-DICHLOROETHENE	0.49 U	0.49 U	0.49 U	0.49 U
1,1-DICHLOROPROPENE	0.36 U	0.36 U	0.36 U	0.36 U
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	0.54 U 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U
1,2,3-TRIMETHYLBENZENE	0.31 U	0.31 U	0.31 U	0.31 U
1,2,4-TRICHLOROBENZENE	0.77 U	0.77 U	0.77 U	0.77 U
1,2,4-TRIMETHYLBENZENE	0.52 U	0.52 U	0.52 U	0.52 U
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	0.91 U 0.41 U	0.91 U 0.41 U	0.91 U 0.41 U	0.91 U 0.41 U
1,2-DICHLOROBENZENE	0.48 U	0.48 U	0.48 U	0.48 U
1,2-DICHLOROETHANE	0.21 U	0.21 U	0.21 U	0.21 U
1,2-DICHLOROPROPANE	0.47 U	0.47 U	0.47 U	0.47 U
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	0.45 U 0.21 U	0.45 U 0.21 U	0.45 U 0.21 U	0.45 U 0.21 U
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE	0.21 U	0.21 U	0.21 U	0.21 U
2,2-DICHLOROPROPANE	0.78 U	0.78 U	0.78 U	0.78 U
2-BUTANONE	1.2 U	1.2 U	1.2 U	1.2 U
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE	1.5 UR 0.57 U	1.5 UR 0.57 U	1.5 UR 0.57 U	1.5 UR 0.57 U
2-CHEXANONE	1.1 U	1.1 U	1.1 U	1.1 U
4-CHLOROTOLUENE	0.43 U	0.43 U	0.43 U	0.43 U
4-ISOPROPYLTOLUENE	0.56 U	0.56 U	0.56 U	0.56 U
4-METHYL-2-PENTANONE	0.99 U	0.99 U	0.99 U	0.99 U
ACETONE BENZENE	5.4 U 0.42 U	5.4 U 0.42 U	5.4 U 0.42 U	5.4 U 0.42 U
BROMOBENZENE	0.42 U	0.5 U	0.5 U	0.5 U
BROMOCHLOROMETHANE	0.54 U	0.54 U	0.54 U	0.54 U
BROMODICHLOROMETHANE	0.17 U	0.17 U	0.17 U	0.17 U
BROMOFORM BROMOMETHANE	0.76 UJ 0.42 UJ	0.76 UJ 0.42 UJ	0.76 UJ 0.42 UJ	0.76 UJ 0.42 UJ
CARBON DISULFIDE	0.42 01 0.59 U	0.42 U	0.42 U	0.59 U
CARBON TETRACHLORIDE	0.26 U	0.26 U	0.26 U	0.26 U
CHLOROBENZENE	0.38 U	0.38 U	0.38 U	0.38 U
CHLORODIBROMOMETHANE	0.39 U	0.39 U	0.39 U	0.39 U
CHLORODIFLUOROMETHANE CHLOROETHANE	1 UJ 0.83 UJ	1 UJ 0.83 UJ	1 UJ 0.83 UJ	1 UJ 0.83 UJ
CHLOROFORM	0.47 U	0.47 U	0.47 U	0.47 U
CHLOROMETHANE	0.63 U	0.63 U	0.63 U	0.63 U
CIS-1,2-DICHLOROETHENE	0.46 U	0.46 U	0.46 U	0.46 U
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	0.61 U 0.4 U	0.61 U 0.4 U	0.61 U 0.4 U	0.61 U 0.4 U
DICHLORODIFLUOROMETHANE	0.35 UJ	0.35 UJ	0.35 UJ	0.35 UJ
DIISOPROPYL ETHER	0.17 U	0.17 U	0.17 U	0.17 U
ETHYL TERT-BUTYL ETHER	0.4 U	0.4 U	0.4 U	0.4 U
ETHYLBENZENE HEXACHLOROBUTADIENE	0.42 U 0.83 U	0.42 U 0.83 U	0.42 U 0.83 U	0.42 U 0.83 U
ISOPROPYLBENZENE	0.49 U	0.49 U	0.49 U	0.49 U
M+P-XYLENES	0.42 U	0.42 U	0.42 U	0.42 U
METHYL TERT-BUTYL ETHER	0.47 U	0.47 U	0.47 U	0.47 U
METHYLENE CHLORIDE	2.6 U	2.6 U	2.6 U	2.6 U
NAPHTHALENE N-BUTYLBENZENE	0.8 U 0.6 U	0.8 U 0.6 U	0.8 U 0.6 U	0.8 U 0.6 U
N-PROPYLBENZENE	0.57 U	0.57 U	0.57 U	0.57 U
O-XYLENE	0.42 U	0.42 U	0.42 U	0.42 U
SEC-BUTYLBENZENE	0.53 U	0.53 U	0.53 U	0.53 U
STYRENE TERT-AMYL METHYL ETHER	0.45 U 0.43 U	0.45 U 0.43 U	0.45 U 0.43 U	0.45 U 0.43 U
TERT-BUTYLBENZENE	0.48 U	0.48 U	0.48 U	0.48 U
TERTIARY-BUTYL ALCOHOL	7.2 UJ	7.2 UJ	7.2 UJ	7.2 UJ
TETRACHLOROETHENE	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ
TOLUENE TOTAL XYLENES	0.44 U 0.42 U	0.44 U 0.42 U	0.44 U 0.42 U	0.44 U 0.42 U
TRANS-1,2-DICHLOROETHENE	0.42 U 0.51 U	0.42 U 0.51 U	0.42 U 0.51 U	0.42 U 0.51 U
TRANS-1,3-DICHLOROPROPENE	0.67 U	0.67 U	0.67 U	0.67 U
TRICHLOROETHENE	0.44 U	0.44 U	0.44 U	0.44 U
TRICHLOROFLUOROMETHANE	0.45 U	0.45 U	0.45 U	0.45 U
VINYL ACETATE	0.61 UJ 0.45 U	0.61 UJ 0.45 U	0.61 UJ 0.45 U	0.61 UJ 0.45 U

U - not detected.

UJ - not detected; detection limit may be imprecise/inaccurate.

 $[\]ensuremath{\mathsf{UR}}$ - rejected; unusable because certain criteria were not met.

Appendix C Analytical Results for August 2022 Surface Water Sampling in Frog Mortar Creek Middle River, Maryland

Page 2 of 7

LOCATION	MSA-SW38A	MSA-SW38B	MSA-SW38C	MSA-SW38D
SAMPLE ID	MSA-SW38A-082222	MSA-SW38B-082222	MSA-SW38C-082222	MSA-SW38D-082222
SAMPLE DATE	20220822	20220822	20220822	20220822
Volatile organic compounds (μg/L)				
1,1,1,2-TETRACHLOROETHANE	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ
1,1,1-TRICHLOROETHANE	0.48 U	0.48 U	0.48 U	0.48 U
1,1,2,2-TETRACHLOROETHANE 1.1.2-TRICHLOROTRIFLUOROETHANE	0.6 U 0.41 U	0.6 U 0.41 U	0.6 U 0.41 U	0.6 U 0.41 U
1,1-DICHLOROETHANE	0.47 U	0.41 U	0.41 U	0.41 U
1,1-DICHLOROETHENE	0.49 U	0.49 U	0.49 U	0.49 U
1,1-DICHLOROPROPENE	0.36 U	0.36 U	0.36 U	0.36 U
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	0.54 U 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U
1,2,3-TRIMETHYLBENZENE	0.31 U	0.31 U	0.31 U	0.31 U
1,2,4-TRICHLOROBENZENE	0.77 U	0.77 U	0.77 U	0.77 U
1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE	0.52 U 0.91 U	0.52 U 0.91 U	0.52 U 0.91 U	0.52 U 0.91 U
1,2-DIBROMOETHANE	0.41 U	0.41 U	0.41 U	0.41 U
1,2-DICHLOROBENZENE	0.48 U	0.48 U	0.48 U	0.48 U
1,2-DICHLOROETHANE	0.21 U	0.21 U	0.21 U	0.21 U
1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE	0.47 U 0.45 U	0.47 U 0.45 U	0.47 U 0.45 U	0.47 U 0.45 U
1,3-DICHLOROPROPANE	0.21 U	0.21 U	0.21 U	0.21 U
1,4-DICHLOROBENZENE	0.41 U	0.41 U	0.41 U	0.41 U
2,2-DICHLOROPROPANE 2-BUTANONE	0.78 U 1.2 U	0.78 U 1.2 U	0.78 U 1.2 U	0.78 U 1.2 U
2-CHLOROETHYL VINYL ETHER	1.5 UR	1.5 UR	1.5 UR	1.5 UR
2-CHLOROTOLUENE	0.57 U	0.57 U	0.57 U	0.57 U
2-HEXANONE	1.1 U	1.1 U	1.1 U	1.1 U
4-CHLOROTOLUENE 4-ISOPROPYLTOLUENE	0.43 U 0.56 U	0.43 U 0.56 U	0.43 U 0.56 U	0.43 U 0.56 U
4-METHYL-2-PENTANONE	0.99 U	0.99 U	0.99 U	0.99 U
ACETONE	5.4 U	5.4 U	5.4 U	5.4 U
BENZENE BROMOBENZENE	0.42 U 0.5 U	0.42 U 0.5 U	0.42 U 0.5 U	0.42 U 0.5 U
BROMOCHLOROMETHANE	0.54 U	0.54 U	0.54 U	0.54 U
BROMODICHLOROMETHANE	0.17 U	0.17 U	0.17 U	0.17 U
BROMOFORM	0.76 UJ	0.76 UJ	0.76 UJ	0.76 UJ
BROMOMETHANE CARBON DISULFIDE	0.42 UJ 0.59 U	0.42 UJ 0.59 U	0.42 UJ 0.59 U	0.42 UJ 0.59 U
CARBON TETRACHLORIDE	0.26 U	0.26 U	0.26 U	0.26 U
CHLOROBENZENE	0.38 U	0.38 U	0.38 U	0.38 U
CHLORODIBROMOMETHANE CHLORODIFLUOROMETHANE	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ
CHLOROETHANE	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ
CHLOROFORM	0.47 U	0.47 U	0.47 U	0.47 U
CHLOROMETHANE CIS-1,2-DICHLOROETHENE	0.63 U 0.46 U	0.63 U 0.46 U	0.63 U 0.46 U	0.63 U 0.46 U
CIS-1,3-DICHLOROPROPENE	0.40 U	0.40 U	0.40 U	0.40 U
DIBROMOMETHANE	0.4 U	0.4 U	0.4 U	0.4 U
DICHLORODIFLUOROMETHANE	0.35 UJ	0.35 UJ	0.35 UJ	0.35 UJ
DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER	0.17 U 0.4 U	0.17 U 0.4 U	0.17 U 0.4 U	0.17 U 0.4 U
ETHYLBENZENE	0.42 U	0.42 U	0.42 U	0.42 U
HEXACHLOROBUTADIENE	0.83 U	0.83 U	0.83 U	0.83 U
ISOPROPYLBENZENE M+P-XYLENES	0.49 U 0.42 U	0.49 U 0.42 U	0.49 U 0.42 U	0.49 U 0.42 U
METHYL TERT-BUTYL ETHER	0.42 U	0.42 U	0.42 U	0.47 U
METHYLENE CHLORIDE	2.6 U	2.6 U	2.6 U	2.6 U
NAPHTHALENE	0.8 U	0.8 U	0.8 U	0.8 U
N-BUTYLBENZENE N-PROPYLBENZENE	0.6 U 0.57 U	0.6 U 0.57 U	0.6 U 0.57 U	0.6 U 0.57 U
O-XYLENE	0.42 U	0.42 U	0.42 U	0.42 U
SEC-BUTYLBENZENE	0.53 U	0.53 U	0.53 U	0.53 U
STYRENE TERT-AMYL METHYL ETHER	0.45 U 0.43 U	0.45 U 0.43 U	0.45 U 0.43 U	0.45 U 0.43 U
TERT-BUTYLBENZENE	0.48 U	0.43 U	0.43 U	0.48 U
TERTIARY-BUTYL ALCOHOL	7.2 UJ	7.2 UJ	7.2 UJ	7.2 UJ
TETRACHLOROETHENE TOLLIENE	0.44 UJ 0.44 U	0.44 UJ	0.44 UJ	0.44 UJ
TOLUENE TOTAL XYLENES	0.44 U 0.42 U	0.44 U 0.42 U	0.44 U 0.42 U	0.44 U 0.42 U
TRANS-1,2-DICHLOROETHENE	0.51 U	0.51 U	0.51 U	0.51 U
TRANS-1,3-DICHLOROPROPENE	0.67 U	0.67 U	0.67 U	0.67 U
TRICHLOROETHENE TRICHLOROFLUOROMETHANE	0.44 U 0.45 U	0.44 U 0.45 U	0.44 U 0.45 U	0.44 U 0.45 U
VINYL ACETATE	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ
VINYL CHLORIDE	0.45 U	0.45 U	0.45 U	0.45 U

U - not detected.

 $[\]ensuremath{\mathsf{UJ}}$ - not detected; detection limit may be imprecise/inaccurate.

UR - rejected; unusable because certain criteria were not met.

Appendix C Analytical Results for August 2022 Surface Water Sampling in Frog Mortar Creek Middle River, Maryland Page 3 of 7

LOCATION	MSA-SW40A	MSA-SW40B	MSA-SW40C	MSA-SW40D
SAMPLE ID	MSA-SW40A-082222	MSA-SW40B-082222	MSA-SW40C-082222	MSA-SW40D-082222
SAMPLE DATE	20220822	20220822	20220822	20220822
Volatile organic compounds (μg/L)				
1,1,1,2-TETRACHLOROETHANE	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ
1,1,1-TRICHLOROETHANE	0.48 U	0.48 U	0.48 U	0.48 U
1,1,2,2-TETRACHLOROETHANE 1.1,2-TRICHLOROTRIFLUOROETHANE	0.6 U 0.41 U	0.6 U 0.41 U	0.6 U 0.41 U	0.6 U 0.41 U
1,1-DICHLOROETHANE	0.47 U	0.47 U	0.47 U	0.47 U
1,1-DICHLOROETHENE	0.49 U	0.49 U	0.49 U	0.49 U
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE	0.36 U 0.54 U	0.36 U 0.54 U	0.36 U 0.54 U	0.36 U 0.54 U
1,2,3-TRICHLOROPROPANE	0.52 U	0.52 U	0.54 U	0.52 U
1,2,3-TRIMETHYLBENZENE	0.31 U	0.31 U	0.31 U	0.31 U
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 U
1,2-DIBROMO-3-CHLOROPROPANE	0.91 U	0.91 U	0.91 U	0.91 U
1,2-DIBROMOETHANE	0.41 U	0.41 U	0.41 U	0.41 U
1,2-DICHLOROBENZENE	0.48 U	0.48 U	0.48 U	0.48 U
1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE	0.21 U 0.47 U	0.21 U 0.47 U	0.21 U 0.47 U	0.21 U 0.47 U
1,3-DICHLOROBENZENE	0.47 U	0.47 U	0.47 U	0.47 U
1,3-DICHLOROPROPANE	0.21 U	0.21 U	0.21 U	0.21 U
1,4-DICHLOROBENZENE 2.2-DICHLOROPROPANE	0.41 U 0.78 U	0.41 U 0.78 U	0.41 U 0.78 U	0.41 U 0.78 U
2-BUTANONE	1.2 U	1.2 U	1.2 U	1.2 U
2-CHLOROETHYL VINYL ETHER	1.5 UR	1.5 UR	1.5 UR	1.5 UR
2-CHLOROTOLUENE	0.57 U	0.57 U	0.57 U	0.57 U
2-HEXANONE 4-CHLOROTOLUENE	1.1 U 0.43 U	1.1 U 0.43 U	1.1 U 0.43 U	1.1 U 0.43 U
4-ISOPROPYLTOLUENE	0.56 U	0.56 U	0.56 U	0.56 U
4-METHYL-2-PENTANONE	0.99 U	0.99 U	0.99 U	0.99 U
ACETONE BENZENE	5.4 U 0.42 U	5.4 U 0.42 U	5.4 U 0.42 U	5.4 U 0.42 U
BROMOBENZENE	0.42 U	0.42 U	0.42 U	0.42 U
BROMOCHLOROMETHANE	0.54 U	0.54 U	0.54 U	0.54 U
BROMODICHLOROMETHANE	0.17 U	0.17 U	0.17 U	0.17 U
BROMOFORM BROMOMETHANE	0.76 UJ 0.42 UJ	0.76 UJ 0.42 UJ	0.76 UJ 0.42 UJ	0.76 UJ 0.42 UJ
CARBON DISULFIDE	0.59 U	0.59 U	0.59 U	0.59 U
CARBON TETRACHLORIDE	0.26 U	0.26 U	0.26 U	0.26 U
CHLOROBENZENE CHLORODIBROMOMETHANE	0.38 U 0.39 U	0.38 U 0.39 U	0.38 U 0.39 U	0.38 U 0.39 U
CHLORODIFLUOROMETHANE	1 UJ	1 UJ	1 UJ	1 UJ
CHLOROETHANE	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ
CHLOROFORM CHLOROMETHANE	0.47 U 0.63 U	0.47 U 0.63 U	0.47 U 0.63 U	0.47 U 0.63 U
CIS-1,2-DICHLOROETHENE	0.46 U	0.46 U	0.46 U	0.46 U
CIS-1,3-DICHLOROPROPENE	0.61 U	0.61 U	0.61 U	0.61 U
DIBROMOMETHANE	0.4 U 0.35 UJ	0.4 U 0.35 UJ	0.4 U 0.35 UJ	0.4 U 0.35 UJ
DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER	0.33 UJ 0.17 U	0.33 UJ 0.17 U	0.33 UJ 0.17 U	0.33 UJ 0.17 U
ETHYL TERT-BUTYL ETHER	0.4 U	0.4 U	0.4 U	0.4 U
ETHYLBENZENE HEYACH ODORUTADIENE	0.42 U	0.42 U	0.42 U	0.42 U
HEXACHLOROBUTADIENE ISOPROPYLBENZENE	0.83 U 0.49 U	0.83 U 0.49 U	0.83 U 0.49 U	0.83 U 0.49 U
M+P-XYLENES	0.42 U	0.42 U	0.42 U	0.42 U
METHYL TERT-BUTYL ETHER	0.47 U	0.47 U	0.47 U	0.47 U
METHYLENE CHLORIDE NAPHTHALENE	2.6 U 0.8 U	2.6 U 0.8 U	2.6 U 0.8 U	2.6 U 0.8 U
N-BUTYLBENZENE	0.6 U	0.6 U	0.6 U	0.6 U
N-PROPYLBENZENE	0.57 U	0.57 U	0.57 U	0.57 U
O-XYLENE SEC-BUTYLBENZENE	0.42 U 0.53 U	0.42 U 0.53 U	0.42 U 0.53 U	0.42 U 0.53 U
STYRENE	0.53 U 0.45 U	0.53 U 0.45 U	0.53 U	0.53 U 0.45 U
TERT-AMYL METHYL ETHER	0.43 U	0.43 U	0.43 U	0.43 U
TERT-BUTYLBENZENE	0.48 U	0.48 U	0.48 U	0.48 U
TERTIARY-BUTYL ALCOHOL TETRACHLOROETHENE	7.2 UJ 0.44 UJ	7.2 UJ 0.44 UJ	7.2 UJ 0.44 UJ	7.2 UJ 0.44 UJ
TOLUENE	0.44 U	0.44 U	0.44 U	0.44 U
TOTAL XYLENES	0.42 U	0.42 U	0.42 U	0.42 U
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U
TRICHLOROETHENE	0.67 U	0.67 U	0.67 U	0.67 U
TRICHLOROFLUOROMETHANE	0.45 U	0.45 U	0.45 U	0.45 U
VINYL ACETATE	0.61 UJ	0.61 UJ	0.61 UJ	0.61 UJ
VINYL CHLORIDE	0.45 U	0.45 U	0.45 U	0.45 U

U - not detected.

UJ - not detected; detection limit may be imprecise/inaccurate.

 $[\]ensuremath{\mathsf{UR}}$ - rejected; unusable because certain criteria were not met.

Appendix C Analytical Results for August 2022 Surface Water Sampling in Frog Mortar Creek Middle River, Maryland Page 4 of 7

LOCATION	MSA-SW41A	MSA-SW41B	MSA-SW41C	MSA-SW41D
SAMPLE ID	MSA-SW41A-082222	MSA-SW41B-082222	MSA-SW41C-082222	MSA-SW41D-082222
SAMPLE DATE	20220822	20220822	20220822	20220822
Volatila augusia agusta un da (v.a./l.)				
Volatile organic compounds (µg/L) 1,1,1,2-TETRACHLOROETHANE	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ
1,1,1-TRICHLOROETHANE	0.48 U	0.48 U	0.48 U	0.48 U
1,1,2,2-TETRACHLOROETHANE	0.6 U	0.6 U	0.6 U	0.6 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.41 U	0.41 U	0.41 U	0.41 U
1,1-DICHLOROETHANE	0.47 U	0.47 U	0.47 U	0.47 U
1,1-DICHLOROETHENE	0.49 U	0.49 U	0.49 U	0.49 U
1,1-DICHLOROPROPENE	0.36 U	0.36 U	0.36 U	0.36 U
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	0.54 U 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U
1,2,3-TRICHLOROPAINE 1,2,3-TRIMETHYLBENZENE	0.31 U	0.31 U	0.31 U	0.32 U
1,2,4-TRICHLOROBENZENE	0.77 U	0.77 U	0.77 U	0.77 U
1,2,4-TRIMETHYLBENZENE	0.52 U	0.52 U	0.52 U	0.52 U
1,2-DIBROMO-3-CHLOROPROPANE	0.91 U	0.91 U	0.91 U	0.91 U
1,2-DIBROMOETHANE	0.41 U	0.41 U	0.41 U	0.41 U
1,2-DICHLOROBENZENE	0.48 U	0.48 U	0.48 U	0.48 U
1,2-DICHLOROETHANE	0.21 U	0.21 U	0.21 U	0.21 U
1,2-DICHLOROPROPANE	0.47 U	0.47 U	0.47 U	0.47 U
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	0.45 U 0.21 U	0.45 U 0.21 U	0.45 U 0.21 U	0.45 U 0.21 U
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE	0.21 U	0.21 U 0.41 U	0.21 U	0.21 U
2,2-DICHLOROPROPANE	0.41 U	0.41 U	0.78 U	0.41 U
2-BUTANONE	1.2 U	1.2 U	1.2 U	1.2 U
2-CHLOROETHYL VINYL ETHER	1.5 UR	1.5 UR	1.5 UR	1.5 UR
2-CHLOROTOLUENE	0.57 U	0.57 U	0.57 U	0.57 U
2-HEXANONE	1.1 U	1.1 U	1.1 U	1.1 U
4-CHLOROTOLUENE	0.43 U	0.43 U	0.43 U	0.43 U
4-ISOPROPYLTOLUENE	0.56 U	0.56 U	0.56 U	0.56 U
4-METHYL-2-PENTANONE	0.99 U	0.99 U	0.99 U	0.99 U
ACETONE BENZENE	5.4 U 0.42 U	5.4 U 0.42 U	5.4 U 0.42 U	5.4 U 0.42 U
BROMOBENZENE	0.42 U	0.42 U	0.42 U	0.42 U
BROMOCHLOROMETHANE	0.54 U	0.54 U	0.54 U	0.54 U
BROMODICHLOROMETHANE	0.17 U	0.17 U	0.17 U	0.17 U
BROMOFORM	0.76 UJ	0.76 UJ	0.76 UJ	0.76 UJ
BROMOMETHANE	0.42 UJ	0.42 UJ	0.42 UJ	0.42 UJ
CARBON DISULFIDE	0.59 U	0.59 U	0.59 U	0.59 U
CARBON TETRACHLORIDE	0.26 U	0.26 U	0.26 U	0.26 U
CHLOROBENZENE	0.38 U	0.38 U	0.38 U	0.38 U
CHLORODIBROMOMETHANE CHLORODIFLUOROMETHANE	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ
CHLOROETHANE	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ
CHLOROFORM	0.47 U	0.47 U	0.47 U	0.47 U
CHLOROMETHANE	0.63 U	0.63 U	0.63 U	0.63 U
CIS-1,2-DICHLOROETHENE	0.46 U	0.46 U	0.46 U	0.46 U
CIS-1,3-DICHLOROPROPENE	0.61 U	0.61 U	0.61 U	0.61 U
DIBROMOMETHANE	0.4 U	0.4 U	0.4 U	0.4 U
DICHLORODIFLUOROMETHANE	0.35 UJ	0.35 UJ	0.35 UJ	0.35 UJ
DIISOPROPYL ETHER	0.17 U	0.17 U	0.17 U	0.17 U
ETHYL TERT-BUTYL ETHER ETHYLBENZENE	0.4 U 0.42 U	0.4 U 0.42 U	0.4 U 0.42 U	0.4 U 0.42 U
HEXACHLOROBUTADIENE	0.42 U	0.42 U	0.42 U	0.42 U
ISOPROPYLBENZENE	0.49 U	0.49 U	0.49 U	0.49 U
M+P-XYLENES	0.42 U	0.42 U	0.42 U	0.42 U
METHYL TERT-BUTYL ETHER	0.47 U	0.47 U	0.47 U	0.47 U
METHYLENE CHLORIDE	2.6 U	2.6 U	2.6 U	2.6 U
NAPHTHALENE	0.8 U	0.8 U	0.8 U	0.8 U
N-BUTYLBENZENE	0.6 U	0.6 U	0.6 U	0.6 U
N-PROPYLBENZENE	0.57 U	0.57 U	0.57 U	0.57 U
O-XYLENE SEC-BUTYLBENZENE	0.42 U 0.53 U	0.42 U 0.53 U	0.42 U 0.53 U	0.42 U 0.53 U
STYRENE	0.53 U 0.45 U	0.53 U 0.45 U	0.53 U 0.45 U	0.53 U 0.45 U
TERT-AMYL METHYL ETHER	0.43 U	0.43 U	0.43 U	0.43 U
TERT-BUTYLBENZENE	0.48 U	0.48 U	0.48 U	0.48 U
TERTIARY-BUTYL ALCOHOL	7.2 UJ	7.2 UJ	7.2 UJ	7.2 UJ
TETRACHLOROETHENE	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ
TOLUENE	0.44 U	0.44 U	0.44 U	0.44 U
TOTAL XYLENES	0.42 U	0.42 U	0.42 U	0.42 U
TRANS-1,2-DICHLOROETHENE	0.51 U	0.51 U	0.51 U	0.51 U
TRANS-1,3-DICHLOROPROPENE	0.67 U	0.67 U	0.67 U	0.67 U
TRICHLOROETHENE TRICHLOROFLUOROMETHANE	0.44 U 0.45 U	0.44 U 0.45 U	0.44 U	0.44 U
VINYL ACETATE	0.45 U 0.61 UJ	0.45 U 0.61 UJ	0.45 U 0.61 UJ	0.45 U 0.61 UJ
VINYL CHLORIDE	0.45 U	0.45 U	0.45 U	0.45 U
VIIVE CHEONIDE	U.45 U	U. 4 3 U	U.43 U	U.43 U

U - not detected.

 $[\]ensuremath{\mathsf{UJ}}$ - not detected; detection limit may be imprecise/inaccurate.

UR - rejected; unusable because certain criteria were not met.

Appendix C Analytical Results for August 2022 Surface Water Sampling in Frog Mortar Creek Middle River, Maryland Page 5 of 7

		-		-
LOCATION	MSA-SW42A	MSA-SW42B	MSA-SW42C	MSA-SW42D
SAMPLE ID	MSA-SW42A-082222	MSA-SW42B-082222	MSA-SW42C-082222	MSA-SW42D-082222
SAMPLE DATE	20220822	20220822	20220822	20220822
Volatile organic compounds (μg/L)	0.42.111	0.42.111	0.42.111	0.42.111
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE	0.43 UJ 0.48 U	0.43 UJ 0.48 U	0.43 UJ 0.48 U	0.43 UJ 0.48 U
1,1,2,2-TETRACHLOROETHANE	0.48 U	0.48 U	0.48 U	0.48 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.41 U	0.41 U	0.41 U	0.41 U
1,1-DICHLOROETHANE	0.47 U	0.47 U	0.47 U	0.47 U
1,1-DICHLOROETHENE	0.49 U	0.49 U	0.49 U	0.49 U
1,1-DICHLOROPROPENE	0.36 U	0.36 U	0.36 U	0.36 U
1,2,3-TRICHLOROBENZENE	0.54 U	0.54 U	0.54 U	0.54 U
1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE	0.52 U 0.31 U	0.52 U 0.31 U	0.52 U 0.31 U	0.52 U 0.31 U
1,2,4-TRICHLOROBENZENE	0.77 U	0.77 U	0.77 U	0.31 U
1,2,4-TRIMETHYLBENZENE	0.52 U	0.52 U	0.52 U	0.52 U
1,2-DIBROMO-3-CHLOROPROPANE	0.91 U	0.91 U	0.91 U	0.91 U
1,2-DIBROMOETHANE	0.41 U	0.41 U	0.41 U	0.41 U
1,2-DICHLOROBENZENE	0.48 U	0.48 U	0.48 U	0.48 U
1,2-DICHLOROETHANE	0.21 U	0.21 U	0.21 U	0.21 U
1,2-DICHLOROPROPANE	0.47 U	0.47 U	0.47 U	0.47 U
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	0.45 U 0.21 U	0.45 U 0.21 U	0.45 U 0.21 U	0.45 U 0.21 U
1,4-DICHLOROBENZENE	0.21 U	0.41 U	0.41 U	0.41 U
2,2-DICHLOROPROPANE	0.78 U	0.78 U	0.78 U	0.78 U
2-BUTANONE	1.2 U	1.2 U	1.2 U	1.2 U
2-CHLOROETHYL VINYL ETHER	1.5 UR	1.5 UR	1.5 UR	1.5 UR
2-CHLOROTOLUENE	0.57 U	0.57 U	0.57 U	0.57 U
2-HEXANONE	1.1 U	1.1 U	1.1 U	1.1 U
4-CHLOROTOLUENE	0.43 U	0.43 U	0.43 U	0.43 U
4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE	0.56 U 0.99 U	0.56 U 0.99 U	0.56 U 0.99 U	0.56 U 0.99 U
ACETONE	5.4 U	5.4 U	5.4 U	5.4 U
BENZENE	0.42 U	0.42 U	0.42 U	0.42 U
BROMOBENZENE	0.5 U	0.5 U	0.5 U	0.5 U
BROMOCHLOROMETHANE	0.54 U	0.54 U	0.54 U	0.54 U
BROMODICHLOROMETHANE	0.17 U	0.17 U	0.17 U	0.17 U
BROMOFORM	0.76 UJ	0.76 UJ	0.76 UJ	0.76 UJ
BROMOMETHANE CARBON DISULFIDE	0.42 UJ 0.59 U	0.42 UJ 0.59 U	0.42 UJ	0.42 UJ 0.59 U
CARBON DISOLFIDE CARBON TETRACHLORIDE	0.39 U	0.39 U	0.59 U 0.26 U	0.39 U
CHLOROBENZENE	0.38 U	0.38 U	0.38 U	0.38 U
CHLORODIBROMOMETHANE	0.39 U	0.39 U	0.39 U	0.39 U
CHLORODIFLUOROMETHANE	1 UJ	1 UJ	1 UJ	1 UJ
CHLOROETHANE	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ
CHLOROFORM	0.47 U	0.47 U	0.47 U	0.47 U
CHLOROMETHANE	0.63 U 0.46 U	0.63 U 0.46 U	0.63 U 0.46 U	0.63 U 0.46 U
CIS-1,2-DICHLOROETHENE CIS-1.3-DICHLOROPROPENE	0.40 U	0.46 U	0.46 U	0.46 U
DIBROMOMETHANE	0.4 U	0.4 U	0.4 U	0.4 U
DICHLORODIFLUOROMETHANE	0.35 UJ	0.35 UJ	0.35 UJ	0.35 U
DIISOPROPYL ETHER	0.17 U	0.17 U	0.17 U	0.17 U
ETHYL TERT-BUTYL ETHER	0.4 U	0.4 U	0.4 U	0.4 U
ETHYLBENZENE	0.42 U	0.42 U	0.42 U	0.42 U
HEXACHLOROBUTADIENE	0.83 U 0.49 U	0.83 U 0.49 U	0.83 U 0.49 U	0.83 U 0.49 U
ISOPROPYLBENZENE M+P-XYLENES	0.49 U	0.49 U 0.42 U	0.49 U 0.42 U	0.49 U 0.42 U
METHYL TERT-BUTYL ETHER	0.47 U	0.42 U	0.42 U	0.42 U
METHYLENE CHLORIDE	2.6 U	2.6 U	2.6 U	2.6 U
NAPHTHALENE	0.8 U	0.8 U	0.8 U	0.8 U
N-BUTYLBENZENE	0.6 U	0.6 U	0.6 U	0.6 U
N-PROPYLBENZENE	0.57 U	0.57 U	0.57 U	0.57 U
O-XYLENE CEC DUTY DENZEME	0.42 U	0.42 U	0.42 U	0.42 U
SEC-BUTYLBENZENE STYRENE	0.53 U 0.45 U	0.53 U 0.45 U	0.53 U 0.45 U	0.53 U 0.45 U
TERT-AMYL METHYL ETHER	0.43 U	0.43 U	0.45 U	0.45 U
TERT-BUTYLBENZENE	0.48 U	0.48 U	0.48 U	0.48 U
TERTIARY-BUTYL ALCOHOL	7.2 UJ	7.2 UJ	7.2 UJ	7.2 UJ
TETRACHLOROETHENE	0.44 UJ	0.44 UJ	0.44 UJ	0.44 U
TOLUENE	0.44 U	0.44 U	0.44 U	0.44 U
TOTAL XYLENES	0.42 U	0.42 U	0.42 U	0.42 U
TRANS-1,2-DICHLOROETHENE		0.51 U	0.51 U	0.51 U
TRANS 4.2 DICHI ODODDOSSAIS	0.51 U		0.67.11	0 67 11
TRANS-1,3-DICHLOROPROPENE	0.67 U	0.67 U	0.67 U	0.67 U
TRICHLOROETHENE	0.67 U 0.44 U	0.67 U 0.44 U	0.44 U	0.44 U
·	0.67 U	0.67 U		

U - not detected.

UJ - not detected; detection limit may be imprecise/inaccurate.

 $[\]ensuremath{\mathsf{UR}}$ - rejected; unusable because certain criteria were not met.

Appendix C Analytical Results for August 2022 Surface Water Sampling in Frog Mortar Creek Middle River, Maryland Page 6 of 7

LOCATION	MSA-SW43A	MSA-SW43B	MSA-SW43C	MSA-SW43D
SAMPLE ID	MSA-SW43A-082222	MSA-SW43B-082222	MSA-SW43C-082222	MSA-SW43D-082222
SAMPLE DATE	20220822	20220822	20220822	20220822
Volatile organic compounds (μg/L)				
1,1,1,2-TETRACHLOROETHANE	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ
1,1,1-TRICHLOROETHANE	0.48 U	0.48 U	0.48 U	0.48 U
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROTRIFLUOROETHANE	0.6 U 0.41 U	0.6 U 0.41 U	0.6 U 0.41 U	0.6 U 0.41 U
1,1-DICHLOROETHANE	0.41 U	0.41 U	0.41 U	0.41 U
1,1-DICHLOROETHENE	0.49 U	0.49 U	0.49 U	0.49 U
1,1-DICHLOROPROPENE	0.36 U	0.36 U	0.36 U	0.36 U
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	0.54 U 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U
1,2,3-TRIMETHYLBENZENE	0.31 U	0.31 U	0.31 U	0.31 U
1,2,4-TRICHLOROBENZENE	0.77 U	0.77 U	0.77 U	0.77 U
1,2,4-TRIMETHYLBENZENE	0.52 U	0.52 U	0.52 U	0.52 U
1,2-DIBROMO-3-CHLOROPROPANE 1.2-DIBROMOETHANE	0.91 U 0.41 U	0.91 U 0.41 U	0.91 U 0.41 U	0.91 U 0.41 U
1,2-DICHLOROBENZENE	0.41 U	0.48 U	0.48 U	0.48 U
1,2-DICHLOROETHANE	0.21 U	0.21 U	0.21 U	0.21 U
1,2-DICHLOROPROPANE	0.47 U	0.47 U	0.47 U	0.47 U
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	0.45 U 0.21 U	0.45 U 0.21 U	0.45 U 0.21 U	0.45 U 0.21 U
1,4-DICHLOROBENZENE	0.21 U	0.21 U	0.21 U	0.21 U
2,2-DICHLOROPROPANE	0.78 U	0.78 U	0.78 U	0.78 U
2-BUTANONE	1.2 U	1.2 U	1.2 U	1.2 U
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE	1.5 UR 0.57 U	1.5 UR 0.57 U	1.5 UR 0.57 U	1.5 UR 0.57 U
2-HEXANONE	1.1 U	1.1 U	1.1 U	1.1 U
4-CHLOROTOLUENE	0.43 U	0.43 U	0.43 U	0.43 U
4-ISOPROPYLTOLUENE	0.56 U	0.56 U	0.56 U	0.56 U
4-METHYL-2-PENTANONE	0.99 U	0.99 U	0.99 U	0.99 U
ACETONE BENZENE	5.4 U 0.42 U	5.4 U 0.42 U	5.4 U 0.42 U	5.4 U 0.42 U
BROMOBENZENE	0.5 U	0.5 U	0.5 U	0.5 U
BROMOCHLOROMETHANE	0.54 U	0.54 U	0.54 U	0.54 U
BROMODICHLOROMETHANE	0.17 U	0.17 U	0.17 U	0.17 U
BROMOFORM BROMOMETHANE	0.76 UJ 0.42 UJ	0.76 UJ 0.42 UJ	0.76 UJ 0.42 UJ	0.76 UJ 0.42 UJ
CARBON DISULFIDE	0.59 U	0.59 U	0.59 U	0.59 U
CARBON TETRACHLORIDE	0.26 U	0.26 U	0.26 U	0.26 U
CHLOROBENZENE	0.38 U	0.38 U	0.38 U	0.38 U
CHLORODIBROMOMETHANE CHLORODIFLUOROMETHANE	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ
CHLOROETHANE	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ
CHLOROFORM	0.47 U	0.47 U	0.47 U	0.47 U
CHLOROMETHANE	0.63 U	0.63 U	0.63 U	0.63 U
CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE	0.46 U 0.61 U	0.46 U 0.61 U	0.46 U 0.61 U	0.46 U 0.61 U
DIBROMOMETHANE	0.4 U	0.4 U	0.4 U	0.4 U
DICHLORODIFLUOROMETHANE	0.35 U	0.35 U	0.35 U	0.35 U
DIISOPROPYL ETHER	0.17 U	0.17 U	0.17 U	0.17 U
ETHYL TERT-BUTYL ETHER ETHYLBENZENE	0.4 U 0.42 U	0.4 U 0.42 U	0.4 U 0.42 U	0.4 U 0.42 U
HEXACHLOROBUTADIENE	0.42 U	0.42 U	0.42 U	0.42 U
ISOPROPYLBENZENE	0.49 U	0.49 U	0.49 U	0.49 U
M+P-XYLENES	0.42 U	0.42 U	0.42 U	0.42 U
METHYL TERT-BUTYL ETHER METHYLENE CHLORIDE	0.47 U 2.6 U	0.47 U 2.6 U	0.47 U 2.6 U	0.47 U 2.6 U
NAPHTHALENE	0.8 U	0.8 U	0.8 U	0.8 U
N-BUTYLBENZENE	0.6 U	0.6 U	0.6 U	0.6 U
N-PROPYLBENZENE	0.57 U	0.57 U	0.57 U	0.57 U
O-XYLENE SEC-BUTYLBENZENE	0.42 U 0.53 U	0.42 U 0.53 U	0.42 U 0.53 U	0.42 U 0.53 U
SEC-BUTYLBENZENE STYRENE	0.53 U	0.53 U 0.45 U	0.53 U 0.45 U	0.53 U 0.45 U
TERT-AMYL METHYL ETHER	0.43 U	0.43 U	0.43 U	0.43 U
TERT-BUTYLBENZENE	0.48 U	0.48 U	0.48 U	0.48 U
TERTIARY-BUTYL ALCOHOL	7.2 UJ	7.2 UJ	7.2 UJ	7.2 UJ
TETRACHLOROETHENE TOLUENE	0.44 U 0.44 U	0.44 U 0.44 U	0.44 U 0.44 U	0.44 U 0.44 U
TOTAL XYLENES	0.44 U	0.44 U	0.44 U	0.44 U
TRANS-1,2-DICHLOROETHENE	0.51 U	0.51 U	0.51 U	0.51 U
TRANS-1,3-DICHLOROPROPENE	0.67 U	0.67 U	0.67 U	0.67 U
TRICHLOROETHENE TRICHLOROETHANIE	0.44 U	0.44 U	0.44 U	0.44 U
	0.45.11	0.45.11	0.45.11	0.45.11
TRICHLOROFLUOROMETHANE VINYL ACETATE	0.45 U 0.61 UJ	0.45 U 0.61 UJ	0.45 U 0.61 UJ	0.45 U 0.61 UJ

U - not detected.

 $[\]ensuremath{\mathsf{UJ}}$ - not detected; detection limit may be imprecise/inaccurate.

UR - rejected; unusable because certain criteria were not met.

Appendix C Analytical Results for August 2022 Surface Water Sampling in Frog Mortar Creek Middle River, Maryland

Page 7 of 7

LOCATION	MSA-SW46A	MSA-SW47A	MSA-SW48A	MSA-SW49A
SAMPLE ID	MSA-SW46A-082222	MSA-SW47A-082222	MSA-SW48A-082222	MSA-SW49A-082222
SAMPLE DATE	20220822	20220822	20220822	20220822
Volatile organic compounds (μg/L)				
1,1,1,2-TETRACHLOROETHANE	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ
1,1,1-TRICHLOROETHANE	0.48 U	0.48 U	0.48 U	0.48 U
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROTRIFLUOROETHANE	0.6 U 0.41 U	0.6 U 0.41 U	0.6 U 0.41 U	0.6 U 0.41 U
1,1-DICHLOROETHANE	0.47 U	0.47 U	0.47 U	0.41 U
1,1-DICHLOROETHENE	0.49 U	0.49 U	0.49 U	0.49 U
1,1-DICHLOROPROPENE	0.36 U	0.36 U	0.36 U	0.36 U
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	0.54 U 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U
1,2,3-TRIMETHYLBENZENE	0.31 U	0.31 U	0.31 U	0.31 U
1,2,4-TRICHLOROBENZENE	0.77 U	0.77 U	0.77 U	0.77 U
1,2,4-TRIMETHYLBENZENE	0.52 U	0.52 U	0.52 U	0.52 U
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	0.91 U 0.41 U	0.91 U 0.41 U	0.91 U 0.41 U	0.91 U 0.41 U
1,2-DICHLOROBENZENE	0.48 U	0.48 U	0.48 U	0.48 U
1,2-DICHLOROETHANE	0.21 U	0.21 U	0.21 U	0.21 U
1,2-DICHLOROPROPANE	0.47 U	0.47 U	0.47 U	0.47 U
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	0.45 U 0.21 U	0.45 U 0.21 U	0.45 U 0.21 U	0.45 U 0.21 U
1,4-DICHLOROBENZENE	0.41 U	0.41 U	0.41 U	0.41 U
2,2-DICHLOROPROPANE	0.78 U	0.78 U	0.78 U	0.78 U
2-BUTANONE	1.2 U	1.2 U	1.2 U	1.2 U
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE	1.5 UR 0.57 U	1.5 UR 0.57 U	1.5 UR 0.57 U	1.5 UR 0.57 U
2-HEXANONE	1.1 U	1.1 U	1.1 U	1.1 U
4-CHLOROTOLUENE	0.43 U	0.43 U	0.43 U	0.43 U
4-ISOPROPYLTOLUENE	0.56 U	0.56 U	0.56 U	0.56 U
4-METHYL-2-PENTANONE ACETONE	0.99 U 5.4 U	0.99 U 5.4 U	0.99 U 5.4 U	0.99 U 5.4 U
BENZENE	0.42 U	0.42 U	0.42 U	0.42 U
BROMOBENZENE	0.5 U	0.5 U	0.5 U	0.5 U
BROMOCHLOROMETHANE	0.54 U	0.54 U	0.54 U	0.54 U
BROMODICHLOROMETHANE BROMOFORM	0.17 U 0.76 UJ	0.17 U 0.76 UJ	0.17 U 0.76 UJ	0.17 U 0.76 UJ
BROMOMETHANE	0.42 UJ	0.42 UJ	0.42 UJ	0.42 UJ
CARBON DISULFIDE	0.59 U	0.59 U	0.59 U	0.59 U
CARBON TETRACHLORIDE	0.26 U	0.26 U	0.26 U	0.26 U
CHLOROBENZENE CHLORODIBROMOMETHANE	0.38 U 0.39 U	0.38 U 0.39 U	0.38 U 0.39 U	0.38 U 0.39 U
CHLORODIFLUOROMETHANE	1 UJ	1 UJ	1 UJ	1 UJ
CHLOROETHANE	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ
CHLOROMETHANIS	0.47 U	0.47 U	0.47 U	0.47 U 0.63 U
CHLOROMETHANE CIS-1,2-DICHLOROETHENE	0.63 U 0.46 U	0.63 U 0.46 U	0.63 U 0.46 U	0.46 U
CIS-1,3-DICHLOROPROPENE	0.61 U	0.61 U	0.61 U	0.61 U
DIBROMOMETHANE	0.4 U	0.4 U	0.4 U	0.4 U
DISCORDODY	0.35 U	0.35 U	0.35 U	0.35 U
DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER	0.17 U 0.4 U	0.17 U 0.4 U	0.17 U 0.4 U	0.17 U 0.4 U
ETHYLBENZENE	0.42 U	0.42 U	0.42 U	0.42 U
HEXACHLOROBUTADIENE	0.83 U	0.83 U	0.83 U	0.83 U
ISOPROPYLBENZENE	0.49 U	0.49 U	0.49 U	0.49 U
M+P-XYLENES METHYL TERT-BUTYL ETHER	0.42 U 0.47 U	0.42 U 0.47 U	0.42 U 0.47 U	0.42 U 0.47 U
METHYLENE CHLORIDE	2.6 U	2.6 U	2.6 U	2.6 U
NAPHTHALENE	0.8 U	0.8 U	0.8 U	0.8 U
N-BUTYLBENZENE	0.6 U	0.6 U	0.6 U 0.57 U	0.6 U 0.57 U
N-PROPYLBENZENE O-XYLENE	0.57 U 0.42 U	0.57 U 0.42 U	0.57 U 0.42 U	0.57 U 0.42 U
SEC-BUTYLBENZENE	0.53 U	0.53 U	0.53 U	0.53 U
STYRENE	0.45 U	0.45 U	0.45 U	0.45 U
TERT-AMYL METHYL ETHER TERT-BUTYLBENZENE	0.43 U 0.48 U	0.43 U 0.48 U	0.43 U 0.48 U	0.43 U 0.48 U
TERTIARY-BUTYL ALCOHOL	7.2 UJ	7.2 UJ	7.2 UJ	7.2 UJ
TETRACHLOROETHENE	0.44 U	0.44 U	0.44 U	0.44 U
TOLUENE	0.44 U	0.44 U	0.44 U	0.44 U
TOTAL XYLENES	0.42 U	0.42 U	0.42 U	0.42 U
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U
TRICHLOROETHENE TRICHLOROETHENE	0.44 U	0.44 U	0.44 U	0.44 U
TRICHLOROFLUOROMETHANE	0.45 U	0.45 U	0.45 U	0.45 U
VINYL ACETATE	0.61 UJ	0.61 UJ	0.61 UJ	0.61 UJ
VINYL CHLORIDE	0.45 U	0.45 U	0.45 U	0.45 U

U - not detected.

 $[\]ensuremath{\mathsf{UJ}}$ - not detected; detection limit may be imprecise/inaccurate.

UR - rejected; unusable because certain criteria were not met.